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A B S T R A C T   

Bacterial nanocellulose, a natural hydrocolloid traditionally used as food ingredient, has demonstrated potential 
as a non-soluble dietary fiber and functional material. Moreover, its properties can further be potentialized 
whether coupled with natural anthocyanins to endow antioxidant activity. Vaccinium meridionale swartz extract 
(VE), rich in anthocyanins, has recently demonstrated effects against colorectal cancer; therefore, encapsulating 
it into bacterial nanocellulose (BNC) may offer an enhanced VE delivery alternative. However, BNC has an open 
interconnected porosity that may generate a quick delivery of VE in gastric fluids impacting its stability. 
Accordingly, this paper explores meta-acrylic copolymer coatings of BNC spheres for VE delivery in a colorectal 
environment while potentially reducing its delivery in stomach conditions. The VE was characterized in terms of 
antioxidant capacity, colorectal cancer cell inhibition, and selectivity and then, it was incorporated into BNC 
spheres and coated with a meta-acrylic copolymer. The system’s physicochemical, morphological, and delivery 
performance was studied under colonic and gastric conditions. Results show the coating’s effectiveness in 
changing the VE delivery profile under colonic conditions and the potential of natural extracts for the selective 
inhibition of colorectal cancer cells (SW480 and SW620). The above results demonstrated that meta-acrylic 
copolymer-coated BNC spheres is a potential system for encapsulating natural extracts for colorectal cancer 
chemoprevention.   

1. Introduction 

Bacterial nanocellulose (BNC) is a natural hydrocolloid produced by 
bacteria from the genus Komagataeibacter, Gluconacetobacter, among 
others, as a thick mat or membrane in the air-liquid interface under 
static fermentation with carbon and nitrogen sources (Martínez Ávila 
et al., 2014). These bacteria may form entangled nanoribbons networks 
of 50–70 nm in width and several microns in length (Kumagai et al., 
2011) during BNC biosynthesis (Martínez Ávila et al., 2014), (Kumagai 
et al., 2011) BNC shares the chemical structure of other vegetable and 
animal cellulose sources, i.e., chains of D (+) glucose (C6H10O5)n linked 
by β 1–4 bounds (Azeredo et al., 2019a), Azeredo et al., 2019a,b but it is 

highly pure (Kim et al., 2011a; Trovatti et al., 2011; Yudianti & Karina, 
2012), and has historically used as food and food ingredient (Azeredo 
et al., 2019a), (Osorio et al., 2017). BNC was first observed by ancient 
Asians producing kombucha tea (Jarrell et al., 2000), a beverage fer
mented from a symbiotic colony of acetic acid bacteria and yeast 
embedded within a nanocellulose membrane formed at the beverage 
surface (Azeredo et al., 2019a), (Jarrell et al., 2000). Likewise, BNC is 
produced in coconut water in the Philippines to harvest “nata de coco” 
(Martínez Ávila et al., 2014), (Recouvreux et al., 2011), (Zhu, Jia, et al., 
2011) as a dessert and food ingredient of beverages (Okiyama et al., 
1993). Moreover, BNC is generally recognized as safe (GRASS) by the 
Food and Drug Administration (FDA), and it has been exploited as a raw 
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material for dessert, artificial meat, thickening, gelling, and 
water-binding agent, and food packaging material, among others (Shi 
et al., 2014). 

BNC can be shaped during biosynthesis to generate fibrous suspen
sion, spheres, or pellets (Azeredo et al., 2019a). Using agitated culture 
BNC can be shaped into spheres (also reported as pellets, beads, or 
cocoon-like spheroids) in sizes varying from microns to centimeters in 
diameter (Recouvreux et al., 2011)– (Czaja et al., 2004). The production 
mechanism of these shapes is still unknown; however, it is influenced by 
the cultivation time and agitation speed (Czaja et al., 2004). In this 
context, BNC spheres have been produced for soft tissue regeneration 
(Czaja et al., 2004) and the adsorption of proteins and heavy metals (Zhu 
et al., 2011b), For instance Pb2+, Mn2+, and Cr3+ have been removed 
from effluents demonstrating high adsorption and recyclable capacities 
(Recouvreux et al., 2011), (Zhu, Jia, et al., 2011), (Zhu et al., 2011b), 
(Brandes et al., 2018). Moreover, BNC has been used as encapsulation 
material for colorectal cancer, rencently estudies of Martinez et al. 
(2022), Castaño et al. (2022) and Rendon et al. (2022) have used BNC as 
a drug delivery system for 5-Flourouracil and genistein demonstrating 
its potential for promoting in vitro biobility and enhancing inhibition 
concentration of the encapsulated compounds because of the controlled 
delivery profile that the compounds presented once were encapsulated 
on BNC (Castaño et al., 2022; Martínez et al., 2022; Rendón et al., 2022). 
Likewise, natural extracts from Vaccinium meridionale swartz (VE) are a 
source of polyphenols (antioxidants phytochemicals), especially antho
cyanins (delphinidin-3-hexoside, cyanidin-3-galactoside, cyanidi
n-3-arabinoside, among others), and flavonols (quercetin hexoside, 
quercetin pentoside, quercetin hydroxymethylglutaryl-α-rhamnoside, 
among others), the whole composition was described by Garzon et al. 
(2020) (Garzón et al., 2020). VE phytochemicals inhibited the growth of 
HT-29, HCT-116, SW480, and SW620 colon cancer cell lines (Maldo
nado-Celis et al., 2014a). Likewise, recent studies of Arango-Valera et al. 
(2022a,b) suggested that VE juices exhibited cell cycle arrest and 
modulated pro-apoptotic proteins, via an alternative programmed cell 
death. Furthermore, in vivo experiments VE juices decreased aberrant 
crypt foci, and displayed defensive effects against the 
azoxymethane-induced damage (model that simulates the first steps of 
colorectal cancer) (Arango-Varela et al., 2022a), the above demonstrates 
the potential for marketing VE products as nutraceutical food for 
developing beverages, yogurts, ice creams, among others, with potential 
colorectal cancer chemopreventive action. VE can be potentiated using 
BNC, where BNC acts as a delivery system of it. Nevertheless, BNC is an 
open network (Pircher et al., 2014) that may precociously release VE in 
the stomach or early intestinal tract impacting its stability and hindering 
its colorectal cancer effect. To reduce this problem, BNC spheres can be 
coated with a pH-responsive materials (Shi et al., 2018). 

