Structure of associated sets to Midy's property

John H. CastilloGilberto García-PulgarínUniversidad de NariñoUniversidad de Antioquia

Juan Miguel Velásquez-Soto Universidad del Valle

Received Oct. 10, 2011 Accepted Feb. 14, 2012

Abstract

Let b be a positive integer greater than 1, N a positive integer relatively prime to b, $|b|_N$ the order of b in the multiplicative group \mathbb{U}_N of positive integers less than N and relatively primes to N, and $x \in \mathbb{U}_N$. It is well known that when we write the fraction $\frac{x}{N}$ in base b, it is periodic. Let d, k be positive integers with $d \geq 2$ and such that $|b|_N = dk$ and $\frac{x}{N} = 0.\overline{a_1 a_2 \cdots a_{|b|_N}}$ with the bar indicating the period and a_i are digits in base b. We separate the period $a_1 a_2 \cdots a_{|b|_N}$ in d blocks of length k and let $A_j = [a_{(j-1)k+1}a_{(j-1)k+2} \cdots a_{jk}]_b$ be the number represented in base b by the j - th block and $S_d(x) = \sum_{j=1}^d A_j$. If for all $x \in \mathbb{U}_N$, the sum $S_d(x)$ is a multiple of

 $b^k - 1$ we say that N has Midy's property for b and d.

In this work we present some interesting properties of the set of positive integers d such that N has Midy's property to for b and d.

Keywords: Period, decimal representation, order of an integer, multiplicative group of units modulo N

MSC(2000): 11A05, 11A07, 11A15, 11A63, 16U60

1 Introduction

Let b be a positive integer greater than 1, b will denote the base of numeration, N a positive integer relatively prime to b, i.e (N, b) = 1, $|b|_N$ the order of b in the multiplicative group \mathbb{U}_N of positive integers less than N and relatively primes to N, and $x \in \mathbb{U}_N$. It is well known that when we write the fraction $\frac{x}{N}$ in base b, it is periodic. By period we mean the smallest repeating sequence of digits in base b in such expansion, it is easy to see that $|b|_N$ is the length of the period of the fractions $\frac{x}{N}$ (see Exercise 2.5.9 in [6]). Let d, k be positive integers with $d \geq 2$ and such that $|b|_N = dk$ and $\frac{x}{N} = 0.\overline{a_1 a_2 \cdots a_{|b|_N}}$ with the bar indicating the period and a_i are digits in base b. We separate the period $a_1 a_2 \cdots a_{|b|_N}$ in d blocks of length k and let

$$A_j = [a_{(j-1)k+1}a_{(j-1)k+2}\cdots a_{jk}]_b$$

be the number represented in base b by the j - th block and $S_d(x) = \sum_{j=1}^d A_j$. If for all $x \in \mathbb{U}_N$, the sum $S_d(x)$ is a multiple of $b^k - 1$ we say that N has Midy's property for b and d. It is named after E. Midy (1836), to read historical aspects about this property see [2] and its references.

If $D_b(N)$ is the number in base *b* represented by the period of $\frac{1}{N}$, this is $D_b(N) = [a_1 a_2 \cdots a_{|b|_N}]_b$, it is easy to see that $ND_b(N) = b^{|b|_N} - 1$. We denote with $\mathcal{M}_b(N)$ the set of positive integers *d* such that *N* has Midy's property for *b* and *d* and we will call it Midy's set of *N* to base *b*. As usual, let $\nu_p(N)$ be the greatest exponent of *p* in the prime factorization of *N*.

For example 13 has Midy's property to the base 10 and d = 3, because $|13|_{10} = 6$, $1/13 = 0.\overline{076923}$ and 07 + 69 + 23 = 99. Also, 49 has Midy's property to the base 10 and d = 14, since $|49|_{10} = 42$,

$1/49 = 0.\overline{020408163265306122448979591836734693877551}$

and 020+408+163+265+306+122+448+979+591+836+734+693+877+551 =7 * 999. But 49 does not have Midy's property to 10 and 7. Actually, we can see that $\mathcal{M}_{10}(13) = \{2, 3, 6\}$ and $\mathcal{M}_{10}(49) = \{2, 3, 6, 14, 21, 42\}.$

In [1] are given the following characterizations of Midy's property.

