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Abstract
Let b be a positive integer greater than 1, N a positive integer relatively prime to b, |b|N the
order of b in the multiplicative group UN of positive integers less than N and relatively primes
to N, and x ∈ UN . It is well known that when we write the fraction x

N
in base b, it is periodic.

Let d, k be positive integers with d ≥ 2 and such that |b|N = dk and x
N

= 0.a1a2 · · · a|b|N with
the bar indicating the period and ai are digits in base b. We separate the period a1a2 · · · a|b|N
in d blocks of length k and let Aj = [a(j−1)k+1a(j−1)k+2 · · · ajk]b be the number represented in

base b by the j − th block and Sd(x) =
d∑

j=1

Aj . If for all x ∈ UN , the sum Sd(x) is a multiple of

bk − 1 we say that N has Midy’s property for b and d.
In this work we present some interesting properties of the set of positive integers d such that N
has Midy’s property to for b and d.

Keywords: Period, decimal representation, order of an integer, multiplicative group of units
modulo N
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1 Introduction

Let b be a positive integer greater than 1, b will denote the base of numeration,
N a positive integer relatively prime to b, i.e (N, b) = 1, |b|N the order of b in the
multiplicative group UN of positive integers less than N and relatively primes to
N, and x ∈ UN . It is well known that when we write the fraction x

N in base b,
it is periodic. By period we mean the smallest repeating sequence of digits in
base b in such expansion, it is easy to see that |b|N is the length of the period
of the fractions x

N (see Exercise 2.5.9 in [6]). Let d, k be positive integers with
d ≥ 2 and such that |b|N = dk and x

N = 0.a1a2 · · · a|b|N with the bar indicating
the period and ai are digits in base b. We separate the period a1a2 · · · a|b|N in d
blocks of length k and let

Aj = [a(j−1)k+1a(j−1)k+2 · · · ajk]b

be the number represented in base b by the j − th block and Sd(x) =
d∑
j=1

Aj . If

for all x ∈ UN , the sum Sd(x) is a multiple of bk − 1 we say that N has Midy’s
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property for b and d. It is named after E. Midy (1836), to read historical aspects
about this property see [2] and its references.

If Db(N) is the number in base b represented by the period of 1
N , this is

Db(N) = [a1a2 · · · a|b|N ]b, it is easy to see that NDb(N) = b|b|N − 1. We denote
withMb(N) the set of positive integers d such that N has Midy’s property for b
and d and we will call it Midy’s set of N to base b. As usual, let νp(N) be the
greatest exponent of p in the prime factorization of N .

For example 13 has Midy’s property to the base 10 and d = 3, because
|13|10 = 6, 1/13 = 0.076923 and 07 + 69 + 23 = 99. Also, 49 has Midy’s property
to the base 10 and d = 14, since |49|10 = 42,

1/49 = 0.020408163265306122448979591836734693877551

and 020+408+163+265+306+122+448+979+591+836+734+693+877+551 =
7 ∗ 999. But 49 does not have Midy’s property to 10 and 7. Actually, we can see
that M10(13) = {2, 3, 6} and M10(49) = {2, 3, 6, 14, 21, 42}.

In [1] are given the following characterizations of Midy’s property.

Theorem 1. Let N, b and d as above, d ∈ Mb(N) if and only if Db(N) ≡ 0
(mod bk − 1). Furthermore, if d ∈ Mb(N) and Db(N) = (bk − 1)t, for some
integer t, then b|b|N − 1 = (bk − 1)Nt.

Theorem 2. Let N, b and d as above, d ∈ Mb(N) if and only if for all prime
p divisor of N it satisfies that if |b|p | k, then νp(N) ≤ νp(d). Furthermore, if

d ∈Mb(N), then
∑d

i=1(bik mod N) = mb(d, N)N .

Theorem 3. Let N, b and d as above, d ∈ Mb(N) if and only if for all prime p
divisor of (bk − 1, N) it satisfies that νp(N) ≤ νp(d).