pH-responsive materials get protonated or deprotonated depending 
on pH (altering the attractive forces between each polymeric chain), 
showing changes in its swelling behavior. Polimers such as, poly (acrylic 
acid), poly (methacrylic acid), mehacrylic copolymers, and alginate are 
materials that are deprotonated at netral to alkaline pH (colon eviro
ment) (Joseph et al., 2020), allowing the phytochemicals target CRC. 
Methyl methacrylate copolymers, such as Eudragit S100 (EUDA), is a 
material that allows colon targeted drug delivery systems (Ratner et al., 
2013). For example, EUDA has been investigated as coating agent for 
tablet formulations of Naproxen (Mehta et al., 2013) and pectin nano
particles with 5-Flourouracil (Mehta et al., 2013), (Subudhi et al., 2015). 

The novelty of this paper lays on the conjuction of the 3 three 
technologies expressed above, VE chemopreventive properties, BNC as 
encapsulating agent (responsible for the delivery profile), and EUDA as a 
pH-responsive coating in order to develop a targeted delivery system for 
potential CRC chemoprevention, technology that has not been reported 
in the literature. VE was characterized in its inhibition cancer cells po
tential, and the whole system (VE encapsulated in BNC coated with 
EUDA) was physicochemically characterized for potential functional 
food ingredient to be applyed for colorectal cancer chemoprevention. 

2. Materials and methods 

2.1. Materials 

For in vitro studies, high glucose Dulbecco’s modified Eagle’s me
dium (DEMEM) (Gibco, 11995065 fetal horse serum (Gibco, 26050070), 
insulin transferrin selenium 100X (Merck, I3146), non-essential amino 
acids 100X (Gibco, 11140050), penicillin/streptomycin (Gibco, 
15140122), sulforhodamine B (Merck, 230162), and acetic acid (Merck, 
A6283) were used. For VE characterization potassium chloride (Merck, 
P3911), sodium acetate (Merck, S2889), 2,4,6-Tri (2-pyridyl)-s-triazine 
(TPTZ) (Merck, T1253), HCl (Merck, 258148), FeCl3⋅6H2O (Merck, 
236489), and 6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic 
acid (Trolox reagent) (Merck, 238813) were used. For BNC produc
tion, D-(+)-glucose (Merck, G5767), potassium dihydrogen phosphate 
(Merck, P5655), MgSO4⋅7H2O (Merck, M5921), disodium hydrogen 
phosphate (Merck, S9763), and citric acid monohydrate (Merck, 
C1909), bacteriological peptone (Oxoid, LP0037B), and yeast extract 
(Oxoid, LP0021B) were used. In addition, the EUDA coating was 
developed using Eduagrit (Evonik, S100) and ethanol (Merck, 
1117272500). 

2.2. Vaccinium meridionale Swartz extraction 

An adapted protocol from Agudelo-Quintero et al. (2022) was used 
to produce VE. Briefly, 30 g of ripe lyophilized Vaccinium meridionale 
was reconstituted in 500 ml water. Then it was blended for 5 min, then 
the mixture was sonicated for 1 h at 25 ◦C and passed through 0.22 μm 
Teflon filters (Agudelo-Quintero et al., 2022), after the process the final 
pH was 3.0. For in vitro experiments, the extraction was performed 
directly, replacing the water for Dulbecco’s modified Eagle’s medium 
(DEMEM) at 10 vol % fetal equine serum and 1 vol% insulin transferrin 
selenium, 1 vol% non-essential amino acids, and 1 vol% of 
penicillin/streptomycin.  