Theorem 1. Let N, b and d as above, $d \in \mathcal{M}_b(N)$ if and only if $D_b(N) \equiv 0$ (mod $b^k - 1$). Furthermore, if $d \in \mathcal{M}_b(N)$ and $D_b(N) = (b^k - 1)t$, for some integer t, then $b^{|b|_N} - 1 = (b^k - 1)Nt$.

Theorem 2. Let N, b and d as above, $d \in \mathcal{M}_b(N)$ if and only if for all prime p divisor of N it satisfies that if $|b|_p | k$, then $\nu_p(N) \leq \nu_p(d)$. Furthermore, if $d \in \mathcal{M}_b(N)$, then $\sum_{i=1}^d (b^{ik} \mod N) = m_b(d, N)N$.

Theorem 3. Let N, b and d as above, $d \in \mathcal{M}_b(N)$ if and only if for all prime p divisor of $(b^k - 1, N)$ it satisfies that $\nu_p(N) \leq \nu_p(d)$.

2 Structure of $\mathcal{M}_b(N)$

Theorem 2 tells us that the subgroup generated by b^k in \mathbb{U}_N , $\langle b^k \rangle = \{b^{jk} : j = 0, 1, \ldots, d-1\}$; is the key of a method to obtain the value of the multiplier $m_b(d, N)$, because if $d \in \mathcal{M}_b(N)$, then

$$Nm_b(d, N) = \sum_{i=1}^d (b^{ik} \mod N).$$

The following result shows an interesting relationship between $\langle b^{k_2} \rangle$ and $\langle b^{k_1} \rangle$ when $k_2 \mid k_1$.

Theorem 4. If $|b|_N = k_1d_1 = k_2d_2$ and $d_2 = cd_1$ for some integer $c \in \mathbb{Z}$; then

$$\left\langle b^{k_2} \right\rangle = \bigcup_{r=0}^{c-1} \left(b^{rk_2} \left\langle b^{k_1} \right\rangle \right)$$

where $b^{rk_2} \left\langle b^{k_1} \right\rangle = \left\{ b^{rk_2} x : x \in \left\langle b^{k_1} \right\rangle \right\}.$

Midy's sets

Proof. Since $d_2 = cd_1$ the d_2 values of $j \in \{0, 1, \ldots, d_2 - 1\}$ can be divided by c obtaining a quotient between 0 and $d_1 - 1$ and a remainder between 0 and c - 1, in consequence this values are the numbers ci + r with $0 \le i \le d_1 - 1$ and $0 \le r \le c - 1$. Thus

$$\left\langle b^{k_2} \right\rangle = \left\{ b^{jk_2} : j = 0, 1, \dots, d_2 - 1 \right\}$$

= $\left\{ b^{k_2(ci+r)} : i = 0, 1, \dots, d_1 - 1, r = 0, 1, \dots, c - 1 \right\}$
= $\left\{ b^{k_1 i + rk_2} : i = 0, 1, \dots, d_1 - 1, r = 0, 1, \dots, c - 1 \right\}$
= $\bigcup_{r=0}^{c-1} \left(b^{rk_2} \left\langle b^{k_1} \right\rangle \right)$

We get the following result as a consequence of the above fact.

Corollary 1. Let d_1 , d_2 be divisors of $|b|_N$ and assume that $d_1 | d_2$ and $d_1 \in \mathcal{M}_b(N)$, then $d_2 \in \mathcal{M}_b(N)$.

The following result is a dual version of this corollary.

Proposition 1. Let N_1 , N_2 and d be integers such that d is a common divisor of $|b|_{N_1}$ and $|b|_{N_2}$, if $d \in \mathcal{M}_b(N_2)$ and $N_1 | N_2$ then $d \in \mathcal{M}_b(N_1)$.

