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1. Introduction
The automatic evaluation of pathological voices is an 
interesting field of research due to the possibility of 
performing objective assessments of speech quality 
without using invasive procedures. Most of the studies 
in this area have been focused on laryngeal pathologies 
[1], taking aside other pathologies such as hypernasality, 

Automatic detection of hypernasal speech of 
children with cleft lip and palate from spanish 
vowels and words using classical measures and 
nonlinear analysis 

ABSTRACT: This paper presents a system for the automatic detection of hypernasal speech 
signals based on the combination of two different characterization approaches applied to 
the five spanish vowels and two selected words. The first approach is based on classical 
features such as pitch period perturbations, noise measures, and Mel-Frequency Cepstral 
Coefficients (MFCC). The second approach is based on the Non-Linear Dynamics (NLD) 
analysis. The most relevant features are selected and sorted using two techniques: Principal 
Components Analysis (PCA) and Sequential Forward Floating Selection (SFFS). The decision 
about whether a voice record is hypernasal or healthy is taken using a Soft Margin - Support 
Vector Machine (SM-SVM). Experiments upon recordings of the five Spanish vowels and the 
words  are performed considering three different set of features: (1) the 
classical approach, (2) the NLD analysis, and (3) the combination of the classical and NLD 
measures. In general, the accuracies are higher and more stable when the classical and NLD 
features are combined, indicating that the NLD analysis is complementary to the classical 
approach. 

RESUMEN: Este artículo presenta un sistema para la detección automática de señales de 
voz hipernasales basado en la combinación de dos diferentes esquemas de caracterización 
aplicados en las cinco vocales del español y dos palabras seleccionadas. El primer esquema 
está basado en características clásicas como perturbaciones del periodo fundamental, 
medidas de ruido y coeficientes cepstrales en la frecuencia de Mel. El segundo enfoque 
está basado en medidas  de  dinámica no lineal.  Las características más relevantes son 
seleccionadas usando dos técnicas: análisis de componentes principales y selección flotante 
hacia adelante secuencial. La decisión acerca de si un registro de voz es hipernasal o sano 
es tomada usando una máquina de soporte vectorial de margen suave. Los experimentos 
consideran grabaciones de las cinco vocales del idioma español y las palabras  

 y se consideran, asimismo, tres conjuntos de características: (1) el enfoque 
clásico, (2) el análisis de dinámica no lineal y (3) la combinación de ambos esquemas. En 
general, los aciertos son mayores y más estables cuando las características clásicas y no 
lineales son combinadas, indicando que el análisis de dinámica no lineal se complementa 
con el esquema clásico.

* Corresponding author: Juan Rafael Orozco Arroyave
e-mail: rafael.orozco@udea.edu.co
ISSN 0120-6230
e-ISSN 2422-2844

ARTICLE INFO

KEYWORDS
Automatic hypernasality 
detection, cleft lip and 
palate, perturbation 
measures, noise measures, 
nonlinear dynamics

Detección automática de 
hipernasalidad, labio y 
paladar hendido, medidas 
de perturbación, medidas de 
ruido, dinámica no lineal

Received April 30, 2015
Accepted November 12, 2015 

Revista Facultad de Ingeniería, Universidad de Antioquia, No. 80, pp. 109-123, 2016

DOI: 10.17533/udea.redin.n80a12 

Detección automática de voz hipernasal de niños con labio y paladar hendido a partir de vocales y palabras del español 
usando medidas clásicas y análisis no lineal
Juan Rafael Orozco-Arroyave1,2*, Jesús Francisco Vargas-Bonilla1, Juan Camilo Vásquez-Correa1, Cesar German Castellanos-
Domínguez3, Elmar Nöth2

1Facultad de Ingeniería, Universidad de Antioquia. Calle 67 # 53-108. A. A. 1226. Medellín, Colombia.
2Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nürnberg. Martensstraβe 3. 91058.  Erlangen, Germany.
3Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia. Cra 27 # 64-60. Manizales, Colombia.



J. R. Orozco-Arroyave et al.; Revista Facultad de Ingeniería, No. 80, pp. 109-123, 2016

110110

which also affects the speech production. Hipernasality is 
a voice pathology that may cause a significant reduction in 
speech intelligibility [2] and it is mainly suffered by children 
that have born with a craniofacial malformation called 
Cleft Lip and Palate (CLP). Typically children with CLP also 
have velopharyngeal insufficiency which leads to a lack 
control of the pharyngeal velum during phonation. Due to 
velopharyngeal insufficiency, an excess of air coming out 
through nasal cavities is revealed, generating unintelligible 
speech [3].

