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1. Abstract.  12 

Human clinicians know about autoimmune polyglandular syndrome type 1 (APS-1) but do 13 

not know about bovine viral diarrhea virus (BVDV) persistently infected (PI) calves. These 14 

two clinical entities have as a common factor that they represent two natural models of 15 

immune tolerance failure occurring during thymocyte maturation in fetal life. In APS-1, 16 

mutations of the autoimmune regulatory gene (AIRE gene) are responsible for the reduction 17 

of promiscuous expression of tissue-specific antigens (TSA) by medullary thymus epithelial 18 

cells (mTECs) during presentation of self-antigens to single negative (SN) T cells. Such 19 

reduction results in the generation of autoreactive T cell clones that colonize secondary 20 

lymphoid tissues and cause APS-1 in postnatal life. APS-1 patients are the evidence of the 21 

effects of these mutations and support the importance of PGE during the generation of 22 

immune tolerance. Heifers or pregnant cows infected with a non-cytopathic strain of BVDV 23 

during the period of intrathymic maturation of fetal T lymphocytes generate PI calves. 24 

Although the molecular mechanism of PI calf generation is still unsolved, viral antigens 25 

presented as self-antigens during the developing T-cells' intrathymic maturation appear to be 26 

responsible. Although there is no published work on AIRE gene expression during T cell 27 

maturation in bovine fetuses, the high homology in nucleotide and amino acid sequence of the 28 

AIRE gene and protein between humans and bovines, and high conservation of the gene 29 

across the species, supports that the bovine AIRE gene functions similarly as in humans. In 30 

this paper, we discuss similarities between APS-1 patients and PI calves' clinical signs. We 31 

propose that there must be processes related to reduced PGE in bovine fetal mTECs caused by 32 

the virus, resulting in autoreactive T cells responsible for clinical signs of PI calf cases. In the 33 

absence of experimental evidence on the generation of PI animals, the knowledge achieved in 34 

APS-1 allows us to propose experimental models to fill these knowledge gaps. Accordingly, 35 

knowledge gained about AIRE gene mutations could contribute to understanding the 36 
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mechanisms of tolerance against viral infections in cattle and other animal species and their 1 

effect on postnatal life, to investigate prevention or treatment alternatives. 2 
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Abbreviations 6 

AIRE/AIRE: autoimmune regulator transcription gene/protein 7 

APECED: Autoimmune polyendocrinopathy candidiasis ectodermal dystrophy 8 

APS-1: Autoimmune polyglandular syndrome type-1 9 

BVDV-1/BVDV-2: Bovine Viral Diarrhea Virus species 1 and 2 10 

CARD: Caspase-recruitment domain 11 

Cp: Cytopathic Bovine Viral Diarrhea Virus 12 

cTECs: cortical thymic epithelial cells 13 

DCs: Dendritic cells 14 

DP: CD4+/CD8+ double-positive T-cell 15 

eTACs: extra thymus AIRE-expressing cells 16 

IGR: Intrauterine Growth Restriction 17 

MD: Mucosal Disease (Calves) 18 

mTECs: medullary thymic epithelial cell 19 

Ncp: Non-cytopathic Bovine Viral Diarrhea Virus 20 

NS: Negative selection 21 

PGE: Promiscuous gene expression 22 

PI: Persistently infected 23 

PS: Positive selection 24 

PTA: Peripheral tissue antigens 25 

SAND: complex in SP100, AIRE1, NucP41/P75, and DEAF1 proteins 26 

SP: single positive CD4+/CD8-or CD4-/CD8+ T-cell. 27 

g/d T-cells: T-cells harboring a g/d T-cell receptor rearrangement. 28 
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T-reg: T regulatory cells  1 

Th-17: IL-17 producing T helper cells. 2 

 3 

2. Introduction  4 

Most physicians know that the autoimmune polyglandular syndrome type 1 (APS-1) (1) is 5 

caused by mutations of the autoimmune regulatory  (AIRE) gene and the resulting 6 

autoimmune diseases (2, 3). Still, all have never heard about the infection by bovine viral 7 

diarrhea virus (BVDV) and persistently infected (PI) calves. Otherwise, most veterinarians 8 

know the impact of PI calves in spreading BVDV infection in cattle herds (4) but have never 9 

heard about APS-1. We focused on these entities (APS-1 and PI-calves) because both 10 

represent natural models of impaired immune tolerance. Several mutations in the AIRE gene 11 

give rise to APS-1 and the Autoimmune Polyglandular Candidiasis Ectodermal Dystrophy 12 

(APECED) syndrome (5), characterized by a triad of mucocutaneous candidiasis, 13 

polyendocrinopathy, and Addison's disease (6-8).  14 

In patients suffering from APS-1, mutations in the AIRE gene result in impaired central 15 

immune tolerance during thymocyte development in fetal life by generating autoreactive T 16 

lymphocytes against proteins of the central nervous, endocrine, and mucocutaneous tissues. 17 

The results are the clinical signs typical of APS-1 due to autoimmune responses. On the other 18 

hand, PI calves refer to young animals infected in utero by the bovine viral diarrhea virus 19 

(BVDV) due to infection of pregnant cows with non-cytopathic strains of the virus. 20 

Interestingly, authors reported several injuries in CNS, endocrine, and cutaneous tissues in PI-21 

calves (9). When BVDV infects pregnant cows during fetal thymus development, viral 22 

particles circulate into the developing fetal thymus, causing the viral proteins to be recognized 23 

as self-antigens. Consequently, the fetus can survive until term, exhibiting no clinical signs or 24 

a variable range of clinical signs in postnatal life. Whatever the clinical condition, PI-calves 25 

eliminate viral particles throughout their lives. Interestingly, PI calves exhibit variable 26 

degrees of clinical signs due to the impaired immune response against BVDV. Some of the 27 

PI-calves' clinical signs are like those exhibited by APS-1 patients, suggesting the existence 28 

of common pathogenic mechanisms between APS-1 and PI-calves.  29 

Given the molecular mechanisms of AIRE-dependent PGE of TSA (Reviewed in 10), which 30 

are impaired in patients suffering from mutations of the AIRE gene (11), and the lack of 31 

knowledge on the precise mechanisms of bovine T-cell development and bovine AIRE gene 32 

expression in the developing bovine thymus, it should be possible to define the morphological 33 

development, transcriptome, and proteome of the bovine developing fetus, as recently 34 

reported for human thymus development (12-16). The most advanced technological 35 

approaches must be applied to research focused on timing bovine intrathymic development 36 

and studying the molecular mechanisms of PI fetuses. In this paper, we will focus on the 37 

mechanisms of acquisition of central tolerance during intra-thymus maturation of 38 

Thymocytes, the description of the structure and function of AIRE gene and protein, the most 39 

relevant characteristics of APS type 1, and the generation of PI calves. Finally, we will 40 

discuss the similarities and differences between these two entities as models of immune 41 

tolerance and provide some cues on the existence of similarities to APS-1 syndrome in BVDV 42 

PI calves. The possibility of readdressing research activities in the context of modulating the 43 

generation of central tolerance for avoiding the generation of PI calves is also discussed.  44 
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2.1 Information search and analysis  1 

A narrative review was conducted based on a paired literature search, involving common 2 

search terms for both syndromes (e.g., AIRE gen AND APS-1 vs. AIRE gen AND BVDV). 3 

The process of identifying relevant articles considered a specific research interest: What are 4 

the particularities and similarities of and between APS-1 and BVDV? Four search platforms 5 

(e.g., PubMed, Embase, ScienceDirect, SciELO) were searched. The inclusion criteria 6 

considered only those articles published in peer-reviewed journals, available in English, 7 

French, Portuguese, or Spanish. No institutional approval was required for the development of 8 

the present review. 9 

2.2 Literature search.  10 

The literature search was conducted in Pubmed and ScienceDirect databases from March 11 

2017 to August 2023. The words used for the APS-1 search included: APS-1, APECED, 12 

Autoimmune, Polyglandular, Thymic development, Central Tolerance, and Intrathymic 13 

development. For PI calves the search included Bovine Viral Diarrhea Virus, BVDV, PI-14 

calves, persistently infected calves, Immune response, or combinations. The search included 15 

original articles, systematic reviews, clinical cases, reviews, and case reports in both cases.  16 

2.3 Papers analysis. 17 

A total of 5659 papers were found for APS-1, APECED, BVDV, and PI calves (Table 1). 18 

Because no comparison can be made for clinical studies between APS-1 and PI calves, we 19 

selected original articles, Books and Documents, Clinical Trials, meta-analyses, Randomized 20 

Controlled Trials, Reviews, and Systematic Reviews, that help us to construct our hypothesis 21 

on the similitudes and differences between these two entities. There were no papers related to 22 

molecular mechanisms of the generation of PI calves. We finally used 146 articles for our 23 

review. 24 

Table 1. Summary of papers related to the subject topic available in the literature. 25 