• VE characterization 

The VE concentration was calibrated spectrophotometrically, finding 
a value of 5.63 ± 0.30 mg/ml (gravimetric dry basis). The extraction 
was characterized in terms of anthocyanin content (main composition 
and antioxidant activity (Arango-Varela et al., 2022a), (Agudelo-
Quintero et al., 2022; Maldonado-Celis et al., 2014b). 

Anthocyanins were calculated according to Giusti & Wrolstad, 2001, 
in which anthocyanin pigments undergo reversible structural trans
formations with a change in pH manifested by strikingly different 
absorbance spectra. The colored oxonium form predominates at pH 1.0, 
and the colorless hemiketal form at pH 4.5. The pH-differential method 
is based on this reaction and permits accurate and rapid measurement of 
the total anthocyanins. First, a 0.025 M potassium chloride buffer with 
pH 1.0 and a 0.4 M sodium acetate buffer with pH 4.5 was used to 
guarantee the pH. After this, monomeric anthocyanins were measured 
using UV–visible at 512 nm (Giusti & Wrolstad, 2001). Then, antioxi
dant activity was measured using the ferric antioxidant/reducing power 
test (FRAP). This method quantifies the reduction of a ferric tripyridyl 
triazine (TPTZ) complex to the ferrous form, which has an intense blue 
color and can be monitored by measuring the change in absorbance at 
593 nm. For the method, 300 mM acetate buffer, pH 3.6, was mixed with 
10 mM TPTZ (2,4,6-tripyridyl-s-triazine) solubilized in 40 mM HCl and 
20 mM FeCl3⋅6H2O in the ratio of 10:1:1 to give the working FRAP re
agent. 900 μl of FRAP reagent, 30 μl of the sample, and 90 μl of distilled 
water were added to a tube, and the absorbance was read at 593 nm. 
6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox re
agent) solutions between 20 and 500 μM were used for the calibration 
curve (Benzie & Strain, 1999). The results are the average of three ex
periments with its standard deviation. 
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2.3. Cytotoxic effect of VE on cancer cells 

Cell studies were used to prove the inhibition effect of VE over 
colorectal cancer. The cells tested in the experiment were adenocarci
noma colorectal cancer cells (SW480) and metastatic colorectal cancer 
cells (SW620), and normal human keratinocytes (HaCaT) as control, 
using the protocols of Agudelo et al. (2017). Briefly, cells were seeded in 
96-well culture plates (Corning, 3598) at 15000 cells per well and 
cultured using Dulbecco’s modified Eagle’s medium (DEMEM) at 10 vol 
% fetal equine serum and 1 vol% insulin transferrin selenium, 1 vol% 
non-essential amino acids, and 1 vol% of penicillin/streptomycin at 
37 ◦C in 5% CO2. After 24 h culture, the cells were exposed to 10 con
centrations of the VE and incubated for 24 and 48 h. Cell layers were 
fixed by adding 50 μl of 50 % wt—trichloroacetic acid (TCA) at 4 ◦C for 
1 h. The wells were drained, rinsed with distilled water, and air-dried. 
Then, the cells were stained using sulforhodamine B (SRB) (0.4% w/v 
in 1 vol % glacial acetic acid) for 30 min. Unbound dye was drained and 
removed by washing five times with 1 vol % glacial acetic acid. After air- 
drying the plate overnight, the dye was solubilized by adding 200 μl/ 
well of 10 mM Tris base and stirring for 10 min, measuring the absor
bance at 490 nm. The absorbance of the control group (cells treated with 
extract solvent) was considered with 100% viability (Carlos et al., 
2017). The extent of inhibition was calculated using equation (1). 

Inhibition=
[

1 −
ODT

ODC

]

∗ 100 (1)  

Where ODT is the optical density (OD) of treated cells and ODC is the 
optical density of control. Furthermore, the selectivity (S) of the com
pounds was calculated at IC50 according to equation (2). 

S=
IC50HaCaT

IC50Cancer cells
(2) 

The IC50 parameters were found using 3 replicates in three inde
pendent moments, then the outlier point was removed and the data was 
fitted to a four-parameter Hill equation regression model, according to 
the procedure followed by Sebaugh, 2010 (Sebaugh, 2011), see equation 
(3). For the fitting process a non-linear regression (Marquardt) was used. 
The software for analysis was Statgraphics 19® Centurion. 

Y =Min +
Max − Min

1 +
(

X
W

)z (3)  

Where: 
Y is the unitary inhibition. 
Min is the minimal asymptote. 
Max is the maximal asymptote. 
X is the Log10 C (C is concentration in μg/ml). 
W is Log10IC50 (IC50 in μg/ml). 
Z is the adimentional hill coefficient. 