Unlike laryngeal pathologies which affect the normal 
vibration of vocal folds, hypernasality is produced by an 
insufficiency in the velar movements changing the resonant 
properties of the nasal cavity [4]. People suffering from 
hypernasality should receive early and constant speech 
therapy to develop complete control of the pharyngeal velum 
in the shortest possible time. Such therapy contributes 
also to the easy and fast integration of patients to the 
society [3].  Currently, it is difficult to perform continuous 
evaluation of the speech quality in CLP patients due to the 
change of speech therapists during the treatment provided 
by the social care system in Colombia, generating different 
opinions in the diagnosis and the therapy for the same 
patient. The differences among diagnoses performed by the 
speech therapists appear due to their subjective evaluation, 
evidencing the need for computer aided systems to support 
the medical diagnosis from the objective information 
provided by the speech signals. 

The automatic assessment of hypernasality in speech of 
CLP patients comprises a process with at least three main 
stages, (1) the automatic detection of hypernasality which 
allows the phoniatricians to make informed decisions 
regarding the speech and language therapy of the patients, 
(2) the automatic detection of hypernasality is the first step 
in the development of computer aided tools that assist the 
evaluation of the progress of the speech therapy, and (3) 
once the automatic detection of hypernasality is performed, 
the extent of hypernasality needs to be measured in order to 
objectively quantify the progress of the therapy. This paper 
is focused on the automatic detection of hypernasality in 
voice signals, thus it comprises a contribution in the first 
two stages of the aforementioned process.

Hypernasality has been classically evaluated using 
acoustic and spectral analysis. In [5] the authors used a 
modified group delay function for the automatic detection 
of hypernasality in the voice of children with non-repaired 
CLP. The database contained speech recordings from 33 
children with non-repaired CLP and 30 healthy controls. 
The authors report accuracies of 100%, 88.78%, and 86.66% 
for the vowels /a/, /i/, and /u/ respectively. Considering the 
high accuracies reported in this study, the methodology is 
reproduced here for the sake of comparison and also to 
confirm the usefulness of the technique in CLP patients 
whose the velum is already repaired.

Automatic hypernasality detection can also be performed 
using voice quality measures such as Jitter, Shimmer, 
and noise [6]. Their use is motivated due to the fact that 
velopharyngeal insufficiency leads the patients to perform 

compensatory movements that modify acoustic and 
resonance properties of the vocal tract, producing glottal 
stops and general problems with glottal articulations [7]. 

Another kind of features commonly used for the 
characterization of speech pathologies is the Mel-frequency 
Cepstral Coefficients (MFCC), which can model irregular 
movements of the vocal tract [8]. These features have been 
used in the context of hypernasality to characterize the 
irregularities derived from compensatory movements in the 
vocal tract [6]. In [9] it is presented a set of pronunciation 
features and 12 MFCC to detect different articulation 
problems in CLP patients. The database used in that study 
included recordings sustained vowels and a total of 1916 
German words. The authors reported accuracies of 71.1% 
with the sustained phonations and 75.8% with the isolated 
words.

On the other hand, bearing in mind the presence of 
nonlinearities in the vocal tract movements [10], in [11] the 
authors compare the accuracies obtained with sustained 
vowels modeled using acoustic features, with respect to 
the same phonations characterized with four Non-Linear 
Dynamics (NLD) features. The authors considered a 
database with 156 hypernasal and 110 healthy speakers, 
reporting accuracies of 93.86% for the acoustic analysis 
and 92.05% with the NLD features.  This paper comprises 
a step forwards with respect to the study presented in 
[11]. Further to the analysis of vowels, in this paper we 
evaluate hypernasality in words; additionally, the acoustic 
features are merged with the NLD measures in the same 
representation space. This paper demonstrates that such a 
fusion improves the classification rate with respect to those 
obtained in the previous study. The results show that NLD 
and acoustic features provide complementary information 
to model hypernasal speech signals.

In this study, the use of perturbation, noise, and MFCC 
for the automatic evaluation of hypernasality in Spanish 
vowels and words is presented. The discriminant capability 
of complexity measures based on NLD such as Correlation 
Dimension (CD), Largest Lyapunov Exponent (LLE), Hurst 
Exponent (HE), and Lempel-Ziv Complexity (LZC) is also 
studied [12]. Finally, the two features sets are merged 
to analyze whether the information from both sets is 
complementary.

The rest of the paper is organized as follows: Section 2 
presents the methodology addressed in the paper. The 
details of the estimated features, the strategies for the 
automatic selection of features and the classification 
process are also provided. Section 3 includes a description 
of the experiments and the obtained results; finally Section 
4 presents the conclusions derived from this study.