Word 
Full 

text 

Books and 

Documents 

Clinical 

Trial 

Meta-

Analysis 

Randomized 

Controlled 

Trial 

Review 
Systematic 

Review 
Total 

APS-1  243 3 4 2 0 48 1 58 

APECED 1755 
       

BVDV 3399 1 92 9 59 231 12 404 

PI infected 

calves 
262 0 12 0 7 17 1 37 

Total 5659 4 108 11 66 296 14 499 

 26 

3. Human thymocyte development.  27 

During thymus development, early T-cell precursors (ETP) (CD44hiCD117hiCD25—) migrate 28 

from the bone marrow and enter the developing thymus for thymocyte maturation. In the 29 

cortex, pre-T-cells (CD3+/TCRlow/CD4-/CD8-) interact with highly specialized cortical 30 

thymic epithelial cells (cTECs) (12, 17, 18), and mTECs to start their development toward the 31 
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DN, DP, and then SN steps of thymocyte development (Figure 1) in a tightly coordinated 1 

crosstalk between thymic epithelial cells, bone marrow-derived APC, and thymocytes 2 

(Reviewed in 16). The most recent phenotypic profile of developing T-cells is depicted in 3 

Table 2.  4 

In human thymic development, ETP enters the thymus around eight weeks post conception 5 

(WPC), where they consecutively develop to DN steps (DN1 to DN4), then to the DP at the 6 

cortico-medullary junction and the SP steps in the thymus medulla resulting in conventional 7 

alpha/beta (/, and gamma/delta (/) TCR rearrangements, and non-conventional T-cells 8 

(20) (Table 2). After completing their DN phenotype through the thymic cortex, cTECs 9 

provide the developing T-cells with specific signals for their positive selection consisting of 10 

transformation into T-cells (CD3+/TCRlow/CD4+/CD8+) (12). cTECs produce the cytokines T-11 

cells require to become DP and increase their surface expression of TCR, becoming 12 

CD3+/TCRhigh/CD4+/CD8+. At this point of T-cell development, the DP T-cells must undergo 13 

a negative selection process consisting of  DN and SP steps (7, 17, 21). At this stage, it is 14 

generated the / T-cell repertoire (Table 2). The exposition of DP T-cells to MHC-coupled 15 

self-antigens mainly presented by mTECs, DCs, and intrathymic B cells, results in the 16 

generation of SN (CD3+/TCRhigh/CD4+ or CD3+/TCRhigh/CD8+) T-cells, which represent the 17 

two major subsets of circulating T-cells in the post-natal life, being responsible for the 18 

adaptive cellular and humoral immune responses. Besides, other sets of mature T-cells 19 

comprise T-reg cells, unconventional T(agonist), and CD8+(I), CD8+(II), CD8 or 20 

CD8/+EOMES+ subsets (Table 2) are generated. 21 

Mature conventional T-cells leave the thymus to harbor the capability to recognize foreign 22 

antigens by their / or / TCR conformation. In peripheral lymphoid tissues, CD4+ T-cells 23 

interact with Møs, dendritic cells, B cells -the antigen-presenting cells or APC-, and some 24 

epithelial cells (Figure 1). Naïve T-cells refer to mature T-cells that have not encountered its 25 

specific antigen capable of binding their TCR with high affinity to elicit the cascade of 26 

intracellular signaling responsible for antigen-specific T-cell activation, differentiation, and 27 

proliferation when encountering their specific non-self-antigens. Three recent works elegantly 28 

depict intrathymic T-cell development (15, 16, 22). A detailed summary of intrathymic T-cell 29 

development is presented in Table 2. The myriad of ETP entering the thymus medulla and 30 

undergoing negative selection and apoptosis represents up to 75% of the overall population of 31 

hematopoietic precursors entering the thymus, all of which undergo apoptosis (23). The 32 

resulting “educated” T-cells can recognize self-antigens and not become activated against 33 

them, a fundamental mechanism to prevent the generation of autoimmune diseases. 34 

3.1 An overview of the development of immune self-tolerance 35 

Immune tolerance refers to the capability of the immune system to recognize the universe of 36 

self-antigens and not react against them, avoiding generating adaptive immune responses 37 

against self-antigens and tissues, resulting in autoimmunity (17). For this purpose, two 38 

mechanisms have been intensively studied: central tolerance and peripheral tolerance. 39 

Magrone and Jirillo (2019) summarize self-tolerance as follows: (i) During negative selection, 40 

autoreactive T cell clones (those that recognize self-antigens and undergo activation) are 41 

eliminated through Fas-mediated induction of apoptosis by signals from thymic DCs. (ii) 42 

Activated thymic Treg in conjunction with mTECs and DC suppress autoreactive T cell 43 

clones. (iii) In the periphery, Treg cells cooperating with tolerogenic DCs, eliminate clones of 44 

autoreactive T-cells that have escaped negative selection (24). 45 



 

PI calves and APS-1: natural mistakes of immune tolerance. 

Molecular mechanisms of tolerance induction. During intrathymic maturation, expression 1 

of the AIRE gene results in the transduction of the AIRE protein by mTECs, and to a lesser 2 

extent by DCs, macrophages (Møs), and B cells. The AIRE protein functions as a multi-3 

functional transcription promoter for the expression of genes encoding tissue-specific antigens 4 

(TSA) required to generate self-tolerance during the transition of DP to SP cells. This step is 5 

critical for the SP thymocyte to recognize the universe of self-peptides generated due to the 6 

PGE of genes encoding TSA and the corresponding protein processing through MHC-I and 7 

MHC-II self-peptide coupling (25). Consequently, SP T-cells recognize the self-peptides 8 

coupled to MHC-I or MHC-II antigens expressed on mTECs. SP T-cells that can recognize 9 

self-peptides not reacting (or become activated) against self-antigens are selected as the CD4+ 10 

or CD8+ T cells that finally leave the thymus as the T-cell repertoire able to colonize T-cell 11 

areas on secondary lymphoid tissues. T-cells not able to recognize MHC-restricted self-12 

peptides or those able to do it and become activated against self-antigens are eliminated from 13 

the mature repertoire by apoptosis. Apoptosis is critical for generating a T-cell repertoire that 14 

can recognize conventional antigens in postnatal life, avoiding the generation of self-reactive 15 

T-cells (7, 26).  16 

3.2 Human AIRE gene structure and function and its role in T-cell tolerance acquisition 17 

The human AIRE gene is in the q22.3 region of human chromosome 21 (chr21:45,705,721-18 

45,718,531). During prenatal life, the gene is expressed by thymic mTECs, DCs, and Møs 19 

through DP to SP steps of intra-thymic development. It is expressed also in several tissues 20 

during postnatal life (see below). The AIRE gene one contains fourteen exons; two additional 21 

variants, AIRE 2 and AIRE 3, contain only eight. AIRE 1 Exons encode a 1635 nucleotide-22 

long mRNA. mRNA transcripts have been reported in immune (bone marrow, thymus, lymph 23 

nodes), internal cells and organs (adipocyte, bladder, colon esophagus, kidney, liver, lung, 24 

spleen, stomach), muscle (artery, heart, skeletal muscle), nervous (brain, cerebellum, cortex, 25 

retina, spinal cord, tibial nerve), reproductive (ovary, placenta, prostate, testis, placenta), and 26 

secretory (adrenal gland, breast, pancreas, pituitary, salivary gland, skin, thyroid) tissues 27 

(Gene Cards, Human AIRE gene, 2022). Its expression results in a 545 aa protein. The human 28 

gene and protein share 76.9 and 79.6% sequence homology with their bovine analogous, 29 

respectively (Figure 2) (27).  30 

3.3  Structure and function of the human AIRE protein.  31 

AIRE consists of a 54.5 kDa protein that controls thousands of genes encoding tissue-32 

restricted antigens (TRA) in medullary thymic epithelial cells (mTECs). It is expressed also in 33 

intra-thymic dendritic cells and Møs, particularly during the negative selection of thymocytes 34 

(at the stage of SP T-cells) (25). Besides, it is expressed in postnatal life in APC present in 35 

peripheral lymphoid tissues (28, and reviewed in 29) and other tissues such as lymph nodes 36 

(28), which modulates the acquisition of B cell-dependent peripheral tolerance (30). It has 37 

also been implicated in the first wave of spermatocyte apoptosis during spermatogenesis 38 

where the AIRE protein is expressed sporadically in spermatogonia and spermatocytes (31).39 
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Table 2. Summary of human intrathymic T-cell development. 1 

Stage PCW Location T-cell Phenotype Functional/Molecular process AIRE 

expression 

ETP 

 

< 9 Transiting the 

blood 

CD44hiCD117hiCD25— None Negative 

DN1 9-12 Thymus 

cortex 

CD44hCD25—CD4—CD8—

TCRβ+ 

Starts TCRβ recombination. Can differentiate into B or NK 

cells. ST18+ 

Negative 

DN2a  

 

 

 

 

 

10-14 

 

Thymus 

cortex 

CD44hiCD25+CD4—CD8—

TCRβ+ 

Pre-commitment. TCRβ recombination continues. 