2.4. BNC spheres (BNCS) production 

BNCS was produced using a modified Hestrin–Schramm culture 
media described elsewhere (Molina-Ramírez et al., 2018). First, the pH 
was adjusted to pH 3.6 with citric acid, and then the medium was 
sterilized in an autoclave at 15 psi (121 ◦C) for 15 min. Next, the culture 
medium was inoculated with Komagataeibacter medellinensis at 0.5 
Macfarland (1.5 × 108 UFC/ml). Finally, the fermentation was carried 
out under agitated conditions for 3 days at 30 ◦C and 150 rpm to 
generate the BNC spheres using an incubator with agitation (Tecnal, 
TE-4200). Then, BNC spheres were purified with 5 wt % of KOH solution 
at room temperature for 14 h, followed by continuous rinsing with ul
trapure water to reach a pH of 7.0 (yield of 45 g of BNCS/l). 

2.5. VE incorporation 

The filtrated was added to 1 g BNCS (wet material) and stirred 
overnight at 100 rpm in an orbital shaker, according to Table 1. 

To form the EUDA coating, the beads with VE (BNC-VE) were 
immersed in a 2 wt% ethanol solution of EUDA and rinsed in a pH 2 
citric acid solution, these compounds were used according to EUDA 
datasheet and having in mind future application of the thecnology as 
food aditive. After coating, the spheres were rinsed with ultrapure water 
(to remove remaning ethanol) and stored for later use. A non-coated 
experimental group was used to observe the effect of the coating for 
comparison. 

2.6. Material characterization 

2.6.1. Macro and microstructurre 
The macroscopic appereance of the empty and VE loaded capsules 

were characterized using a stereomicroscope Nikon at 5X and camera 
DS-Fi3. For this experemiment, the samples were in its natural state (wet 
materials). For the characterization of the microstructure a scanning 
electron microscope (SEM) was used. Futhermore, SEM was used to 
analyze the morphology of biomaterials before and after coating and VE 
extract adsorption. First, the samples were frozen at − 196 ◦C using 
liquid nitrogen. Next, the biomaterials were freeze-dried for 24 h under 
0.020 mBar (to preserve the material microstructure and avoiding VE 
decomposition by temperature); then, the samples were coated with 
gold using an ion sputter. Finally, samples were observed with a Jeol 
JSM 5910 LV scanning electron microscope operating at 20 kV. 

2.6.2. Attenuated total reflection fourier transform infrared spectroscopy 
(ATR-FTIR) 

ATR-FTIR experiments were carried out to verify the presence of 
EUDA and extract in the bead. Three samples were freeze-dried before 
the analysis. Infrared spectroscopy experiments were performed using 
an FTIR spectrometer (Nicolet 6700 Series) equipped with a single- 
reflection ATR and a type IIA diamond crystal mounted in tungsten 
carbide. The diamond ATR had a sampling area of approximately 0.5 
mm2, applying consistent reproducible pressure to every sample. The 
infrared spectra were collected at 4 cm− 1 resolutions over 64 scans. 

2.6.3. Adsorption profiles 
Adsorption isotherms and kinetics were performed to understand the 

interactions between VE and BNC. All the experiments were performed 
before the coating of the spheres. The detailed used protocols are 
described in supplementary information 1 (S.1.) 

2.7. Desorption profiles 

The coated and uncoated spheres (1 g) with adsorbed VE, BNCS- 
EUDA-VE, and BNCS-VE, respectively, were immersed in 20 ml of 
simulated gastric (pH = 1.6) and colonic (pH = 7.0) fluids, according to 

Table 1 
Experiment set up for adsorption of VE in 1.0 g of BNCS.  

Sample No. WVE (g) Wwater (g) Ci,VE (mg/ml) 

1 5.0 0.0 4.7 
2 4.5 0.5 4.2 
3 4.0 1.0 3.8 
4 3.5 1.5 3.3 
5 3.0 2.0 2.8 
6 2.5 2.5 2.3 
7 2.0 3.0 1.9 
8 1.5 3.5 1.4 
9 1.0 4.0 0.9 
10 0.5 4.5 0.5 

*W: weight (g); Ci: initial concentration (mg/ml); VE: Vaccinium Extract. 
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Marquez et al. 2011 (Marques et al., 2011). Aliquots of 500 μL were 
taken at 5, 10, 15, 20, 30, 60, 120, and 240 min. The VE concentration 
was spectrophotometrically analyzed every time, as explained in S.1. for 
adsorption kinetic. Furthermore, the desorption kinetics were evaluated 
according to equations in S.1. The fitting of the experimental data was 
done using the average of the data set in Microsoft Excel® using a 
non-linear regression (Least Squares) and Solver Complement (Frontline 
Systems, Inc.). 