2. Methods
Figure 1 depicts a block diagram with the steps of the 
methodology addressed in this study. The voice signal 
is first divided into frames to perform a short-time 
analysis. Subsequently, for each frame, the two different 
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characterization approaches are performed. The first one is 
based on perturbation, cepstral and noise features, which 
will be referred to Classical Analysis of Voice (CAV). The 
second one is based on the NLD analysis. The final feature 
vector per voice signal is composed by the estimations of 
mean and standard deviation of the values obtained per 
feature upon the frames.

Figure 1 General scheme of the different 
approaches carried out for the automatic 

evaluation of hypernasality in voice

In order to find an optimal representation of the voice 
recordings in the features space and to avoid redundant 
information, automatic feature selection is performed by 
means of two different approaches, Principal Component 
Analysis (PCA) and Sequential Forward Floating Selection 
(SFFS). Three different feature vectors are considered: CAV, 
NLD, and CAV+ NLD.

The decision whether a recording comes from a CLP or 
a healthy speaker is taken with a Soft-Margin - Support 
Vector Machine (SVM). The results are presented in terms 
of accuracy, sensitivity, specificity, and area under the 
Receiving Operating Characteristic (ROC) curve, which are 
commonly used for the evaluation of medical systems [13].

2.1. Feature estimation

Perturbation, cepstral, and noise 
features - CAV

The set of features described in this section includes the 
most common acoustic features used for the modeling of 
pathological voices.

Jitter and Shimmer. These features are calculated to analyze 
the stability in time and amplitude of the fundamental voice 
period. Jitter indicates variations on the frequency vibration 
of the vocal folds due to the lack of control of the vocal fold 
muscles, while Shimmer represents reduction of glottal 
resistance and the possible presence of mass lesions in the 
vocal folds [14]. The variations on the tone of hypernasal 
voices due the velopharyngeal insufficiency have been 
already evaluated in adults [15], finding that there are 
significant correlations between the nasality scores and 
the hypernasality ratings. Perturbation measures have 
also been tested in children with phonological disorders, 
which allow finding problems associated to improper or 
incomplete closure of the vocal folds [14]. In this study, 
the estimation of shimmer and jitter has been performed 
according to the methods evaluated in [16].

Noise measures. Four different noise features are included 
to model the noise that appears in phonations uttered by 
CLP patients when producing involuntary movements in 
articulators e.g., tongue, lips, and jaw, and in the entire vocal 
tract to compensate their velopharyngeal incompetence [7].

The first measure corresponds to Harmonics to Noise Ratio 
(HNR). This feature quantifies the relationship between 
the harmonics structure energy and the additive noise 
present on the signal produced by the pathology [17]. HNR 
is calculated according to the procedure presented in [18]. 
The voice signal  is divided in  time intervals,  
then the signal is averaged as is shown in Eq. (1).

                            (1)

The energy of the harmonic component of the signal is 
defined according to Eq. (2), where T is the duration of each 
time interval.

                            (2)

The  noise  wave  in  each  interval is   
is the voice signal in the  time interval. Then, the 
energy of the noise component of is defined using Eq. 
(3). The relation  is HNR.

          (3)

The HNR can also be calculated in the cepstral domain, 
producing the feature called Cepstral Harmonics to Noise 
Ratio (CHNR), which provides more accurate estimation of 
noise levels on different spectral components [19, 20]. The 
method followed in this study is the presented in [20]. In 
this case, the voice signal is windowed, and each window is 
transformed according to Eq. (4) to calculate the cepstral 
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version. Where  are the frames of the voice signal 
, and the terms FFT and IFFT refer to the Fast Fourier 

Transform and its inverse, respectively.

           (4)

Higher components on the cepstrum are related to 
the harmonic content on the original signal. These are 
zeroed by means of the liftering process, and the result 
is Fourier transformed to provide the noise spectrum 

[20]. The harmonic content in the signal is found as 
 and to calculate the noise component 

in the signal, the values of  are corrected subtracting 
the value of the successive minimum between successive 
harmonics  Finally, CHNR is calculated according to 
Eq. (5).

          (5)

Another commonly used noise measure is the Normalized 
Noise Energy (NNE) which is calculated following the 
algorithm presented in [21], finding the relation between 
the energy of noise and the total energy of the signal. The 
detailed procedure is as follows: the voice signal is divided 
into . Every frame has two components, the 
first one related to the harmonic  and the other one 
to the additive noise 

 where M is the number of voice samples 
per frame.