Can differentiate into B or NK cells 

Negative 

DN2b CD44hiCD25+CD117lowCD4
—CD8—TCRβ+ 

Post-commitment. V(D)J recombination of TCRb, TCRg, and 

TCRd loci start. Only differentiate into DN3 cells 

Negative 

DN3a Thymus 

cortex 

CD44—CD25hiCD117low 

CD27—CD28—CD4— CD8— 

V(D)J recombination of TCRb, TCRg, and TCRd continues, 

giving rise to T-cells or DN3b (β-selection) by successful 

V(D)J recombination  

Negative 

DN3b  CD44—D25intCD27+ CD28+ 

CD4— CD8— 

β-selection  Negative 

DN4  CD44—D25—CD27+ 

CD28+ CD4— CD8— 

Progressive CD25 loss Negative 

DN4  CD4—D8+TCR/low/neg 

CD69—CD5— 

Pre-selection DP thymocytes Negative 

DP Cortico-

medullary 

junction 

CD4+CD8+TCR/hi/hi 

CD69+CD5+ 

Post-selection DP thymocytes. AQP3+ Negative 

SP Conv.  

 

 

 

 

12-15 

Medulla CD4+CD8—TCR/hi/hi 

CD62L+MHC-I+ 

CD4+ SP is conventional or unconventional. TOX2 for DN to 

DP transition 

Positive  

SP 

Conv. 

Medulla CD4—CD8+TCR/hi/hi 

CD62L+MHC-I+ 

CD8+ SP conventionnel () or non-conventionnel () Positive 

SP 

Unconv. 

Medulla TCR/FOXP3lowCTLA4low

IKZF4hiGNG8hiPTGIRhi 

Differentiating Treg or Treg(diff) 

 

Positive 
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SP 

Unconv. 

Medulla TCR/ CD25+FOXP3hiCT

LA4lowIKZF4hiGNG8hiPTGI

Rhi 

Treg  

SP 

Unconv. 

Medulla MIR155HG—as/IL2RA+/ 

FOXP3low 

T(agonist)  

SP 

Unconv. 

Medulla CD8/+(I), CD8/+(II), 

CD8 or CD8+EOMES+ 

I: GNG4+. II: ZNF683+ sharing mixed  and  signatures. 

CD8+EOMES+: CD8+ NKT-like. 

 

PCW: Post-conception week. ETP: Early T-cell progenitor. DN1-4: Double negative 1 to 4. DP: Double positive. DCs: dendritic cells. mTECs: 1 

medullary thymic epithelial cells. AQP3: water channel protein aquaporin three. TOX2: TOX high mobility group box family member 2 (adapted 2 

from 14, 15, 19). 3 

 4 

  5 
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Extra thymic AIRE-expressing cells (eTACs) present in peripheral lymphoid tissues and 1 

antigen-presenting cells (APCs), particularly DCs and Mos, could play critical roles in 2 

inducing peripheral tolerance in adult life by inducing PGE when interacting with newly 3 

formed T-cells, a postnatal mechanism created to prevent the generation of autoreactive T-4 

cells (29). Then, the AIRE protein induces tissue-specific PGE providing the developing 5 

thymocytes with the repertoire of self-antigen required for the acquisition of tolerance to self-6 

antigen. 7 

3.4 AIRE is a transcription regulator protein. 8 

The mature AIRE protein contains 545 amino acid residues and contains six structural 9 

domains from the N- to the C-terminus (Review in 32): (i) the Caspase-recruitment domain 10 

(CARD) that functions as AIRE’ homo-multimerization; (ii) Nuclear localization signal 11 

(NLS) that couple to factors related to nuclear traffic and signaling; (iii) two Plant-12 

homeodomain (PHD) fingers (PHD1 and PHD2) that functions as the structural framework 13 

for promoting the transcription of AIRE gene (33); and (iv) the SAND complex consisting of 14 

SP100, AIRE1, NucP41/P75, and DEAF1 (Table 3) that appears to interact with a 15 

transcriptional suppressive complex (for regulating AIRE overexpression) (33, 34) (Figure 2). 16 

AIRE functions. The AIRE protein is responsible for inducing PGE to generate transcripts 17 

codifying for self-proteins representing 45-to-55% of self–antigens capable of being 18 

processed and coupled to MHC molecules to establish the immunopeptidome (35) during the 19 

intra-thymic T-cell development. mTECs (36) and intrathymic DCs in low proportion (37) 20 

express the AIRE gene. The peptides resulting from the Golgi processing of PGE are coupled 21 

to MHC-I and MHC-II molecules for self-antigens presentation. mTECs expressing MHC 22 

molecules harboring self-antigens interact with SN CD4+ or CD8+ thymocytes (Figure 1). If 23 

these cells react with high affinity with the self-peptides expressed into the antigen-binding 24 

groove of class I or class II MHC+ mTECs, then these “self-reactive” T-cells undergo 25 

negative selection and are eliminated by apoptosis (21). On the contrary, T-cells recognizing 26 

self-antigens and not reacting to them with high affinity undergo selection to become the pool 27 

of non-self-reacting T-cells. This is considered the central process for the generation of 28 

central immune tolerance, a critical process to avoid the generation of self-reactive T-cells 29 

capable of inducing autoimmune diseases (36, 38-41). Then at the intrathymic (36) and 30 

extrathymic milieus (42) AIRE gene expression plays a pivotal role in the induction of central 31 

and peripheral tolerance by contributing to the transcription of TSA required for priming the 32 

developing T-cells for its negative selection. In fact, due to their extrathymic expression 33 

authors proposed it is also implicated in the generation of peripheral self-tolerance (43, 44). 34 

The mechanisms of action of AIRE include the promotion of promiscuous transcription of 35 

self-proteins that, once translated, enter the Golgi apparatus and suffer proteolytic processing 36 

and coupling of the generated self-peptides onto the antigen-binding groove of Class I and 37 

Class II MHC expressed by mETCs, DCs and, in less proportion, medullary B cells 38 

(Reviewed in 33). In that process, selected clones of CD4+ or CD8+ SN T-cells are challenged 39 

to recognize the universe of self-antigens with two possible outcomes (Figure 1): T-cells 40 

recognizing self-antigens with high affinity and overcoming activated suffer apoptosis.  41 
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Table 3. Specific functions of AIRE protein domains  1 

Domain Function Reference  

Caspase-recruitment domain (CARD) Homo-multimerization of AIRE protein 32 

Nuclear localization signal (NLS) Mediates AIRE nuclear import and export  45 

SAND complex SP100  

Binding AIRE with DNA/Interaction with other transcription factors 

33, 34 

SAND complex AIRE1 

SAND complex NucP41/P75 

SAND complex DEAF1 

Plant-homeodomain fingers-1 (PHD1) Interaction with DNA-dependent protein kinases, and histones 46, 32 

Proline-rich sequence (PRR) Activation by signaling pathways  

Plant-homeodomain fingers-2 (PHD2) negatively charged putative Zn-binding domain 25 

Forty-four amino acid C-terminus Interaction with elongation factor b (P-TEFb) 47 

T-cells recognizing self-antigen with low affinity and overcoming non-activated are selected as non-self-recognizing T-cells, which are finally 2 

selected to become the “educated” T-cell tolerant against self-antigen (36). Low or high affinity refers to the intensity of TCR activation resulting 3 

in low or high intracellular calcium generation, respectively, and the activation (or not) of intracellular cascades responsible for T-cell 4 

proliferation (Reviewed in 48, 49).  5 
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T-cells recognizing self-antigen with low affinity and overcoming non-activated are selected 1 

as non-self-recognizing T-cells, which are finally selected to become the “educated” T-cell 2 

tolerant against self-antigen (36). Low or high affinity refers to the intensity of TCR 3 

activation resulting in low or high intracellular calcium generation, respectively, and the 4 

activation (or not) of intracellular cascades responsible for T-cell proliferation (Reviewed in 5 

48, 49).  6 

AIRE expression is responsible for the generation of self-peptide recognition by the 7 

developing T-cells (Table 4) (38). The remaining proportion is under the control of PGE 8 

induced by transcription factors analogs to AIRE (32, 50) (See section 3.5 below). As 9 

evidenced in the mouse model, AIRE-independent PGE also plays a critical role in the 10 

generation of cell tolerance (51). Anderson et al. (2005) evidenced the existence of post-11 

thymic tolerogenic mechanisms responsible for generating peripheral tolerance (38). 12 

Accordingly, there occurs a suppression of AIRE expression by post-AIRE mTECs, resulting 13 

in reduced PGE, and MHC-class II expression in the post-AIRE stage (e.g., after the time of 14 

intra-thymic AIRE expression). For a more detailed description please see the review by 15 

Perniola, 2018 and therein references (33). In brief: secondary and tertiary lymphoid tissue 16 

contains lymphoid and mesenchymal AIRE+ cells expressing low quantities of AIRE protein 17 

enabling these cells to participate in postnatal acquisition of tolerance (peripheral tolerance) 18 

(33). Whether these mechanisms occur also in bovine and particularly in PI-infected calves is 19 

still to be investigated. In cultured thymic cells, AIRE gene expression results in AIRE protein 20 

interaction with components of transcription complexes specific to certain regions of the 21 

genome through its interaction with the nuclear matrix (52). 22 

Table 4. The proportion of genes and percentage of proteins expressed as results of AIRE 23 

activation. 24 

Cell type Expression of protein-coding 

genes* (n) 

Proteins 

represented (%) 