3. Results and discussion 

3.1. VE characterization 

Phytochemicals are bioactive nutrient plant chemicals in fruits, 
vegetables, grains, and other plant foods that may provide desirable 
health benefits beyond essential nutrition (nutraceutical) to reduce the 
risk of chronic diseases (Jimenez-Garcia et al., 2018), as cancer. Among 
the phytochemical family, antocyanins present antioxidant, anti
cancerous, anti-inflammatory, antimicrobial, and vasodilating, among 
other activities (Yahfoufi et al., 2018). Vaccinium meridionale Swartz is a 
native Colombian plant that produces a dark purple globe berry when it 
is ripe, rich in anthocyanins with antioxidant properties (Maldonado-
Celis et al., 2014a). VE studied here, present an anthocyanins concen
tration of 57.37 ± 1.51 mg/L cyanidin-3-glucoside and a FRAP 
antioxidant of 114.94 ± 6.93 of μM Trolox (average and standar devi
ation). Accordingly, VE presents anthocyanins with antioxidant activity 
with potential use as a chemopreventive, especially for colorectal can
cer. For instance, Baby et al. 2017 reviewed the anti-cancer properties of 
berries and stated that anthocyanins are quantitatively the most 
important polyphenolic compound in berries. The quantitative deter
mination of anthocyanin content in strawberries and raspberries ranges 
from 150 to 600 mg/kg and 921 mg/kg of fresh fruit weight, respec
tively, showing antiproliferative effects against several cancer cell lines, 
including breast, colon, and lung, among others (Baby et al., 2017). 
Conversely, the Andean berries are c. a. of 956 mg/kg of lyophilized 
fruit, which is relatively high compared to strawberries and in the same 
range of raspberries, accordingly the anthocyanins concentration and 
the antiproliferative effect range in similar berries. Likewise, anthocy
anin content plays an important role in the antioxidant effect of VE to 
prevent the free radical damage associated with cancer development 
(Maldonado, Agudelo, et al., 2017). 

3.2. Cell studies of VE over cancer cells 

Fig. 1 shows the cell studies over cancer cells (SW480 and SW620) 
and normal cells (HaCaT). 

The inhibitory concentration 50 (IC50) measures the potency or drug 
efficacy. The results show that cell inhibition exposed to VE is time-, cell- 

, and dose-dependent. Regarding to time, all cell lines presented better 
performance of IC50 at 24 h. Regarding the cell type, VE has a lower IC50 
(most efficacy) for SW480 than for SW620, emphasizing the importance 
of VE in colon chemoprevention, as this cell line modelled the first 
colorectal cancer stage (Agudelo-Quintero et al., 2022). Regarding to 
dose, it was found to have a selective index (SI) above 2.5, meaning that 
VE is safe for non-cancer cells. For instance, HaCaT IC50 is 2-3-fold 
higher (1000–1500 μg/ml) than for cancer cells (300–500 μg/ml), so 
that in the inhibitory range of cancer cells, normal cells will not present 
any cytotoxic effect. There is a wide debate regarding how large the 
selectivity index should be. Some researchers agree that SI ≥ 10, others 
>1, or ≥2 or ≥3 (Indrayanto et al., 2021). From the four criteria, the 
calculated SI agree with three remarking on the safety of VE for inhib
iting cancer cells. 

In the literature, VE cell inhibition mechanisms have been linked to 
the antioxidant properties of anthocyanins (114.942 ± 6.928 μM Trolox, 
found here). Anthocyanins can induce pro-apoptotic events such as 
activating proteins like caspase-3 and caspase-9 and participating in 
cytochrome c release as Bax and Bak activation and the modulation of 
nuclear factor kappa B (NF-κB) (Arango-Varela et al., 2022b). Further
more, NF-κB is mutated in cancer cells (Zhang et al., 2021), which can 
explain the selectivity of VE, SI > 2.5, compared to non-cancer kerati
nocytes HaCaT. 

Empty capsules of BNCS and BNCS-EUDA were also evaluated in vitro 
showing no effect over cancer and non-cancer cell cells as they no 
reduced the cell viability, for all cases the viavility was over 90%, please 
see supplementary information S.2. 

3.3. Encapsulation of VE in BNCS and BNCS-EUDA 

3.3.1. Material characterization  

• Macro and microstructure 

Fig. 2 shows the macroscopic appearance of empty capsules BNCS 
and BNCS-EUDA (Fig. 2 a and b. respectevely) and VE encapsulated, 
BNCS-VE and BNCS-EUDA-VE (Fig. 2 c and d. respectevely). The 
developed capsules are characterized by an individualized, dispersed 
spherical-shaped BNC ranging from 1 to 3 mm in diameter. Once the 
spheres were coated with EUDA, the spheres keep the macroscopic 
appereance. When VE is incorporated in the capsules, in both cases the 
spheres present a vivid and bright color related to VE and the presence of 
polyphenols in the extract (Carlos et al., 2017), (Celis et al., 2017), that 
is desired for food or food ingredients (Spence, 2015). 