2 Structure of Mb(N)

Theorem 2 tells us that the subgroup generated by bk in UN ,
〈
bk
〉

={
bjk : j = 0, 1, . . . , d− 1

}
; is the key of a method to obtain the value of the

multiplier mb(d, N), because if d ∈Mb(N), then

Nmb(d, N) =
∑d

i=1
(bik mod N).

The following result shows an interesting relationship between
〈
bk2
〉

and
〈
bk1
〉

when k2 | k1.

Theorem 4. If |b|N = k1d1 = k2d2 and d2 = cd1 for some integer c ∈ Z; then

〈
bk2
〉

=
c−1⋃

r=0

(
brk2

〈
bk1
〉)

where brk2
〈
bk1
〉

=
{
brk2x : x ∈

〈
bk1
〉}

.
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Proof. Since d2 = cd1 the d2 values of j ∈ {0, 1, . . . , d2 − 1} can be divided
by c obtaining a quotient between 0 and d1 − 1 and a remainder between 0 and
c− 1, in consequence this values are the numbers ci+ r with 0 ≤ i ≤ d1 − 1 and
0 ≤ r ≤ c− 1. Thus

〈
bk2
〉

=
{
bjk2 : j = 0, 1, . . . , d2 − 1

}

=
{
bk2(ci+r) : i = 0, 1, . . . , d1 − 1, r = 0, 1, . . . , c− 1

}

=
{
bk1i+rk2 : i = 0, 1, . . . , d1 − 1, r = 0, 1, . . . , c− 1

}

=

c−1⋃

r=0

(
brk2

〈
bk1
〉)

We get the following result as a consequence of the above fact.

Corollary 1. Let d1, d2 be divisors of |b|N and assume that d1 | d2 and d1 ∈
Mb(N), then d2 ∈Mb(N).

The following result is a dual version of this corollary.

Proposition 1. Let N1, N2 and d be integers such that d is a common divisor
of |b|N1

and |b|N2
, if d ∈Mb(N2) and N1 | N2 then d ∈Mb(N1).

Proof. In fact, as N1 | N2, if |b|N2
= k2d then |b|N1

= k1d with k1 | k2. Thus(
bk1 − 1, N1

)
|
(
bk2 − 1, N2

)
and the result follows from Theorem 2 and from

the fact that d ∈Mb(N2).

Theorem 5. If 2 ∈ Mb(N) and d divides |b|N with d even, then d ∈ Mb(N)
and mb(d, N) = d

2 .

Proof. In Theorem 4, letting d1 = 2, k1 =
|b|N

2
, d2 = d and therefore c =

d

2
and

〈
bk1
〉

= {1, N − 1} we obtain that
〈
bk2
〉

is formed by c translations of {1, N − 1}
and so the sum of its elements is cN , thus we have mb(d, N) = c =

d

2
.

The hypothesis 2 ∈Mb(N) is essential, as is shown in the following example
due to Lewittes, see [2].

Example 1. Let N = 7 × 19 × 9901, so |10|N = 36 and, in addition, N does
not have Midy’s property for the base 10 and for any d = 2, 3, 6; but it has this
property when d = 4, 9, 12, 18 and 36 and m10(12, N) = 7.

Next theorem has a big influence in our work.
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Theorem 6 (Theorem 3.6 in [6]). Let p be an odd prime not dividing b, m =
νp(b

|b|p − 1) and let t be a positive integer, then

|b|pt =





|b|p if t ≤ m,

pt−m |b|p if t > m.

For the base b = 10 the greatest m known is 2, which is achieved with the
primes 3, 487 and 56598313, see [4]. From the same paper we take the following
example: if b = 68 and p = 113, then |b|p = |b|p2 = |b|p3 . Something similar

occurs for b = 42 and p = 23. For m = 3, these are the only cases with p < 232

and 2 ≤ b ≤ 91.
Next theorem allows us to build Mb(p

n) from Mb(p).