The N-points FFT of the signals , 
must be calculated, obtaining the sequences  
and  respectively. With  and considering 
that  then 

 If  is defined as 
the estimated value of  then NNE will be defined 
by Eq. (6).

      (6)

W h e r e a r e
respectively the lower and higher frequencies of the bands 
where the energy of the noise is evaluated. The brackets 
⌈ ⌉ that the value inside must be rounded up, and 

 is the sample period. The estimated value of the noise 
spectrum  is formed by the intervals with the lowest 
amplitude in  According to the procedure presented 
in [21],  can be estimated as follows: the spectra 

 can be expressed in polar coordinates as 
i s 

given by Eq. (7)

     

Xi k( ) 2
= Si k( ) 2

+ Wi k( ) 2
+ 2 Si k( )

Wi k( ) cos θ k( )−ϕ k( )⎡⎣ ⎤⎦            (7)

Since  is assumed to be the periodic component of 
,  will contribute to the harmonic structure 

in  It is possible to state that in the frequency bands 
where there is no evidence of harmonic structure, the 
signal components will be due to the noise. In this case the 
estimate of the noise is given using Eq. (8), where  is the 
set of points that correspond to the  interval of the 
spectrum where the harmonic component is minimum.

Wi
2! k( ) = Xi k( ) 2

, k  ∈Dj
               (8)

The last noise measure used in this work is the Glottal to 
Noise Excitation Ratio (GNE), which was introduced in [22] 
to quantify the amount of vocal excitation due to vocal fold 
vibration versus the amount of excitation due to turbulent 
noise in the vocal tract. The procedure begins re-sampling 
the voice signal at 10KHz then, it is necessary to find the 
glottal pulses of the voice signal. This finding is performed 
by applying an inverse linear filtering over voiced intervals 
of 30 ms. Next, different band-pass filters are applied using 
Hanning windows. The number, location, and bandwidth 
were calculated for real voices in [23], finding that the 
optimal value of the band width for the band-pass filters 
is 1KHz. Band steps of 300 Hz must also be applied. Lastly, 
the Hilbert envelopes are calculated for each filtered voice 
interval  whose duration is given by the glottal pulses 
found in the inverse filtering process. The maximum value 
of autocorrelation sequence of such envelopes is the GNE.

Mel-Cepstral coeffcients. 11 MFCC are calculated 
considering their capability to model both the vocal folds 
and the vocal tract [8]. MFCC can be estimated using 
a parametric approach derived from Linear Prediction 
Coefficients (LPC), or using a non-parametric FFT-based 
approach. However, FFT-based MFCC typically encode 
more information from excitation; while LPC based MFCC 
remove it, as is demonstrated in [24]. FFT based MFCC 
has been considered suitable for our purpose because in 
presence of voice disorders they show the inherent ability 
to model either an irregular movement of the vocal folds, or 
a lack of closure induced by the compensatory movements 
in the vocal tract due to the velopharyngeal incompetence.

The procedure to calculate the MFCC begins with the 
windowing of the signal using a Hamming window. Then it 
is calculated the FFT to obtain the power spectrum of the 
signal. Subsequently, a filter bank in Mel scale is created 
to obtain a higher resolution in lower frequencies. Finally, 
the log-energy of the output signals from each filter is 
calculated, and the Discrete Cosine Transform (DCT) is 
applied. 
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neighbors which number will depend on the neighborhood 
size. If you suppose that the series  will be embedded in 
a space  such that  The topological features of 
the attractor will be destroyed because the new space shall 
be a projection of the previous one , thus there will be 
points projected in wrong neighborhoods which originally 
belong to other spaces with higher dimensionality. These 
points are known as false neighbors.

For the estimation of the time delay , the First Minimum 
of Mutual Information (FMMI) method is applied. This 
estimation consists in finding the first minimum in the 
mutual information of the signal  which is defined 
by Eq. (10). Where  is the probability to observe 

at the same time, and is the probability to 
observe  is an information measure of   
is observed and the value of the delay can be found when 
the value  is the first local minimum of . 

I T( ) = 
n=1

N

∑P xn ,Xn+T( )log2

P xn ,xn+T( )
P n( )P xn+T( )   

  (10)

With the aim of illustrating the concept of complexity based 
on the reconstructed attractor, Figure 2 shows the attractor 
for a sinusoid. Note that its form is a perfect circle, 
indicating that its complexity is low or null.
When a more complex phenomenon is considered, such as 

Nonlinear dynamics analysis

NLD methods such as Poincaré maps, fractal dimension, 
Kolmogorov entropy, correlation dimension and Lyapunov 
exponents have been used for the analysis of irregular or 
chaotic activities in voice signals [25]. In order to understand 
the NLD analysis, the concept of phase space, also known 
as state space will be introduced.