According to Fig. 2, the capsules present the color of anthocyanins 
(visually attractive), even when it is coated with EUDA (Fig. 2 c. and d.), 
which is important if VE is intended for functional foods. For instance, 
bacterial nanocellulose has been used for desserts after being cut into 

Fig. 1. Inhibitory effect of VE over cancer cells; unitary inhibition vs. X (log10 C, C is concentration in μg/mL), along with the Hill model for a. SW480 (primary 
colorectal adenocarcinoma); b. SW620 (metastatic colorectal adenocarcinoma); c. HaCaT (normal human keratinocytes),*Data points stastiscally different (p-val
ue<0.05). Indented table with: inhibitory concentration 50 (IC50), inferior and superior confidence limit, coefficient of determination (R2) selectivity index (SI). The 
adjustment function was symmetric Hill equation using Marquardt regression in Statgraphics, asymptotic intervals with 95% of confidence. N/A means 
not applicable. 
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cubes and immersed in sugar syrup (Azeredo et al., 2019b). Here it is 
proposed to replace this syrup with VE, which is rich in phytochemicals 
and has activity against colorectal cancer. 

According to the SEM micrograph (see Fig. 3.), the developed 
spheres with a diameter of c. a. 1.5 mm can be spotted at low magnifi
cations. On the other hand, the BNCS shows the rough structure typical 
of the material at 500X, given by the interconnected network of nano
ribbons (Jarrell et al., 2000). In the case of the BNCS-VE, the nano
ribbons are covered by the VE components. Nevertheless, at 10000X, 
they still present an open porosity (please see arrows), which can 

quickly release the VE as soon as in contact with simulated fluids, as 
shown in the desorption analysis. On the contrary, the spheres coated 
with EUDA present a smooth and wholly closed surface, even at high 
magnifications, which allows the polymer to act like a drug delivery 
system, as presented in the following sections.  

• FTIR 
Fig. 4 shows the FTIR-ATR spectra of the bacterial nanocellulose 

spheres. Including its single components, empty capsules and full 
system. Regarding to VE (see Fig. 4 a.) bands related to anthocynis 

Fig. 2. Macroscopic appearance of the empty capsules and VE encapsulated a. BNCS; b. BNCS-EUDA; c. BNCS-VE; d. BNCS-EUDA-VE. The scale bar represent 
1.5 mm. 

Fig. 3. SEM micrographs of empty capuslies (BNCS ans BNCS-EUDA) and encapsulated VE (BNCS-VE and BNCS-EUDA-VE). Magnifications and scale bars are marked 
in white in the figure bottom. Arrows indicates reprensentative pores of capsules. 
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are present. For instance, C––O vibrations bands between 1700 and 
1740 cm− 1, aromatic bands between 1100 and 1400 cm− 1, and C–O 
vibrations of phenol ring at 1026 cm− 1 (Barragán Condori et al., 
2018), (da Silva et al., 2019). The spectrum of EUDA (Fig. 4 b.) 
present the bands of acrylates copolymers i.e. the C––O vibrations of 
carboxylic groups at 1705 cm− 1 and esterified carboxyl groups at 
1730 cm− 1, ester vibrations from 1100 to 1200 cm− 1 and CHx-vi
brations from 2900 to 3000 cm− 1 (Sharma et al., 2011), (Evonik). 

The spectrum of the BNCS (see Fig. 4 c.) presents the characteristic 
bands of cellulose type I allomorphism (Castro et al., 2012; Chiaopra
kobkij et al., 2011; Kim et al., 2011b; Shi et al., 2012; Yan et al., 2008), 
that is, vibrations around 3348 cm− 1 corresponding to the stretching of 
the O–H group, bands at 2894 cm− 1 related to C–H and –CH2 groups, 
1642 related to flexion of the OH group of adsorbed water, 1428 cm− 1 

symmetric flexing –CH2 and 1062 cm− 1 to pyranose C–O-C ring skeletal 
vibrations (Amin et al., 2014). Other bands at 1374, 1337 cm− 1, and 
1315 cm− 1 were attributed to C–H flexion, in-plane O–H flexion, and 
oscillation of C–H2 groups, indicating the presence of crystalline regions 
within the structure (Castro et al., 2012). 

When coating with EUDA (BNCS-EUDA, in Fig. 4 d.), the bands for 
the carboxylic groups and CHX-of acrylates copolymers are spotted (El 
Maghraby et al., 2014), (Thakral et al., 2011), the other bands super
imposed with the bands of BNCS, nevertheless, is confirmed the pre
cence of EUDA in the capsules. 

In the case of BNCS-VE (Fig. 4 e.), the bands of BCS and VE are 
superimposed, however, there is still evidence of the presence of C––O 
and phenols vibrations of anthocynins, confirming the precence of VE in 
the capsules. Finally, for the full system of BNCS-EUDA-VE (See Fig. 4f) 
the spectrum shows superimposed bands of the three compounds. For 
instance, the bands at 1700-1740 cm− 1 are related to the C––O vibra
tions of VE and EUDA. The presence of anthocyanins is confirmed via the 
C–O vibrations at vibrations of phenol ring at 1026 cm− 1 (Barragán 
Condori et al., 2018), (da Silva et al., 2019). The other bands are a su
perimposition of BNCS, EUDA and VE spectrum. 