Theorem 7. Let b, p, n be integers where p is a prime not dividing b, and n
positive. Let m = νp(b

|b|p − 1), then

Mb(p
n) =




Mb(p) if n ≤ m,
n−m⋃
i=0

pn−m−iMb(p) if n > m.

Therefore;

|Mb(p
n)| =

{
|Mb(p)| if n ≤ m,
(n−m+ 1) |Mb(p)| if n > m.

Proof. Let |b|p = kd and d ∈ Mb(p) then (bk − 1, p) = 1. Suppose that n ≤ m,

as (bk − 1, pn) = 1 and |b|pn = |b|p = kd follows that d ∈ Mb(p
n) and thus

Mb(p) ⊂Mb(p
n). It is also easy to prove that Mb(p

n) ⊂Mb(p).
We now consider the case when n > m. Let d ∈ Mb(p) and |b|p = kd,

and let i be an integer with 0 ≤ i ≤ n − m, by Theorem 6 we have |b|pn =

pn−m |b|p = kpi(pn−m−id). We affirm that (bkp
i − 1, pn) = 1 because bkp

i ≡
(bk)p

i ≡ bk mod p 6≡ 1 mod p. As (bkp
i − 1, pn) = 1 and |b|pn = kpi(pn−m−id)

it follows from Theorem 3 that pn−m−id ∈Mb(p
n). In this way we have proved

that pn−m−iMb(p) ⊂Mb(p
n).

Similarly, we can show thatMb(p
n) ⊂ pn−m−iMb(p). The second part of the

theorem is a direct consequence from the first part.

Theorem 3 says that if p is prime and d > 1 is a divisor of |b|p, then d ∈Mb(p)
and therefore |Mb(p)| = τ(op(b))− 1, where τ(n) denote the number of positive
divisors of n.

Theorem 8. Let N , M be integers such that |b|MN = |b|N , then

1. Mb(MN) ⊆Mb(N).
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2. If N and M are relatively primes, then

Mb(MN) =

{
d ∈Mb(N) : |b|N = kd and

∀ (r primo)
(
r |
(
bk − 1, M

)
⇒ νr (M) ≤ νr (d)

)
}
.

3. In particular, if p is a prime not dividing N , |b|p is a divisor of |b|N , and
s = νp(|b|N ), then

Mb(p
s+1N) =

{
d ∈Mb(N) : |b|N = kd and

(
bk − 1, p

)
= 1
}
.

Proof. To prove the first part we show that if d /∈ Mb(N), then d /∈ Mb(MN).
In fact, as |b|N = |b|MN = kd and d /∈ Mb(N) from Theorem 3, there exists
a prime q, divisor of

(
bk − 1, N

)
such that νq (N) > νq (d) . As

(
bk − 1, N

)
is

a divisor of
(
bk − 1, MN

)
and νq (MN) ≥ νq (N) Theorem 3 guarantees that

d /∈Mb(MN).
We now add the hypothesis (M,N) = 1 and let |b|N = |b|MN = kd with

d ∈ Mb(N). Consider a prime r divisor of
(
bk − 1,MN

)
. Since M and N are

relatively primes then either r |
(
bk − 1,M

)
or r |

(
bk − 1, N

)
, but not both.

If r |
(
bk − 1, N

)
, as d ∈ Mb(N) from Theorem 3 follows that νr (N) ≤ νr (d)

and as M and N are relatively primes we have νr (N) = νr (MN) and therefore
d ∈Mb(MN). If r |

(
bk − 1,M

)
, as r - N , we have νr (MN) = νr (M) and from

the assumption and Theorem 3 we get that d ∈ Mb(MN). The third part now
is clear, because |b|ps+1 is a divisor of |b|N and p and N are relatively primes.

Theorem 9. Let N, p be integers with (N, b) = 1 with p a prime divisor of b−1.
Then there exists a positive integer s such that for all integer t, with t > s, we
have Mb(p

tN) = ∅.