Reference 

mTECslow 16,151 76 32 

mTECshigh 19,283 87 32 

cTECs 15,198 68 32 

Other tissues 7,500 31,2 53 

*Based on approximately 24,000 genes. Reviewed in Shevyrev et al., 2022 (32). 25 

Kaiser et al., (2022) summarize the functions AIRE protein as follows (25):  26 

i. Acts as a lineage-specific transcription factor, a function exerted on thousands of 27 

genes encoding TSA in mTECs, through recognition of tissue-specific cis-regulatory 28 

elements independently of the native chromatin conformation (54). 29 

ii. Binds to promoter-distal regulatory elements, exerted by directly binding to tens of 30 

thousands of genomic loci in mTECs. 31 

iii. Acts on a previously arranged chromatin environment, exerted through promoting 32 

chromatic accessibility at promoter-distal sites surrounding tissue-specific genes. 33 

iv. Triggers RNA elongation, exerted particularly in non-coding genome regions 34 

prompting activation and regulation of several transcription factors and its interaction 35 

with RNA-polymerase II (Pol II).  36 

v. Recruits the positive transcription elongation factor b (P-TEFb), which promotes 37 

the expression of multiple tissue-specific genes. This function is exerted to promote the 38 

expression of enhancer RNA (eRNA) through P-TEFb- Bromodomain-containing 39 
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protein 4 (BRD4)-mediated activation. BRD4 is responsible for AIRE’s CARD domain 1 

phosphorylation and acetylation required for eRNA production.  2 

vi. Stimulates topoisomerase recruitment and improves DNA-damage response, a 3 

critical step to promote transcriptional elongation and TEFb-BRD4 interaction and 4 

function.  5 

vii. Improves enhancer-promoter interaction, required for promoting tissue-specific gene 6 

ectopic expression at gene-distal regulatory elements, to generate excess enhancer 7 

activity that increases the frequency of transcriptional bursts at the target promoters.  8 

viii. Acts as linear-specific chromatin effector, acting as co-activator/effector protein at 9 

the end of the transcription cycle by enhancing the action of transcription factors and 10 

triggering transcriptional elongation. 11 

ix. Reads unmodified H3 tails, exerted through its high-affinity PHD1 binding to H3 tails. 12 

x. Represses chromatin accessibility, particularly at dense clusters of chromatin 13 

enhancers, resulting in increased gene expression (55). 14 

xi. Functions as a multivalent scaffold, action exerted through CARD by homotypic 15 

multimerization, a process critical for protein kinases activation. Besides, AIRE 16 

becomes multimerized to promote nucleation sites responsible for concentrating its 17 

associated proteins at target genomic regions. 18 

3.5 Other genes analogous to AIRE responsible for PGE. 19 

Authors proposed that almost 60% of AIRE-independent tissue-restricted antigens are 20 

expressed in the thymus during T-cell development. This expression is mediated by the 21 

Forebrain Embryonic Zinc Finger-Like Protein 2 (Fezf2) gene (50), Deformed Epidermal 22 

Autoregulatory Factor 1 (DEAF1) (13), and chromodomain helicase DNA binding protein 4 23 

CHD4 helicase (Ch4d) (Reviewed in 41). According to Shevyrev et al., (2022) AIRE, Fezf2, 24 

AIRE + Fezf2, Fezf2 + DEAF1, DEAF1, and other unknown factor(s) contributes to 29, 21, 25 

12, 5.4, 4.6, and 28% of TSA expression by mTECs in the human thymus (32).  26 

3.6 How do mutations in the AIRE gene result in impaired immune tolerance? The 27 

Autoimmune Polyglandular Syndrome type 1 (APS-1). 28 

As mentioned above, clinical cases of APCED or APS-1 are the results of mutations affecting 29 

several AIRE domains, highlighting the pivotal role this complex protein plays in 30 

immunological tolerance. APS-1 is a group of concomitant autoimmune disorders generated 31 

by mutations in the AIRE gene (56) (Table 4). More than sixty mutations have been reported, 32 

consisting of an arginine substitution in position 257 of the gene and a thirteen base pair 33 

deletion in exon 8 (57,  58). Bruserud et al., (2016) depicted in their figure 2 a complete 34 

description of genes mutated and their structure-to-function relationship and summarized the 35 

reported AIRE gene mutations as follows: 14, 19, 5, 6, 1, 10, 3, 18, 5, 15, 12, 3, 2, and 3 36 

mutations (including several deletions and substitutions) in exons 1 to 14, respectively (58). 37 

New mutations in affected ASP-1 settings have been reported in China (59, 60), Sweden (61), 38 

and Brazil (62). The most recent report on mutations of the AIRE gene indicates the existence 39 

of 167 mutations comprising 54 Missense/non-sense, fourteen splicing, two insertions, twenty 40 

small deletions, 15 Small insertions, 6 Gross deletions, and 5 Gross insertions (1). The AIRE 41 

protein interacts with at least 28 proteins, including 9 proteins interacting at the DNA level 42 

responsible for the regulation of AIRE’ function (21). The mutated aire protein carries a 43 

reduced PGE in mTECs during the intra-thymic step of negative selection, which results in a 44 

reduction of the expression of PGA and the generation of self-reactive T-cell clones (21). The 45 

resulting clinical outcomes of AIRE mutations are presented in Table 5. 46 
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Table 5. Comparative assessment of clinical signs between APS-1 human patients and BVDV PI-calves. 1 

Typical APS-1 clinical signs* Comparable clinical signs occurring in PI-Calves 

Clinical signs& Age/Frequency  

(% of APS-1) 

Pathogenesis  Ref. Clinical signs Frequency/ 

type of study 

Pathogenesis References 

1. Candidiasis in the oral 

mucous membrane, nails, 

and esophagus. ** 

1.7-3 years/ 

77-100% 

Autoantibodies 

against IL-22, 

IL17F, Myosin 9. 

63 Susceptibility to 

secondary 

infections 

n.r. Lymphocyte 

depletion 

64 

2. Adrenal insufficiency: 

fatigue, muscle 

weakness, abdominal 

pain, diarrhea, nausea, 

vomiting. 

3-5 years/ 

33-77% a 

Autoantibodies 

against CYPC17, 

CYP21, CYPSSC, 

CYP11A1 

65, 66 Mild adrenalitis n.r. Virus-induced 

inflammation 

67 

3. Intestinal dysfunction 31% a  68 Overall 

gastrointestinal 

tract alterations 

30 to 80% Virus-induced 

apoptosis 

67, 69 

    Upper digestive 

tract ulcerative 

lesions 

PI calves  70 

4. Gonadal failure 

(hypogonadotropic 

hypogonadism) 

62.5% a Autoantibodies 

against: CYPC17, 

CYP11A1 

62 Reduced 

follicular 

dynamics, 

ovarian structures 

n.r. Decreased 

number of 

tertiary follicles, 

Graafian follicles, 

and atretic 

follicles 

71 

5. Alopecia 23% a  9, 62 Alopecia, 

dermatitis 

Generalized 

alopecia  

n.r. Virus-induced 

inflammation 

72 
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6. Pernicious anemia 38.5% a  (62) Hemorrhagic 

syndrome-like 

disease 

n.r.  (73) 

7. Hypoparathyroidism: 

dry hair and skin, heart 

failure, low blood 

pressure, muscle 

cramping, seizures, 

spasms, tetany. 

63-100%a Autoantibodies 

against: NACHT, 

NALP5, CaSR 

(62, 74) Neurological 

abnormalities 

Natural or 

experimental PI 

calves 

Cerebellar 

hypoplasia 

hydranencephaly, 

hydrocephalus, 

microencephaly, 

porencephaly 

(75, 76) 

8. Hypothyroidism: dry 

skin, fatigue, myxedema, 

swelling. 

15.5% a Autoantibodies 

against: TPO, 

TGAb, TSHR 

(62) Reduce Thyroid 

hormone 

circulating levels 

n.r. Direct effect on 

the thyroid gland 

(72) 

9. Autoimmune hepatitis: 

cirrhosis, itching, 

jaundice 

7.5% a Autoantibodies 

against: CYP-1A2, 

TPH, CYP-2A6, 

AADC. 

(62, 77) Early fetal 

hepatic immune 

responses 

Experimental in 

utero infection at 

75 days of 

gestation 

Early expression 

of MHC-II in 

fetal Kupffer 

cells inducing 

inflammation 

(78) 

10. Vitiligo 15.5% a  (62) Non-reported    

11. Asplenia Familiar cases  (79) Lymphocytic 

depletion of 

lymphoid tissues 

n.r. BVDV-induced 

apoptosis 

(67, 80) 

12. Growth hormone 

deficiency 

15.5% a  (62) Reduced growth 

rate, unthrifty 

calves  

n.r. Impaired 

intestinal 

function. 