Proof. In fact, as $N_1 | N_2$, if $|b|_{N_2} = k_2 d$ then $|b|_{N_1} = k_1 d$ with $k_1 | k_2$. Thus $(b^{k_1} - 1, N_1) | (b^{k_2} - 1, N_2)$ and the result follows from Theorem 2 and from the fact that $d \in \mathcal{M}_b(N_2)$.

Theorem 5. If $2 \in \mathcal{M}_b(N)$ and d divides $|b|_N$ with d even, then $d \in \mathcal{M}_b(N)$ and $m_b(d, N) = \frac{d}{2}$.

Proof. In Theorem 4, letting $d_1 = 2$, $k_1 = \frac{|b|_N}{2}$, $d_2 = d$ and therefore $c = \frac{d}{2}$ and $\langle b^{k_1} \rangle = \{1, N-1\}$ we obtain that $\langle b^{k_2} \rangle$ is formed by c translations of $\{1, N-1\}$ and so the sum of its elements is cN, thus we have $m_b(d, N) = c = \frac{d}{2}$.

The hypothesis $2 \in \mathcal{M}_b(N)$ is essential, as is shown in the following example due to Lewittes, see [2].

Example 1. Let $N = 7 \times 19 \times 9901$, so $|10|_N = 36$ and, in addition, N does not have Midy's property for the base 10 and for any d = 2, 3, 6; but it has this property when d = 4, 9, 12, 18 and 36 and $m_{10}(12, N) = 7$.

Next theorem has a big influence in our work.

Theorem 6 (Theorem 3.6 in [6]). Let p be an odd prime not dividing b, $m = \nu_p(b^{|b|_p} - 1)$ and let t be a positive integer, then

$$|b|_{p^t} = \begin{cases} |b|_p & \text{if } t \le m, \\ \\ p^{t-m} |b|_p & \text{if } t > m. \end{cases}$$

For the base b = 10 the greatest m known is 2, which is achieved with the primes 3, 487 and 56598313, see [4]. From the same paper we take the following example: if b = 68 and p = 113, then $|b|_p = |b|_{p^2} = |b|_{p^3}$. Something similar occurs for b = 42 and p = 23. For m = 3, these are the only cases with $p < 2^{32}$ and $2 \le b \le 91$.

Next theorem allows us to build $\mathcal{M}_b(p^n)$ from $\mathcal{M}_b(p)$.

Theorem 7. Let b, p, n be integers where p is a prime not dividing b, and n positive. Let $m = \nu_p(b^{|b|_p} - 1)$, then

$$\mathcal{M}_b(p^n) = \begin{cases} \mathcal{M}_b(p) & \text{if } n \le m, \\ \bigcup_{i=0}^{n-m} p^{n-m-i} \mathcal{M}_b(p) & \text{if } n > m. \end{cases}$$

Therefore;

$$|\mathcal{M}_b(p^n)| = \begin{cases} |\mathcal{M}_b(p)| & \text{if } n \le m, \\ (n-m+1) |\mathcal{M}_b(p)| & \text{if } n > m. \end{cases}$$

Proof. Let $|b|_p = kd$ and $d \in \mathcal{M}_b(p)$ then $(b^k - 1, p) = 1$. Suppose that $n \leq m$, as $(b^k - 1, p^n) = 1$ and $|b|_{p^n} = |b|_p = kd$ follows that $d \in \mathcal{M}_b(p^n)$ and thus $\mathcal{M}_b(p) \subset \mathcal{M}_b(p^n)$. It is also easy to prove that $\mathcal{M}_b(p^n) \subset \mathcal{M}_b(p)$.

We now consider the case when n > m. Let $d \in \mathcal{M}_b(p)$ and $|b|_p = kd$, and let i be an integer with $0 \le i \le n-m$, by Theorem 6 we have $|b|_{p^n} = p^{n-m} |b|_p = kp^i(p^{n-m-i}d)$. We affirm that $(b^{kp^i} - 1, p^n) = 1$ because $b^{kp^i} \equiv (b^k)^{p^i} \equiv b^k \mod p \ne 1 \mod p$. As $(b^{kp^i} - 1, p^n) = 1$ and $|b|_{p^n} = kp^i(p^{n-m-i}d)$ it follows from Theorem 3 that $p^{n-m-i}d \in \mathcal{M}_b(p^n)$. In this way we have proved that $p^{n-m-i}\mathcal{M}_b(p) \subset \mathcal{M}_b(p^n)$.