3.3.2. Adsorption isotherm 
According to the models presented in Fig. 5, the performance of 

adsorption isotherms can be described as an incomplete monolayer (R2 

> 0.99, for Langmiur, Freundlich, and n-BET models). It can be seen that 
VE saturates the spheres, reaching a monolayer Langmuir concentration 
(Qm) of c. a. 3.37 mg of VE/g BNCS. Additionally, when observing the 
partition coefficient (KL) of 1.14 ml/mg VE, it can be concluded that VE 
has a good affinity and adhesion energy for bacterial nanocellulose, 
since KL is greater than 1 ml/mg VE (Sandoval-Ibarra et al., 2015). Going 
deeper, the n-layer BET equation demonstrates a nBET (number of layers) 

of 0.79 (at the monolayer nBET = 1 and n-BET equation will be reduced 
to a Langmuir model (Behere & Yoon, 2021)), confirming the presence 
of an incomplete monolayer. 

3.3.3. Adsorption kinetics 
Further analysis of the adsorption kinetics (Fig. 6) for PFO, PSO, and 

Elovich model shows that the compounds reach the adsorption equi
librium at 60 min. Likewise, VE extracts are coupled to a second-order 
reaction (see Fig. 6 c.). In this condition, the adsorption rate is depen
dent on adsorption capacity, not on the concentration of adsorbate 
(Hussain, 2015), (Anastopoulos & Kyzas, 2014), (Sahoo and Prelot, 
2020). 

According to the adsorption studies, BNCS can encapsulate c. a. 2.91 
mg of VE/g of BNCS, a concentration 5-10-fold above the IC50 for cancer 
cells. Regarding kinetics, the VE adsorption is faster, and the equilibrium 
is reached during the first hour following a PSO model. The above pa
rameters are important for scaling up the process for future commer
cialization of derived functional foods. 

3.4. Desorption experiments 

Fig. 7 shows the experimental coated and uncoated spheres’ 
desorption profiles under gastric conditions (pH = 1.6) and colonic 
conditions (pH = 7.0). Furthermore, Fig. S2 presents the mathematical 
modeling of desorption. 

The coating of the BNCS greatly influences the VE-releasing profile. 
Under gastric conditions, the EUDA can reduce an early release of VE by 
60% at maximum gastric emptying time (120 min), the equilibrium time 
is influenced by the capsule type, for BNCS-VE the equilibrium is reahed 
at 10 min, while for BNCS-EUDA-VE the equilibrium is not reached 
during the 120 min (maximum desorption of 45.09 ± 4.42%). BNCS-VE 
can release 72.00 ± 5.09% of VE during the frist 10 min, regarding to 
the maximum gastric emptying time (120 min) the desorption was 93.09 
± 4.94%. Moreover at stomach eviroment, all the time point are stas
tically are different between BNCS-VE and BNCS-EUDA-VE indicating 
that the coarting reduces the desorption of VE (p-value<0.05), These 
results agree with similar approaches in the literature, where particles 
and nanoparticles coated with EUDA can reduce colorectal cancer 
bioactive compounds released under acidic media, which is important to 
enhance the bioactivity of the drug in the colon (Subudhi et al., 2015). 

Under a colonic environment, the behavior of BNCS-EUDA-VE is the 
opposite, during the first 120 min BNCS-EUDA-VE can deliver faster the 
load than BNCS-VE, all time points are stastically different, accordingly 
BNCS-EUDA effectively works as a colorectal drug delivery system for 
VE. At the end of the average intestinal transit time (4320 min or 72 h) 
the realease reach c. a. of 70% for both samples. 

Regarding to the mathematicall modeling, both capsules behave as a 
PSO kinetic in both conditions, stomach and colon (see Fig. S3 b, b’, e 

Fig. 4. FTIR-ATR analysis of the bacterial nanocellulose spheres. Individual 
components: a. VE, b. EUDA and c. BNCS Empty capsules, d. BNCS-EUDA, and 
VE loaded capsules e. BNCS-VE; f. BNCS-EUDA-VE. 

Fig. 5. Adsorption isotherm experiments of VE in BNCS. Indent: Langmuir, 
Freundlich, and n-BET modeling using quadratic equations and solver. The 
points are the average of the data and its standard deviation. 
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and e’), where the desorption rate is dependent on adsorption capacity, 
not on the concentration of adsorbate (Hussain, 2015), (Anastopoulos & 
Kyzas, 2014) (Sahoo and Prelot, 2020). Same behavior as in the 
adsorption profiles. The above indicates that the delivery profile is 
influenced by the bacterial nanocellulose, not by EUDA or VE. The hy
pothesis was confirmed by the similar order of magnitude of the equi
librium rate constant of the PSO model (K2). Therefore, EUDA influences 
the amount of VE delivery through changes in the pH and BNC the 
release rate. Comparing the release behavior, VE is released faster from 
the BNCS capsules under the stomach than in the colon conditions. Thus, 
BNCS alone is not recommended as VE colorectal drug delivery system 
due to the ionic strength of gastric fluids promotes precocious VE de
livery (Moore & Scarlata, 1965). 