Proof. Without loss of generality we can suppose that p is not a divisorof N . Let
s = νp(|b|N ), as |b|p = 1 we are in the conditions of the third part of Theorem 8

and the result is immediately because
(
bk − 1, p

)
= p for any k.

The result of previous theorem is true for any divisor n, not necessarily a
prime, of b− 1. Also note that the value of the integer s− νp(N) is the smallest
that satisfies the theorem because Mb(p

s−νp(N)N) is non empty by the second
part of Theorem 8.

We now study the following question. Given N and b with Mb(N) 6= ∅, is
it possible to find a positive integer z such that Mb(zN) = {|b|N} ? The next
result, from [5], will be useful in the sequel.

Lemma 1 (Corollary 2 in [5]). Let b ≥ 2 and n ≥ 2. Then there exists a prime
p with n = |b|p in all except the following pairs: (n, b) = (2, 2γ − 1) with γ ≥ 2 or
(6, 2).

To answer the question we will need the following result.
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Lemma 2. Let N and b be integers such thatMb(N) 6= ∅. Let q a prime divisor
of |b|N . Then there exists a positive integer z that satisfies the following properties

1. |b|zN = |b|N ,

2. Mb(zN) 6= ∅,

3. If d ∈Mb(zN), then νq(d) = νq(|b|N ).

Proof. We will study two cases
1.) Assume that either q 6= 2 or b + 1 is not a power of 2. From Lemma 1

there exists an odd prime p such that |b|p = q. In the sequel, we denote with
c = νp (N), s = νp (|b|N ) and m = νp (bq − 1). If p is not a divisor of N , from
the third part of Theorem 8, we have when d ∈ Mb(zN), then |b|N = kd and
(bk − 1, p) = 1. Hence if d ∈ Mb(zN), then νq(d) = νq(|b|N ). Thus, in this case,
we take z = ps+1. Since (b − 1, zN) = (b − 1, N) and |b|N ∈ Mb(N) we have
|b|N ∈Mb(zN).

From now we suppose that p is a divisor of N . Thus c > 0 and N = pcM
with M non divisible by p. We consider the following cases:

1. c ≥ s + 1. Let d ∈ Mb(N) where |b|N = kd, if p divides bk − 1, then from
Theorem 3 it follows that c = νp (N) ≤ νp (d) ≤ s, which is a contradiction.
In consequence, we get that d ∈Mb(N), implies that |b|N = kd and νq(d) =
νq(|b|N ) and we take z = 1.

2. c < s+1. We consider two subcases, depending if either q is or not a divisor
of |b|M .

Firstly, we assume that q | |b|M . Since |b|N =
[
|b|pc , |b|M

]
and |b|ps+1M =

[
|b|ps+1 , |b|M

]
from Theorem 6, |b|N =

[
qpδ, |b|M

]
and |b|ps+1M = [qpε, |b|M ];

where δ = max(0, c−m) and ε = max(0, s−m+ 1).

We claim that |b|ps+1M = |b|N = |b|M . In fact, since |b|N =
[
qpδ, |b|M

]
,

s = νp(|b|N ) and δ < s, we obtain that νp(|b|M ) = s and hence |b|N = |b|M .
Also as ε ≤ s, we get that |b|ps+1M = |b|M .

By the third part of Theorem 8 we have d ∈ Mb(p
s+1M), implies that

νq(d) = νq(|b|N ). So we take z = ps−c+1. Again, as
(b− 1, zN) = (b− 1, N) and |b|N ∈Mb(N), then |b|N ∈Mb(zN).

Assume that q - |b|M . Similar as in the above paragraph we can show that
|b|ps+1M = |b|N = q|b|M . We affirm that

Mb(p
s+1M) = {d′q : d′ ∈Mb(M)}.

Let d′ ∈ Mb(M) since |b|ps+1M = k(d′q) and (bk − 1,M) =
(bk−1, ps+1M), from Theorem 3, we get that d′q ∈Mb(p

s+1M). Therefore,
{d′q : d′ ∈Mb(M)} ⊆ Mb(p

s+1M).