Similarly, we can show that $\mathcal{M}_b(p^n) \subset p^{n-m-i}\mathcal{M}_b(p)$. The second part of the theorem is a direct consequence from the first part.

Theorem 3 says that if p is prime and d > 1 is a divisor of $|b|_p$, then $d \in \mathcal{M}_b(p)$ and therefore $|\mathcal{M}_b(p)| = \tau(o_p(b)) - 1$, where $\tau(n)$ denote the number of positive divisors of n.

Theorem 8. Let N, M be integers such that $|b|_{MN} = |b|_N$, then

1. $\mathcal{M}_b(MN) \subseteq \mathcal{M}_b(N)$.

2. If N and M are relatively primes, then

$$\mathcal{M}_{b}(MN) = \left\{ \begin{array}{c} d \in \mathcal{M}_{b}(N) : |b|_{N} = kd \text{ and} \\ \forall (r \text{ primo}) \left(r \mid \left(b^{k} - 1, M \right) \Rightarrow \nu_{r} \left(M \right) \leq \nu_{r} \left(d \right) \right) \end{array} \right\}.$$

3. In particular, if p is a prime not dividing N, $|b|_p$ is a divisor of $|b|_N$, and $s = \nu_p(|b|_N)$, then

$$\mathcal{M}_b(p^{s+1}N) = \left\{ d \in \mathcal{M}_b(N) : |b|_N = kd \text{ and } \left(b^k - 1, p \right) = 1 \right\}.$$

Proof. To prove the first part we show that if $d \notin \mathcal{M}_b(N)$, then $d \notin \mathcal{M}_b(MN)$. In fact, as $|b|_N = |b|_{MN} = kd$ and $d \notin \mathcal{M}_b(N)$ from Theorem 3, there exists a prime q, divisor of $(b^k - 1, N)$ such that $\nu_q(N) > \nu_q(d)$. As $(b^k - 1, N)$ is a divisor of $(b^k - 1, MN)$ and $\nu_q(MN) \ge \nu_q(N)$ Theorem 3 guarantees that $d \notin \mathcal{M}_b(MN)$.

We now add the hypothesis (M, N) = 1 and let $|b|_N = |b|_{MN} = kd$ with $d \in \mathcal{M}_b(N)$. Consider a prime r divisor of $(b^k - 1, MN)$. Since M and N are relatively primes then either $r \mid (b^k - 1, M)$ or $r \mid (b^k - 1, N)$, but not both. If $r \mid (b^k - 1, N)$, as $d \in \mathcal{M}_b(N)$ from Theorem 3 follows that $\nu_r(N) \leq \nu_r(d)$ and as M and N are relatively primes we have $\nu_r(N) = \nu_r(MN)$ and therefore $d \in \mathcal{M}_b(MN)$. If $r \mid (b^k - 1, M)$, as $r \nmid N$, we have $\nu_r(MN) = \nu_r(M)$ and from the assumption and Theorem 3 we get that $d \in \mathcal{M}_b(MN)$. The third part now is clear, because $|b|_{p^{s+1}}$ is a divisor of $|b|_N$ and p and N are relatively primes. \Box

Theorem 9. Let N, p be integers with (N, b) = 1 with p a prime divisor of b-1. Then there exists a positive integer s such that for all integer t, with t > s, we have $\mathcal{M}_b(p^t N) = \emptyset$.

Proof. Without loss of generality we can suppose that p is not a divisor N. Let $s = \nu_p(|b|_N)$, as $|b|_p = 1$ we are in the conditions of the third part of Theorem 8 and the result is immediately because $(b^k - 1, p) = p$ for any k.