Accordingly, coating BNCS with EUDA is an effective strategy for 
delivering phytochemicals with potential chemoprevention of colorectal 
cancer, moreover, bearing in mind that BNCS is GRASS for the FDA, 
EUDA is a commercially avaible excipient for oral drug delivery system, 
and Andean berry is an edible fruit. 

Nowadays with the grown of knowledge of the potential of phyto
chemicals for human health is flourishing new stratetegies for devel
oping drug delivery systems of them. In the literature there is reports of 
several materials such as polysacharides, synthetics materials, extra
cellular vesicles, proteins, among others to encapsulate phytochemicals 
for bowel deseases such as curcumin, quercetin, genistein, berberine, 
among others, for all the cases the phytochemicals performace was 
enhanced by the use of these materials, due to the enhancement of the 

oral absorption rate, the solubility, and bioavailability (Castaño et al., 
2022), (Rendón et al., 2022), (Li et al., 2023). Comparing with litera
ture, the developed system of BNCS-EUDA improve the bioavailability of 
VE, as VE can be protected by the capsules under gastric environment 
and deliver from 5 to 10 fold the IC50 of cancer cells while the VE is safe 
for non-cancereus cells. Limitations of the system should be futher 
studied using healthy and CRC animals models. 

4. Conclusions 

A novel system for controlled delivery of VE in BNCS coated with 
EUDA was developed. The VE demonstrated potential as a phytochem
ical for colorectal cancer in vitro, and it was incorporated into BNCS 
under a simple and feasible process that can be potentially scaled up for 
producing functional food ingredients. Moreover, the system discour
ages the loss/release of VE in gastric conditions as EUDA coating re
sponses to pH. The BNCS demonstrated viability for adsorbing high 
concentrations of VE, which (5-10-fold above the IC50), once protected 
using EUDA, can deliver VE 60% of the encapsulated VE under colon 
conditions. Finally, a synergistic system was designed, in which bacte
rial nanocellulose generated a proper VE desorption profile while EUDA 
was a pH-responsive coating that protected it from release at stomach 
conditions but delivered at the colon. Further studies must be focused on 
gastrointestinal studies (such as simulated human intestinal microbial 
ecosystem), sensory analysis (flavor and texture), and food stability to 
fully understand the system’s potential as a functional food ingredient 

Fig. 6. Adsorption kinetics a. Experimental data, the points are the average of the data and its standard deviation; b. PFO model; c. PSO model; d. Elovich model. The 
modeling parameters are presented indented in the graphs. 

Fig. 7. Experimental desorption profiles of BNCS-VE and BNCS-EUDA-VE, the points are the average of the data and its standard deviation. a. under gastric con
ditions, annova one-way for each time point, all groups are statiscally different (p-value<0.05); b. under colonic conditions, annova one-way for each time point, 
groups marked with an asterits (*) are statiscally different (p-value<0.05). 
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for beverages and spoonables. Animal cancer models are olso desired to 
test the potential chemopreventive performance of the system in com
plex system. Moreover, BNCS (non-coated) should be studied for che
moprevention of stomach cancer, as it can faster deliver phytochemicals 
under gastric conditions. 
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Martínez Ávila, H., Schwarz, S., Feldmann, E. M., Mantas, A., Bomhard, A., 
Gatenholm, P., & Rotter, N. (2014). Biocompatibility evaluation of densified 
bacterial nanocellulose hydrogel as an implant material for auricular cartilage 
regeneration. Applied Microbiology and Biotechnology, 98(17), 7423–7435. https:// 
doi.org/10.1007/s00253-014-5819-z 

Martínez, E., Osorio, M., Finkielstein, C., Ortíz, I., Peresin, M. S., & Castro, C. (2022). 5- 
Fluorouracil drug delivery system based on bacterial nanocellulose for colorectal 
cancer treatment: Mathematical and in vitro evaluation. International Journal of 
Biological Macromolecules, 220, 802–815. https://doi.org/10.1016/j. 
ijbiomac.2022.08.102 

Mehta, R., Chawla, A., Sharma, P., & Pawar, P. (2013). Formulation and in vitro 
evaluation of Eudragit S-100 coated naproxen matrix tablets for colon-targeted drug 
delivery system. \"Journal of Advanced Pharmaceutical Technology & Research\"\"\", 4 
(1), 31–41. https://doi.org/10.4103/2231-4040.107498 

Molina-Ramírez, C., Zuluaga, R., Castro, C., & Gañán, P. (2018). Statistical optimization of 
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