(81) 

13. Type 1 diabetes 23% a Autoantibodies 

against: IA-2, 

GAD65, ICA512, 

ZNT8, Insulin,  

(62) n.r.    
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14. Dental enamel 

hypoplasia/Nail 

dystrophy 

38.5%/ 

38.5% a 

 (33, 62) Focal crusty and 

ulcerative lesions 

affecting the 

mucocutaneous 

and skin-horn 

junctions’ 

interdigital clefts, 

pastern, and areas 

surrounding the 

dewclaws 

PI cattle Ballooning 

degeneration and 

spongiosis in the 

epidermis 

(70) 

15. Keratopathy 7.5% a  (62)     

16. Cerebellar hypoplasia Case report Acute disseminated 

encephalomyelitis 

(82) Cerebellar 

hypoplasia 

Incoordination, 

nystagmus 

n.r. Depletion of the 

external germinal 

layer 

Neuraxial 

hypomyelination 

(75, 76, 80, 

83) 

17. Red cell aplasia Case report Immune-mediated 

pathogenesis 

(82) Neutrophil 

abnormalities 

  (84) 

18. Severe chronic 

intermittent neutropenia 

Familial mutations 

investigation  

Autoimmune-

mediated 

(68) Immune 

deficiencies 

 Epigenetic DNA 

modifications 

(85) 

19. Bone abnormalities 

 

 

 

 

 

 

A study of several 

patients  

abnormal 

mineralization 

decreased 

trabecular thickness 

and increased 

osteoid  

(86) Impaired long 

bone trabecular 

modeling 

Experimentally-

infected PI 

fetuses 

Increased 

calcified cartilage 

core and bone, 

reduced 

mineralizing 

surface. 

Epigenetic DNA 

modifications  

(88) 

 

 

 

 

(85) 

Osteoporosis, vertebral 

fractures, multiple non-

spinal fractures 

Adult APS-1 

patients 

Bone structural 

alterations and risks 

of 

(86, 87)     
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20. Upper respiratory 

tract infections 

APS-1 patients Mutations of the 

PHD1 domain  

(68) Respiratory 

abnormalities 

PI calves Moderate to 

strong presence 

of BVDV 

antigens in 

alveolar 

macrophages and 

alveolar epithelial 

cells 

(72, 89) 

*Adapted from Guo et al., 2018. Non-Classical APS-1 includes autoantibodies against IFN-. **Humbert et al., 2018 (63). a: this value includes 1 

data from Weiler et al., 2018 (62). N.r.: not reported. &Several clinical signs were shared by a Chinese study in which four novel mutations were 2 

reported (90)  3 
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The self-reactive T-cell clones circulate and interact with B cells to generate autoantibodies 1 

against self-proteins in several organs, particularly in tissues with endocrine function, and 2 

renders the patient more susceptible to mucocutaneous candidiasis (63). The resulting APS 3 

type-1/APECED syndrome is caused by organ-specific autoimmunity in most affected 4 

patients (57), characterized by a triad of clinical signs comprising mucocutaneous candidiasis, 5 

adrenal insufficiency, and hypothyroidism (1). Up to twenty clinical signs have been 6 

described (62) (Table 5). 7 

Interestingly, APS-1 is evidence of failure in the expression of self-antigen during intra-8 

thymic negative selection of T-lymphocytes, providing a natural model for explaining central 9 

tolerance (21, 62). The most frequent clinical signs of APS type 1 are presented in Table 5. 10 

The APS-1 occurs by mutations of the AIRE gene failing to generate immune tolerance by 11 

impairing the intra-thymus and extra-thymus PGE expression of self-peptides by mTECs and 12 

DCs resulting in the generation of self-reactive T-cells that scape the negative selection step 13 

during central or peripheral T-cell development (21). The number of mutations causing APS-14 

1 reported by Perniola and Musco (2014) increased from 32 (34) to 100 mutations in the work 15 

by Bruserud et al. (2016) (58). Besides, these authors summarize APS-1 by type of mutations 16 

as follows: fifty-four missense/nonsense, fourteen splicing, two regulatory, twenty small 17 

deletions, fifteen small insertions, six small indels, five gross deletions, and one gross 18 

insertion, which affects exons, 1, 2, 6, 8, 10 and 11 (58). The most common mutations 19 

affecting the AIRE gene are reviewed in the article by Weiler et al. (2018) (62). Most 20 

mutations consist of simple nucleotide substation (almost 85%), whereas in low proportion, 21 

there occur deletions and translocations. Furthermore, several authors report new mutations 22 

yearly (59-62). Although authors proposed that APS-1 is an autosomal-recessive disease, 23 

Oftedal et al., proposed two genetic forms of the disease: (i) classical APS-1, which presents a 24 

recessive inheritance pattern showing two of three main components and the presence of anti-25 

IFN-omega autoantibodies. (ii) non-classical APS-1, which presents dominant heterozygous 26 

mutations affecting the PHD1 domain, and a middle-less penetrant autoimmune phenotype 27 

(57). In Table 6 we summarize the clinical outcome of mutations according to physiological 28 

processes affected. 29 

 30 

3.7 BVDV- infection in cattle.  31 

BVD is a disease caused by the BVD virus (BVDV), a positive single-stranded RNA virus 32 

that belongs to the genus Pestivirus of the Flaviviridae family and affects domestic and wild 33 

ruminants (4, 91, 92). Bovine viral diarrhea virus is a morbillivirus affecting cattle and wild 34 

ruminants worldwide with prevalence ranging from 0.44, 0.71, 0.03, and 0.07 for individual 35 

antibody levels, herd antibody levels, antigen, and nucleic acid detection, respectively (93). In 36 

countries like Colombia, the prevalence in animals and farms is 0.7 and 0.22, respectively 37 

(94). The main route of infection is respiratory, resulting in infection of the respiratory tract 38 

and digestive tract with a high compromise on dairy cattle (95).  39 

  40 
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Table 6. Genetic to the functional relationship of mutations affecting the AIRE gene. 1 

Domain Mutation Function affected Clinical outcome Reference 

CARD p.His14Pro 

p.Leu323fs 

Homo multimerization Hypoparathyroidism, and at least two diseases out of the 

triad of candidiasis, hypoparathyroidism, and 

hypoadrenalism in 45% of patients 

(74) 

HSR L28P, K243/245Q, 

D312A  

Impaired DNA binding 

Homodimerization resulting in 

decreased transcriptional 

activity 

  Several, APS-1 signs (96) 

 c.232T>A 

(p.W78R), 

p.V22_D23del 

 Juvenile rheumatoid arthritis (97) 

 c.994+5G>T and a 

novel mutation, 

c.230 T>C 

(p.F77S) 

 Chronic mucocutaneous candidiasis, hypoparathyroidism, 

and adrenal failure.  

 

(97) 

SAND G228W Protein-interaction APS-1 (98) 

  DNA-binding APS-1 (68, 99) 

PHD1* c.901G>A 

(p.V301M), 

c.916G>A 

(p.G306R), 

c.926T>C 

(p.I309T), 

c.977C>T 

(p.P326L), and 

c.982C>T 

(p.328W) 

Histone code readers 

Autoantibodies against INF-w 

Others 

Ranged from no autoimmune manifestation to severe 

autoimmune disease and autoantibodies. Multiples 

gastrointestinal disorders. Upper respiratory tract infections 

and skin infections. Severe chronic intermittent neutropenia. 

Refractory status epilepticus, type 1 diabetes. Recurrent 

sinus infection, oropharyngeal candidiasis. Vitiligo 

(68) 

Inter 

PHD* 

.1102C>G 

(p.368A) and 

 Headache, chronic constipation, poor appetite, recurrent (68) 
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c.1235 C>T 

(S412L) 

PHD2* .1399G>C 

(p.G467R) 

Downregulation of IFN I gene. Multiple granulomas and abscess formation (68) 

Forty-four 

aa C-

terminus 

Impaired binding to 

transcription 

elongation factor b 

(P-TEFb)  

 APECED (47) 

 *Please see a detailed description in Table 4 from Oftedal et al., 2023 (68) 1 

 2 

 3 

  4 
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3.7.1 Etiology of BVDV. 1 

BVDV is an encapsulated plus RNA virus of the genus Pestivirus (Flaviviridae family) (100-2 

102). Infection by BVDV affects livestock worldwide leading to important economic losses in 3 

the industry (103-105). Based on genetic and antigenic characteristics, the virus has two 4 

species: BVDV-1 and BVDV-2, standing for 88.2% and 11.8% of virus isolated worldwide 5 

(Reviewed in 106). Each one of these two species is segregated in twenty-one (nominated 1a 6 

to 1u for BVDV-1); and four (nominated 2a to 2d for BVDV-2) sub-genotypes (106). Two 7 

more viruses formed this group including border disease virus and classical swine fever virus 8 

(Reviewed in 107).  9 

Functionally the virus is subdivided into cytopathic (cp) and non-cytopathic (ncp) biotypes 10 

according to its capability to destroy cell culture in vitro (108-111). In vivo, cp biotypes are 11 

more related to digestive symptoms and Mucosal Disease (MD), while ncp is more related to 12 

respiratory symptoms. Similarly, cp biotypes are implicated in the pathogenesis of abortion 13 

and fetal death in pregnant cows and heifers (112). The virus has been isolated in domestic 14 

and wild ungulates including buffalo, goats, sheep, pigs, deer, and elk (92).  15 

3.7.2 Pathogenesis.  16 

The main route of infection is the nasal and respiratory route from which the BVDV infects 17 

the central nervous system, digestive, respiratory, and reproductive tract. The virus has two 18 

genotypes (BVDV-1 and BVDV-2) (113) and two biotypes according to their ability to cause 19 

cytotoxicity in cell cultures in vitro: the cytopathic (cp) and the non-cytopathic (ncp) biotypes 20 