The result of previous theorem is true for any divisor n, not necessarily a prime, of b-1. Also note that the value of the integer $s - \nu_p(N)$ is the smallest that satisfies the theorem because $\mathcal{M}_b(p^{s-\nu_p(N)}N)$ is non empty by the second part of Theorem 8.

We now study the following question. Given N and b with $\mathcal{M}_b(N) \neq \emptyset$, is it possible to find a positive integer z such that $\mathcal{M}_b(zN) = \{|b|_N\}$? The next result, from [5], will be useful in the sequel.

Lemma 1 (Corollary 2 in [5]). Let $b \ge 2$ and $n \ge 2$. Then there exists a prime p with $n = |b|_p$ in all except the following pairs: $(n, b) = (2, 2^{\gamma} - 1)$ with $\gamma \ge 2$ or (6, 2).

To answer the question we will need the following result.

Lemma 2. Let N and b be integers such that $\mathcal{M}_b(N) \neq \emptyset$. Let q a prime divisor of $|b|_N$. Then there exists a positive integer z that satisfies the following properties

- 1. $|b|_{zN} = |b|_N$,
- 2. $\mathcal{M}_b(zN) \neq \emptyset$,
- 3. If $d \in \mathcal{M}_b(zN)$, then $\nu_q(d) = \nu_q(|b|_N)$.

Proof. We will study two cases

1.) Assume that either $q \neq 2$ or b+1 is not a power of 2. From Lemma 1 there exists an odd prime p such that $|b|_p = q$. In the sequel, we denote with $c = \nu_p(N)$, $s = \nu_p(|b|_N)$ and $m = \nu_p(b^q - 1)$. If p is not a divisor of N, from the third part of Theorem 8, we have when $d \in \mathcal{M}_b(zN)$, then $|b|_N = kd$ and $(b^k - 1, p) = 1$. Hence if $d \in \mathcal{M}_b(zN)$, then $\nu_q(d) = \nu_q(|b|_N)$. Thus, in this case, we take $z = p^{s+1}$. Since (b - 1, zN) = (b - 1, N) and $|b|_N \in \mathcal{M}_b(N)$ we have $|b|_N \in \mathcal{M}_b(zN)$.

From now we suppose that p is a divisor of N. Thus c > 0 and $N = p^c M$ with M non divisible by p. We consider the following cases:

- 1. $c \geq s+1$. Let $d \in \mathcal{M}_b(N)$ where $|b|_N = kd$, if p divides $b^k 1$, then from Theorem 3 it follows that $c = \nu_p(N) \leq \nu_p(d) \leq s$, which is a contradiction. In consequence, we get that $d \in \mathcal{M}_b(N)$, implies that $|b|_N = kd$ and $\nu_q(d) = \nu_q(|b|_N)$ and we take z = 1.
- 2. c < s+1. We consider two subcases, depending if either q is or not a divisor of $|b|_M$.

Firstly, we assume that $q \mid |b|_M$. Since $|b|_N = \left[|b|_{p^c}, |b|_M \right]$ and $|b|_{p^{s+1}M} = \left[|b|_{p^{s+1}}, |b|_M \right]$ from Theorem 6, $|b|_N = \left[qp^{\delta}, |b|_M \right]$ and $|b|_{p^{s+1}M} = \left[qp^{\varepsilon}, |b|_M \right]$; where $\delta = \max(0, c - m)$ and $\varepsilon = \max(0, s - m + 1)$.

We claim that $|b|_{p^{s+1}M} = |b|_N = |b|_M$. In fact, since $|b|_N = [qp^{\delta}, |b|_M]$, $s = \nu_p(|b|_N)$ and $\delta < s$, we obtain that $\nu_p(|b|_M) = s$ and hence $|b|_N = |b|_M$. Also as $\varepsilon \leq s$, we get that $|b|_{p^{s+1}M} = |b|_M$.

By the third part of Theorem 8 we have $d \in \mathcal{M}_b(p^{s+1}M)$, implies that $\nu_q(d) = \nu_q(|b|_N)$. So we take $z = p^{s-c+1}$. Again, as (b-1, zN) = (b-1, N) and $|b|_N \in \mathcal{M}_b(N)$, then $|b|_N \in \mathcal{M}_b(zN)$.