Midy’s sets 27

Let d ∈ Mb(p
s+1M). Since |b|ps+1M = q|b|M we have d is either a divisor

of |b|M or d = q or d = d′q where d′ > 1 is a divisor of |b|M . If d is
a divisor of |b|M with |b|M = kd, then as p divides (bkq − 1, ps+1M) and
s+ 1 = νp(p

s+1M) > νp(d) by Theorem 3 we obtain that d 6∈ Mb(p
s+1M).

Now assume that d = q. Since p divides |b|M there exists a prime r divisor
of (b|b|M − 1, ps+1M), with r 6= q. By Theorem 3 we get a contradiction.

Finally if d = d′q with |b|M = kd′, it is easy to see that d ∈ Mb(p
s+1M)

implies that d′ ∈Mb(M).

Thus, in this case we take z = ps−c+1. We showed that if d ∈ Mb(zN),
then d = d′q where |b|N = kd, d′ ∈ Mb(M) and νq(d) = νq(|b|N ). Since
|b|M ∈Mb(M) then |b|N = q|b|M ∈Mb(zN).

2.) Assume that q = 2 and b = 2γ − 1 for some positive integer γ ≥ 2. We
know, from Lemma 1, that we can not find a prime p such that |b|p = 2. So
we follow a different procedure in this case. It is clear that |b|q = |b|2 = 1. Let
s = ν2(|b|N ) and c = ν2(N). Note that c can not be strictly greater than s,
because 2 divides (bk − 1, N) and Mb(N) 6= ∅. We study the following cases:

1. c = s. By the assumption c > 0. Suppose that there exists a d ∈ Mb(N)
such that k is even. Thus ν2(d) < s. As 2 divides
(bk − 1, N) from Theorem 3 we have c = ν2(N) ≤ ν2(d) which is a contra-
diction. Therefore, it is enough to take z = 1.

2. s > c. In this case we take z = 2s−c. Since |b|2s divides 2s−1, then |b|zN =
[|b|2s , |b|M ] = |b|M = |b|N . Hence, Mb(zN) = {d ∈ Mb(N) : |b|N =
kd and ν2(d) = ν2(|b|N )}.
Indeed, from Theorem 3 we have d ∈ Mb(N) is an element of Mb(zN) if
and only if s = ν2(zN) ≤ ν2(d) and this is equivalent to say that ν2(d) = s.
Since |b|N ∈Mb(N) and s = ν2(|b|N ), we have |b|N ∈Mb(zN).

Theorem 10. Let N and b be integers such that |Mb(N)| > 1. Then, there
exists a positive integer z such that Mb(zN) = {|b|N}.

Proof. Let |b|N = qt11 . . . qtll be the prime factorization of |b|N .
Applying Lemma 2 to q1 and N we can find a positive integer z1 such that

|bz1N | = |b|N , Mb(z1N) 6= ∅ and when d ∈ Mb(z1N), then νq1(d) = νq1(|b|N ).
Again using Lemma 2 with q = q2 and z1N , we get a positive integer z2 such
that |b|z1z2N = |b|N ,Mb(z1z2N) 6= ∅, and d ∈Mb(z1z2N), implies that νq2(d) =
νq2(|b|N ). From Theorem 8 we know that Mb(z1z2N) ⊆ Mb(z1N). In this way
for each d ∈Mb(z1z2N) we also have that νq1(d) = νq1(|b|N ).

Repeating this process we get positive integers z1, . . . , zl such that if z =∏l
i=1 zi, the following properties hold
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1. |b|zN = |b|N ,

2. Mb(zN) 6= ∅,

3. If d ∈Mb(zN), then νqi(d) = νqi(|b|N ) for all i ∈ {1, . . . , l}.
Since the qi’s are the prime factors of |b|N , we conclude that d = |b|N and

therefore Mb(zN) = {|b|N}.
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