(114, 115). Besides, infection by BVDV causes reproductive abnormalities, resulting in 21 

abortion, intrauterine growth restriction (IGR), stillbirths, impaired reproductive efficiency, 22 

reduced conception rates, and generation of PI calves (69, 71, 112, 116, 117). Cytopathic 23 

variants of the virus are the most pathogenic and cause mucosal disease (118) and abortion in 24 

affecting pregnant goats (119) cows and heifers (112). Animals infected with ncp variants 25 

usually present respiratory symptoms, while pregnant cows could give birth to normal calves 26 

or calves with IGR (120).  27 

3.7.2.1 Infection of pregnant cows and heifers and generation of PI calves.  28 

Cows and heifers infected at any gestational age with by cp biotype of the BVDV will always 29 

suffer abortions, whilst calves often suffer from digestive and respiratory diseases, mostly 30 

related to virus-related alteration of the IFN responses (Reviewed in 113) resulting in 31 

immunosuppression and impaired immune response. PI calves infected post-nataly with a cp 32 

biotype suffer from a lethal form of mucosal disease (121). In a herd, a single BVDV 33 

genotype can generate multiple variants by insertion in the NS2/3 coding region of the virus 34 

(122). If pregnant cows or heifers become infected by a ncp biotype of the virus during the 35 

first trimester of gestation, particularly between days 45 and 120 of gestation when the 36 

thymus (123) and immune tolerance develops (124), the virus enters the fetus into maternal-37 

fetal circulation through the placenta, infects the developing fetus and proliferates in a pan 38 

epithelial infection pattern (125). Viral antigens entering the fetal thymus during negative 39 

selection (NS) of CD4+ or CD8+ T-cells (SP) are incorporated as part of the organism's self-40 

antigens (126-128). This process, although not completely evidenced by scientific research, is 41 

considered the basic mechanism for generating PI calves: the PI fetus generates circulating T-42 

cells not recognize and do not react against viral proteins.  43 
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Consequently, PI calves are born "tolerant" to BVDV antigens, although virus antigens can be 1 

detected in the epithelium of almost all organs (129, 130) and the PI calf excretes infecting 2 

viruses throughout their lives, becoming the main source of infection into the herd (64, 94, 3 

120, 131,  132). Interestingly, PI calves exhibit some clinical signs related to the pathogenesis 4 

caused by the “tolerated” viral particles present in the endocrine, digestive, and respiratory 5 

systems, and the kin, being generalized alopecia and hypothyroidism within the most critical 6 

signs (72). Although viral particles have been described in the affected organs and tissues, 7 

authors have always favored the infectious nature of these lesions. However, the possibility of 8 

an autoimmune reaction has not been considered, even though several immune processes 9 

related to the acquisition of immunological tolerance against the virus have been described as 10 

summarized in Table 7. We propose these signs are similar to several of the clinical signs 11 

described for APS-1 patients (62, 63, 66) and we wonder if some of these signs could also be 12 

related to an impaired immune tolerance of PI calves. Accordingly, in Table 5 we propose a 13 

comparative description of clinical signs exhibited by APS-1 patients and PI calves.  14 

3.7.2.2 Persistence of BVDV in cattle herds through the generation of PI calves.  15 

Some authors reported a severe depletion of thymocytes and other lymphoid tissue damage in 16 

PI fetuses (133, 134), which could provide insights into the mechanism responsible for 17 

clinical signs developed by PI calves. However, other authors reported no compromised 18 

CD4+, CD8+, or B-cell repertoires in PI calves experimentally infected with traditional 19 

virulent BVDV strains but not with enhanced virulence strains (135) or in gnotobiotic calves 20 

during postnatal infection (136). Likewise, how BVDV circumvents the generation of reactive 21 

clones against viral antigens has not been elucidated, providing the opportunity to develop a 22 

field of knowledge for studying therapeutic alternatives for preventing the generation of PI-23 

calves. The reproductive outcome in a pregnant cow after viral infection would depend on the 24 

time of pregnancy when infection occurs. If the cow is infected in the first third of pregnancy 25 

with an ncp virus, the virus passes the placenta and infects the fetus (137). When occurring 26 

between 40 days of pregnancy, the earlier time when thymus development starts in the 27 

growing fetus (138) to 140 days of pregnancy, the most probable resulting scenario would be 28 

the virus entering the thymus during the maturation of thymocytes (139). Even though there 29 

are no specific studies demonstrating the exact mechanisms for the acquisition of virus 30 

tolerance, it could be speculated that it is the incorporation of viral proteins and peptides into 31 

the pool of “self” antigens being presented to the developing T-cells during negative selection 32 

accounts for the acquisition of such tolerance. Accordingly, virus-derived peptides are 33 

codified as “self” peptides by the developing thymocytes resulting in tolerance against the 34 

virus and generation of multiple sites of virus replication and establishment, with no 35 

generation of cellular or humoral immune responses against the virus. It was suggested that in 36 

that way it is established the fetal and postnatal PI calves (78).  On the contrary, if the fetus is 37 

infected after 135 days of pregnancy when the fetus has developed its immunological 38 

competence to recognize foreign antigens, an adaptive immune response against the virus is 39 

elicited resulting in fetal death or intrauterine growth restriction depending on the 40 

cytopathogenic strain of the virus (80), or the infected fetuses efficiently controlling viral 41 

RNA replication (140).  42 
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Table 7. Mechanisms of immune tolerance induction and PI generation during ncp BVDV infection. 1 

Process Molecular basis Reference 

Autophagy BVDV induces the activation of apoptotic cascades mediated through  (115) 

Self and non-self-modulation 

of interferon-mediated defense 

Ncp BVDV biotype induces tolerance of infected cells by inhibiting the effect of IFN-omega 

against them, but not the IFN response against another type of viruses  

(141) 

Resistance state to IFN / 

effector functions 

Ncp BVDV can modulate the IFN-depending response of the infected cells, with no effect on 

the response against other unrelated viruses in vitro. 

(142) 

Resistance state to IFN / 

effector functions 

Ncp BVDV can modulate the IFN-dependent response of the fetuses and placenta after 

experimental infection during the first trimester of pregnancy in vivo. IFN-stimulated genes in 

endometrial cells were affected by the addition of IFN-tau in vitro  

(124, 142) 

 

Attenuated innate and adaptive 

immune responses 
Ncp BVDV inoculated in utero at 75 days of pregnancy in heifers, induces IFN- production 

and significant upregulation of Type I IFN-stimulated genes (ISGs) in and reduces BVDV 

viremia of PI fetuses. The attenuated IFN- production was not associated with the elimination 

of all viruses. 

(143, 144) 

2 
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3.7 Structure of the bovine AIRE gene and AIRE protein 1 

The bovine AIRE gene is located on Bos taurus chromosome one and contains fourteen exons 2 

codifying a predicted 1665 RNA template responsible for translating a protein containing 554 3 

to 561 amino acids, with a calculated molecular weight of 58,492 Daltons. The sequence of 4 

three referenced transcripts is deposited in XM_024996717.1, XR_003036248.1, and 5 

XR_003036250.1, and one referenced sequence protein in XR_003036250.1 (NCBI 6 

Orthologs, September 2023). The HSR, SAND, PHD1, H3-binding site, Zinc binding site, 7 

BHA, and PHD2 domains are spanned thorough regions 22 to 154, 206 to 270, 306 to 348, 8 

(306, 312-to-318,320, 328, 338-to-343), (307, 310, 319, 322, 327, 330, 345, 348), 326-to-372, 9 

441-to-483 and (441, 450-to-454, 458, 478) of the amino acid sequence, respectively (NCBI 10 

Orthologs, September 2023). Also, the deposited AIRE Bos taurus gene in the Bovine 11 

Genome Database has 13364 nucleotides, twenty-four exons, and four coding sequences and 12 

transcripts (Bovine Genome Database, September 2023). Besides, the bovine AIRE gene 13 

shares high homology, structure, and genomic organization with the human counterpart. 14 

However, no mutations in the bovine AIRE gene have been described until now. Access to 15 

the available genetic resources related to the bovine AIRE gene and protein is presented in 16 

Table 8. Consequently, we provide elements to be considered for further research in areas 17 

such as bovine thymocyte maturation and acquisition of central and peripheral tolerance. The 18 

lack of scientific evidence on this subject in cattle allowed us to assume the bovine AIRE 19 

gene functions like the human AIRE gene and protein in addition to sequence homology 20 

(Figure 2). Unfortunately, research for depicting the mechanisms of AIRE expression in 21 

bovines has not been performed until now.  22 

4. Discussion  23 

 24 

4.1 BVDV in PI fetuses: A trojan horse into and outside the thymus?  25 

The common factor that appears to occur in PI calves and patients affected by APS-1 is 26 

impaired immunological tolerance: in PI calves, viral antigens are incorporated as part of the 27 

universe of fetal antigens, in such a way that naïve T-cell clones are not capable of 28 

recognizing the virus antigenic repertoire, even though there is an important modulation of the 29 

innate immune response mediated by IFN-g signaling-mediated mechanisms (113, 124, 141, 30 

145, 146). In APS-1 patients, mutations of the AIRE gene cause impaired PGE and TSA 31 

expression, generating autoreactive T-cell clones recognizing those self-antigens that were not 32 

taught by mTECs during T-cell intra thymic maturation (Reviewed in 25). 33 

However, because there is no scientific evidence on the association between BVDV 34 

replication, impaired AIRE gene expression, and autoimmunity, we wonder if BVDV would 35 

also cause fetal and postnatal pathogenesis related to impaired immune tolerance and cross-36 

reaction between tolerance and the immune response against the virus. Let us review the 37 

evidence on virus tissue localization and its relationship to impaired immune responses.  38 

https://www.ncbi.nlm.nih.gov/nucleotide/XM_024996717.1
https://www.ncbi.nlm.nih.gov/nucleotide/XR_003036248.1
https://www.ncbi.nlm.nih.gov/nucleotide/XR_003036250.1
https://www.ncbi.nlm.nih.gov/nucleotide/XR_003036250.1


 

PI calves and APS-1: natural mistakes of immune tolerance. 