Assume that $q \nmid |b|_M$. Similar as in the above paragraph we can show that $|b|_{p^{s+1}M} = |b|_N = q|b|_M$. We affirm that

$$\mathcal{M}_b(p^{s+1}M) = \{ d'q : d' \in \mathcal{M}_b(M) \}.$$

Let $d' \in \mathcal{M}_b(M)$ since $|b|_{p^{s+1}M} = k(d'q)$ and $(b^k - 1, M) = (b^k - 1, p^{s+1}M)$, from Theorem 3, we get that $d'q \in \mathcal{M}_b(p^{s+1}M)$. Therefore, $\{d'q: d' \in \mathcal{M}_b(M)\} \subseteq \mathcal{M}_b(p^{s+1}M)$.

Let $d \in \mathcal{M}_b(p^{s+1}M)$. Since $|b|_{p^{s+1}M} = q|b|_M$ we have d is either a divisor of $|b|_M$ or d = q or d = d'q where d' > 1 is a divisor of $|b|_M$. If d is a divisor of $|b|_M$ with $|b|_M = kd$, then as p divides $(b^{kq} - 1, p^{s+1}M)$ and $s + 1 = \nu_p(p^{s+1}M) > \nu_p(d)$ by Theorem 3 we obtain that $d \notin \mathcal{M}_b(p^{s+1}M)$. Now assume that d = q. Since p divides $|b|_M$ there exists a prime r divisor of $(b^{|b|_M} - 1, p^{s+1}M)$, with $r \neq q$. By Theorem 3 we get a contradiction.

Finally if d = d'q with $|b|_M = kd'$, it is easy to see that $d \in \mathcal{M}_b(p^{s+1}M)$ implies that $d' \in \mathcal{M}_b(M)$.

Thus, in this case we take $z = p^{s-c+1}$. We showed that if $d \in \mathcal{M}_b(zN)$, then d = d'q where $|b|_N = kd$, $d' \in \mathcal{M}_b(M)$ and $\nu_q(d) = \nu_q(|b|_N)$. Since $|b|_M \in \mathcal{M}_b(M)$ then $|b|_N = q|b|_M \in \mathcal{M}_b(zN)$.

2.) Assume that q = 2 and $b = 2^{\gamma} - 1$ for some positive integer $\gamma \ge 2$. We know, from Lemma 1, that we can not find a prime p such that $|b|_p = 2$. So we follow a different procedure in this case. It is clear that $|b|_q = |b|_2 = 1$. Let $s = \nu_2(|b|_N)$ and $c = \nu_2(N)$. Note that c can not be strictly greater than s, because 2 divides $(b^k - 1, N)$ and $\mathcal{M}_b(N) \ne \emptyset$. We study the following cases:

- 1. c = s. By the assumption c > 0. Suppose that there exists a $d \in \mathcal{M}_b(N)$ such that k is even. Thus $\nu_2(d) < s$. As 2 divides $(b^k - 1, N)$ from Theorem 3 we have $c = \nu_2(N) \leq \nu_2(d)$ which is a contradiction. Therefore, it is enough to take z = 1.
- 2. s > c. In this case we take $z = 2^{s-c}$. Since $|b|_{2^s}$ divides 2^{s-1} , then $|b|_{zN} = [|b|_{2^s}, |b|_M] = |b|_M = |b|_N$. Hence, $\mathcal{M}_b(zN) = \{d \in \mathcal{M}_b(N) : |b|_N = kd \text{ and } \nu_2(d) = \nu_2(|b|_N)\}.$

Indeed, from Theorem 3 we have $d \in \mathcal{M}_b(N)$ is an element of $\mathcal{M}_b(zN)$ if and only if $s = \nu_2(zN) \leq \nu_2(d)$ and this is equivalent to say that $\nu_2(d) = s$. Since $|b|_N \in \mathcal{M}_b(N)$ and $s = \nu_2(|b|_N)$, we have $|b|_N \in \mathcal{M}_b(zN)$.