Table 8. Genetic resources to the bovine AIRE gene and protein. 1 

Sequence Locus Accession  Database source Reference 

RNA XP_024852485 

 

XP_024852485 

 

RefSeq: accession 

XM_024996717.1 

 

https://www.ncbi.nlm.nih.gov/protein/XP_024852485.1  

RNA XR_003036248 XR_003036248 BioProject: 

PRJNA450837 

https://www.ncbi.nlm.nih.gov/nucleotide/XR_003036248.1  

RNA XR_003036250 XR_003036250 BioProject: 

PRJNA450837 

https://www.ncbi.nlm.nih.gov/nucleotide/XR_003036250.1  

Protein XP_024852485   REFSEQ: accession 

XM_024996717.1 

BioProject: 

PRJNA450837 

https://www.ncbi.nlm.nih.gov/protein/XP_024852485.1  

Gene ID 

Bovine 

genome 

 1:1442848

37-144298200 

 Gene Source: 

Ensembl95 

http://bovinemine-

v16.rnet.missouri.edu/bovinemine/report.do?id=37920673  

RNA ENSBTAG00000

023393 

 

ENSBTAT0000008

3211, 

ENSBTAT0000007

4633, 

ENSBTAT0000003

1852, and  

ENSBTAT0000007

1863 

 http://bovinemine-

v16.rnet.missouri.edu/bovinemine/report.do?id=37920673 

mRNA 

DB identifier 
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4.1.1 Are tissue distribution of BVDV in fetuses and PI calves related to its 4 

pathogenesis and clinical signs? 5 

Once into the fetus the ncp BVDV biotype is widespread after the establishment of immune 6 

tolerance in central nervous and endocrine tissues during fetal development (120) and persists 7 

beyond postnatal life in PI calves (131). In these tissues, the virus is located in pericytes 8 

(neuronal-related endothelial cells), microglia, and neurons. In most PI calves viral particles 9 

persist in the anterior and caudal cerebrum, basal nuclei, septal nuclei, piriform lobe, thalamus 10 

(Anterior, middle, and caudal), hypothalamus, hippocampal gyrus, dentate hippocampus, 11 

entorhinal cortex, mesencephalon, cerebellar cortex, and medulla (Anterior, middle, obex and 12 

caudal) (131). Similarly, other neural and non-neural tissues contain viral particles in 13 

experimentally induced PI fetuses (120), in both cases with variable degrees of intensity 14 

immunostaining. Curiously, these central nervous system regions could be related to impaired 15 

neuro-endocrine functions that could result affected during innate immune responses against 16 

the virus, particularly those mediated by Møs (See a complete description provided in Table 5 17 

by 131).  18 

In the pioneering work by Ohmann (1982), this author evaluated four PI fetuses produced 19 

under experimental conditions by inoculating ncp viruses in utero between 120-165 days of 20 

gestation. He reported hypoplasia of thymuses in all fetuses due to morphological immaturity 21 

rather than a pathological response as evidenced by light and electron microscopy. Similarly, 22 

he found necrosis and depletion of the external germ layer of the cerebellum and in the skin 23 

and mucous membranes. Besides, viral antigens were detected in mononuclear cells of 24 

lymphoid tissues and cerebellum (80). Accordingly, Straver et al. (1983) reported PI calves 25 

born exhibiting variable degrees of neurological abnormalities: whereas a percentage of 26 

calves survived and recovered from clinical signs, others died shortly after calving due to 27 

irreversible neurological abnormalities (75). Similarly, Binkhorst et al. (1983) reported PI 28 

calves suffering from incoordination, oscillating nystagmus, negative blinking reflex, and 29 

tremors (75) in the same group of calves of the report by Straver et al. (1983) in four years of 30 

study comprising eleven affected calves (76). Neurological finding was also reported in the 31 

study by Otter et al., (2009) who found neuraxial hypomyelination in 23 British farms during 32 

a 16-year follow-up herds of PI calves born with neurological abnormalities (83). Besides, the 33 

study by Gallina et al. (2021) found hypomyelination as the predominant finding in a cohort 34 

of PI calves suffering from neurological signs in Italy (147). In these studies, the BVDV was 35 

also reported by molecular diagnosis. Agerholm et al., (2015) reported the following 36 

neurological signs in calves affected by BVDV infection: Cerebellar hypoplasia, 37 

hydranencephaly, hydrocephalus, microencephaly, and porencephaly (See Table 1 and Figure 38 

1 in 148). Similar lesions were reported in the study by Golchin et al., (2023) in BVDV PI 39 

calves (149). Interestingly, one of the neurological signs reported in patients affected by APS-40 

1 cerebellar hypoplasia (11) suggests that BVDV PI calves and APS-1 patients share a 41 

common pathogenesis in neurological abnormalities.  42 

Besides, Georges et al., (2022) evidenced the hypermethylation of 1951 DNA regions in 43 

spleens of PI calves in regions related to bone development, cardiac, immune system, and 44 

neural tissues (150). We wonder if these regions when hypermethylated in the thymus from PI 45 

fetuses would account for reduced PGE. Besides, this group provided evidence on the 46 

generation of immune tolerance of PI fetuses against BVDV between 97 to 190 days of 47 

gestation by attenuation of lymphocyte activation (150), suggesting a mechanism of immune 48 

tolerance occurring beyond the acquisition of thymus central tolerance. The evidence 49 

provided by Smirnova et al. (2012) (124) and Hansen et al. (2015) (144) suggests that ncp 50 

BVDV can elicit innate and adaptive immune responses, in agreement with case reports 51 
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discussed by Ring et al., 2019. In the same work, the authors provide evidence suggesting that 52 

acquisition of the BVDV PI status could result from a combination of genetic selection, 53 

particularities of the virus, and the dam and fetus’ immune response (117).  54 

4.1.2 How does BVDV persist in the host? The molecular complexity of inducing 55 

immune tolerance. 56 

Whereas the cp biotype of BVDV is the most pathogenic and results in the abortion of 57 

pregnant heifers and cows and death of calves affected by mucosal disease (MD), the ncp 58 

BVDV biotype evolved to evade the immune response by inducing the PI status by several 59 

mechanisms (Reviewed in 139). As proposed by Amaya-Uribe et al. (2019) who discuss the 60 

interrelationships between primary immunodeficiency and autoimmune diseases in humans 61 

(151), it could also happen in PI calves where the innate and adaptive immune responses are 62 

impaired (reviewed in 139).  63 

4.2 Mechanisms of innate immune tolerance in PI calves. 64 

Interferon-mediated responses. In the report by Hong et al., (2023) the authors proposed the 65 

most recent review on IFN-mediated responses modulated by BVDV in PI calves (152). IFNs 66 

play a critical role in reducing pestivirus replication in pestivirus-infected cells and initiate 67 

antiviral responses to resist pestivirus invasion after viruses are recognized by the host's 68 

pattern recognition receptors (PRRs). Interferon regulatory factors (IRFs) are activated after 69 

Pestivirus recognition by PRRs. The Npro protein of pestiviruses modulates IRF3 and IRF7 as 70 

key molecules in the IFN-I production pathway, reducing IFN-I and IFN-III production. Also, 71 

BVDV Erns structural protein exerts RNase activity essential for blocking or suppressing IFN-72 

I production  (152, 153). The inclusion of the viral genome by the Erns protein through 73 

degradation of the immunostimulatory viral RNA prevents inappropriate activation of IFN by 74 

host nucleic acids. Lussi and Schweizer (2016) proposed that this mechanism supports the 75 

role of extracellular RNases in the sustained prevention of the organism's immunostimulatory 76 

RNA from acting as a molecular template associated with danger when cells are infected by 77 

viruses such as BVDV. Similarly, they proposed innate tolerance as a complementary strategy 78 

to adaptive tolerance for inducing and maintaining the PI status of calves (153).  79 

Macrophages and dendritic cells. Most macrophages in mucosae surface and specific 80 

organs are the main sources of viral persistence, at least as evidenced by the presence of viral 81 

antigens (71,  130, 154). On the contrary, these cells become not infected when cultured in 82 

vitro with BVDV, and in infected animals are responsible for clearing lymphocytes infected 83 

with the virus (155). Accordingly, no significant differences were found in leukocyte counts 84 

and phagocytic profiles between PI-infected and non-PI animals (156). Otherwise, authors 85 

support that during the persistence of BVDV the fetal liver, and particularly Kupffer cells, 86 

play critical roles in driving the developing fetal T-cells toward specific BVDV-tolerant status 87 

(155). Schweizer et al (2001) provided evidence on the effect of ncp BVDV inhibiting 88 

apoptosis induction and interferon alpha/beta by poly(IC). Interference of BVDV ncp in the 89 

innate antiviral response of bovine macrophages cultured in vitro with the virus could explain 90 

the successful establishment of persistent infection in fetuses in the early stages of 91 

development (157). 92 

T-cells. Lopez et al. (1993) evidenced that BVDV established productive PI status in 93 

monocytes CD4+, CD8+, and gamma-delta T cells (158). The reports by Brewoo et al. (2007)  94 

(156) and Falkenberg et al. (2019) (132) support the concept of the existence of not 95 

statistically significant differences in lymphocyte subpopulations between PI and non-PI 96 
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animals. Outstandingly, the presence of the virus is critical for maintaining the tolerance 97 

against BVDV infection because reduced viral loads are not compatible with the survival of 98 

PI calves (132).  99 

4.3 What is the role of the innate immune response against the “self-viral” antigens 100 

during PI development?  101 

Cohen and Efroni (2019) proposed a model of immune tolerance functioning beyond clonal 102 

selection as an integrated system comprising the integration of experience-based training 103 

repertoires of autoreactive T-cells functioning in cooperation with the developing T-cell 104 

repertoires in adult life for modulating the generation of inflammatory immune responses (in 105 

this case in autoimmunity) (159). This would be the situation of T-cells present in PI calves in 106 

damaged tissues where viral particles are present. As mentioned above, researchers have been 107 

focused on the infectious rather than the auto-immune mechanisms in these scenarios. This 108 

area of research could be a matter of further research.  109 

4.4 Two trojan horses into the thymus.  110 

The common factor observed in PI calves and patients affected by APS-1 is impaired 111 

immunological tolerance: In APS-1, patients are affected by mutations of the AIRE gene that 112 

result in impaired PGE and TSA expression, resulting in the generation of clones of T-cells 113 

recognizing self-antigens that were not presented to them by mTECs during intrathymic 114 

maturation (Reviewed in 25). In PI calves, viral antigens are incorporated as part of the 115 

universe of fetal antigens, in such a way that naïve T-cell clones are not capable of 116 

recognizing the virus’ antigenic repertoire, even though there is an important modulation of 117 

the innate immune response mediated by the production of IFN- (113, 114, 141).  118 

4.5  Is there an option to address impaired immune tolerance searching for therapeutic 119 

alternatives? 120 

From clinical and social points of view, the scientific community must consider the 121 

possibility of searching for effective preventive or treatment options for patients affected by 122 

APS-1. This must be considered in two scenarios: first, what options could be offered to 123 

couples that are carriers of the recessive allele responsible for the mutation of the AIRE gene 124 

causing APS-1 who wish to conceive children? And second; what option could be offered to 125 

children affected by APS-1? The elegant work by Provin et al., (2022) provided the first 126 

concluding evidence on the generation of thymic organoids as one of the first steps for 127 

providing therapeutic strategies for the treatment of APS-1/APECED patients (160). 128 

Accordingly, fetuses carrying AIRE gene mutations in cases associated with autosomal 129 

recessive inheritance could be identified through isolation of fetal cells or free fetal DNA 130 

circulating in maternal peripheral blood, chorionic villus biopsy. Once fetal material is 131 

separated and mutation carrier diagnosis performed, one treatment would be to transfer the 132 

normal gene: umbilical cord stem cells could be isolated from the fetus, differentiated to the 133 

thymus medullary epithelial precursor cell phenotype, and transfected with a vector carrying 134 

the normal AIRE gene. The cells would then be inoculated back into the fetus, which could be 135 

done through umbilical cord puncture using the cord veins.  136 

Using maternal stem cells carrying the normal gene: stem cells would be differentiated toward 137 

the mTECs phenotype and then transferred to the fetus as indicated above. Transfection must 138 

be performed before fetal thymus development, at gestational age when mTECs precursors 139 

migrate into the thymus at post-conception weeks 7-17 (14), or 9 to 19 of amenorrhea. We 140 

wonder whether technological advances would provide the means to transfer mTECs 141 
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precursors carrying the normal AIRE gene transfected to autologous cells by gene transfer or 142 

gene editing. The work by Provin et al., (2022) is a cornerstone toward this purpose (160). 143 

Hopefully, transferred cells carrying the normal AIRE gene migrate and establish homing in 144 

the developing fetal thymus becoming AIRE-expressing mTECs. Maternal bone marrow 145 

precursor cells could be isolated to obtain stem cells, differentiate into mTECs, and transfer to 146 

the fetus. In this scenario, the maternal cells must circulate in peripheral blood and migrate 147 

into the developing thymus, performing as mTECs and starting AIRE expression to overcome 148 

the problem of the defective gene in the embryonic thymus. 149 

This therapeutic approach could provide the developing fetus with maternal cells establishing 150 

micro chimerism in the thymus and induce TSA expression and self-peptide presentation to 151 

the developing thymocytes. This process must provide a mixed phenotype of maternal cells 152 

expressing the normal gene and abnormal fetal cells expressing the defective gene. The 153 

outcome must be a postnatal APS-1 phenotype suffering from reduced clinical signs. 154 

Treatment alternatives for typical APS-1 patients diagnosed postnatally must be focused on 155 

transfection of maternal cells carrying the normal AIRE gene and colonizing the thymus and 156 

sites of extra-thymic maturation of T lymphocytes, for inducing TSA and PGE improving the 157 

generation of no self-reactive T-cells.  158 

4.6 Should the PI BVDV model provide insights on APS-1 treatment?  159 

In this case, a vector could be designed to inoculate the fetus susceptible to developing APS-1 160 

with a vector carrying the normal AIRE gene, to be incorporated into the thymus of the 161 

embryo during its intrathymic development and allow the expression of the gene, its 162 

translation, and the expression of the protein. In this situation, the vector would be expected to 163 

be incorporated as the fetus's genetic material, with the AIRE gene incorporated, so it can 164 

begin to be expressed. Whether to consider offering experimental approaches for the 165 

prevention or immunologically based treatment for APS-1 patients is an extremely difficult 166 

but not impossible scientific challenge. The strategy should be focused on early diagnosis of 167 

fetuses carrying AIRE mutations, which are subjected to cell therapy strategies including 168 

transfection of the AIRE gene into stem cells of the affected fetus, transfer of maternal 169 

mTECs precursor to colonizing the fetus during intrathymic maturation of thymocytes weeks 170 

8-14 post conception (WPC) and expressing the transfected AIRE gene to achieving 171 

development of immune tolerance. In addition, studies could be conducted for developing 172 

treatment alternatives to APS-1 neonates, performing the transfer of their mTECs transfected 173 

with the gene so that they colonize sites of extrathymic maturation of T-cells. This step must 174 

result in reconstituted immunological tolerance through eliciting peripheral tolerance. These 175 

approaches must be based on recent advances in technologies related to single-cell mRNA 176 

expression according to spatiotemporal dynamics of intrathymic development in human 177 

fetuses; micro chimerism detection and expression monitoring of transfected proteins co-178 

expressed with green fluorescent protein; co-culture of tissue explants with immune cells, and 179 

nucleic acid expression. What could be the experimental protocols for these therapeutic 180 

approaches?  181 

4.7 What can we learn from APS-1 to improve our knowledge of BVDV PI calves?  182 

All scientific advances in developing thymocytes in the human fetus and the role of AIRE 183 

expression in developing central and peripheral tolerance are still lacking in cattle. Besides, 184 

we wonder whether BVDV infection before the generation of PI fetuses is implicated in 185 

impaired RNA expression during intrathymic T-cell development in cattle, its consequences 186 

in the generation of the self-repertoire and the possible relationship with the pathogenesis of 187 
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PI fetuses and calves. Given the similarities of clinical signs we proposed between APS-1 and 188 

PI calves we presented in Table 5, gain in this field of knowledge would be of critical 189 

importance for the development of novel control, prevention, and treatment strategies for 190 

BVDV infection in the cattle industry. Also, this knowledge would be of critical importance 191 

for the study of other viral infections and other animal species suffering from PI diseases.  192 
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Figure legends 691 

Figure 1. Overview of intra-thymic T-cell development. From left to right it is depicted the 692 

circulation of early T-lymphoid progenitors (TLP) from bone marrow through the thymus 693 

(left column), its exposition to thymic epithelial cells (central box), and the pattern of MHC 694 

and TCR expression according to CD8/CD4 expression phenotype. From the top to the 695 

bottom, depicted phenotyping changes from TLP to mature circulating T-cells: a passage 696 

from the blood to the thymic cortex and interaction with cTECs (Top), maturation toward the 697 

DP stage while in the cortico-medullary junction (Middle), interaction with mTECs and 698 

evolution toward the single negative stage (bottom), and outcome as circulating post thymic 699 

T-cells, including the early differentiation of g/d T-cells, and T-reg, CD4+, CD8+, and Th17 700 

cells. (Adapted from various authors). 701 

 702 

Figure 2. Comparative amino acid sequences between human (NP_000374.1) and predicted 703 

bovine (XP_002685182.2) AIRE protein. n, indicates the amino acid position. Hyphen means 704 

no amino acid concordance at the same position. 705 

  706 

https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=4557291
https://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?db=protein&id=528938199
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Figure 2. 709 
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