Theorem 10. Let N and b be integers such that $|\mathcal{M}_b(N)| > 1$. Then, there exists a positive integer z such that $\mathcal{M}_b(zN) = \{|b|_N\}$.

Proof. Let $|b|_N = q_1^{t_1} \dots q_l^{t_l}$ be the prime factorization of $|b|_N$.

Applying Lemma 2 to q_1 and N we can find a positive integer z_1 such that $|b_{z_1N}| = |b|_N$, $\mathcal{M}_b(z_1N) \neq \emptyset$ and when $d \in \mathcal{M}_b(z_1N)$, then $\nu_{q_1}(d) = \nu_{q_1}(|b|_N)$. Again using Lemma 2 with $q = q_2$ and z_1N , we get a positive integer z_2 such that $|b|_{z_1z_2N} = |b|_N$, $\mathcal{M}_b(z_1z_2N) \neq \emptyset$, and $d \in \mathcal{M}_b(z_1z_2N)$, implies that $\nu_{q_2}(d) = \nu_{q_2}(|b|_N)$. From Theorem 8 we know that $\mathcal{M}_b(z_1z_2N) \subseteq \mathcal{M}_b(z_1N)$. In this way for each $d \in \mathcal{M}_b(z_1z_2N)$ we also have that $\nu_{q_1}(d) = \nu_{q_1}(|b|_N)$.

Repeating this process we get positive integers z_1, \ldots, z_l such that if $z = \prod_{i=1}^{l} z_i$, the following properties hold

- 1. $|b|_{zN} = |b|_N$,
- 2. $\mathcal{M}_b(zN) \neq \emptyset$,

3. If $d \in \mathcal{M}_b(zN)$, then $\nu_{q_i}(d) = \nu_{q_i}(|b|_N)$ for all $i \in \{1, \ldots, l\}$.

Since the q_i 's are the prime factors of $|b|_N$, we conclude that $d = |b|_N$ and therefore $\mathcal{M}_b(zN) = \{|b|_N\}$.

Acknowledgements

The authors are members of the research group: Algebra, Teoría de Números y Aplicaciones, ERM. J.H. Castillo was partially supported by CAPES, CNPq from Brazil and Universidad de Nariño from Colombia. J.M. Velásquez-Soto was partially supported by CONICET from Argentina and Universidad del Valle from Colombia.

References

- García-Pulgarín, G., Giraldo, H.: Characterizations of Midy's property, Integers 9 (2009), A18, 191–197. MR 2506150
- [2] Lewittes, J.: Midy's theorem for periodic decimals, Integers 7 (2007), A2, 11 pp. (electronic). MR 2282184 (2008c:11004)
- [3] Martin, H. W.: Generalizations of Midy's theorem on repeating decimals, Integers 7 (2007), A3, 7 pp. (electronic). MR 2282186 (2007m:11010)
- [4] Montgomery, P. L.: New solutions of $a^{p-1} \equiv 1 \mod p^2$, Math. Comp. 61 (1993), no. 203, 361–363. MR 1182246 (94d:11003)
- [5] Motose, K.: On values of cyclotomic polynomials, Math. J. Okayama Univ, 35 (1993), 35–40 (1995). MR 1329911 (96j:11167)
- [6] Nathanson, M. B.: Elementary methods in number theory, Graduate Texts in Mathematics, vol. 195, Springer-Verlag, New York, 2000. MR 1732941 (2001j:11001)

Authors' address

John H. Castillo — Departamento de Matemáticas y Estadística, Universidad de Nariño, San Juan de Pasto-Colombia

e-mail: jhcastillo@gmail.com

Gilberto García-Pulgarín — Departamento de Matemáticas, Universidad de Antioquia, Medellín-Colombia

e-mail: gigarcia@ciencias.udea.edu.co

Juan Miguel Velásquez-Soto — Departamento de Matemáticas, Universidad del Valle, Cali-Colombia

e-mail: jumiveso@univalle.edu.co