Phase space is a multidimensional representation which 
allows the study of topological or qualitative features of the 
voice production system. For a time series, the state space 
can be reconstructed by applying the embedding theorem 
originally proposed in [26]. This theorem allows the 
reconstruction of difeomorphic attractors i.e., those that 
hold topological properties of the system. The state space 

 is defined according to Eq. (9), where is the number of 
points in the time series and   are the dimension 
and embedding delay, respectively.

                            

                            (9)
                                          

The embedding dimension is found by applying the false 
neighbor’s method, which is based on the assumption of 
a minimum embedding dimension  to reconstruct the 
topological properties of the attractor of the time series  
Surrounding each embedded point, there will be a set of 

Figure 2 Sinusoid signal and its attractor

Figure 3  Healthy voice and its attractor



J. R. Orozco-Arroyave et al.; Revista Facultad de Ingeniería, No. 80, pp. 109-123, 2016

114114

                        (12)

CD is estimated according to the slope of the curve 
 after a linear regression for small values 

of  A proper estimation of CD must guarantee that the 
embedding dimension complies with the expression 

 [31].

Largest Lyapunov exponent (LLE): This feature represents 
the average divergence rate of the neighbor trajectories in 
the state space; due to its robustness to noisy and short 
term signals, its estimation in this study has been developed 
according to the algorithm proposed in [32].

After the estimation of  the nearer neighbors 
to every point in different trajectories are found. Nearer 
neighbors must have a temporal separation greater than 
the temporal period of the time series. Considering every 
pair of neighbors on each trajectory as the representation of 
the initial conditions of the phenomenon, LLE is estimated 
as the average separation rate of the nearer neighbors in 
the embedding space.

According to the Oseledec’s theorem [33], the points on 
a trajectory in the state space can be represented by the 
expression ,  
is the average divergence taken at the time , is a normalization 
constant. Assuming that the  pair of nearer neighbors 
diverge approximately at a rate of  it is possible to obtain 
the expression , is the 
slope of the average line that appears when such expression 
is drawn on a logarithmic plane.

Hurst Exponent HE: This feature allows analyzing the long 
term dynamics of a system, stating the possible long term 
dependencies of the different elements in a given time 
series.

The estimation of HE for a time series 
is based on the rank scaling 

method, proposed in [34]. Hurst demonstrated that the 
relation between the variation rank of the signal R, evaluated 

the voice production, the obtained attractor shows more 
irregular forms. Additionally, according to [25], when the 
pathology level is higher, the associated attractor is more 
complex, i.e. more irregular. Figures 3 and 4 show the 
attractors for healthy and hypernasal voices.

 
There are works that demonstrate the existence of NLD in 
the voice production process and analyze its capability in the 
automatic detection of pathologies [27-29]. The suitability 
of those features to detect hypernasality in sustained 
vowels is demonstrated in [11]. Although there are other 
NLD features in the state of the art, in this paper we want 
to study the suitability of the same set of features to model 
hypernasality in words. Additionally, the fusion of this set of 
features with acoustic ones is also evaluated.

The different complexity measures which have been 
implemented for the automatic detection of hypernasality 
in Spanish vowels and words will be described in the 
following sections.

Correlation dimension (CD): To describe CD, it is necessary 
to introduce the concept of “correlation sum” in the state 
space  which can quantify the number of points  
that are correlated with the others inside an sphere with 
radius  Intuitively, this sum can be interpreted as the 
probability to have pairs of points in a trajectory of the 
attractor inside the same sphere of radius  It is possible 
to define an expression for the correlation sum according 
to Eq. (11), where  is a Heaviside step function and  

 is the Euclidean distance between every pair of 
points inside the sphere of radius 

         

          
(11)

In [30], the authors demonstrated that  represents a 
volume measure, thus the correlation dimension is been 
defined by Eq. (12).

Figure 4 Hypernasal voice and its attractor
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Let  the input data matrix with sample objects 
 Then, the estimated covariance matrix 

S is calculated. As S is a symmetric matrix, it is possible 
to calculate a new orthogonal basis given by its m largest 
eigenvectors  Finally, X can be linearly mapped 
to a lower-dimension space  with output 
vectors  so that   
a transformation matrix with columns equal to the 
eigenvectors  that conforms the orthogonal basis found 
by PCA.

Although, PCA is commonly used as a feature extraction 
method, it can also be useful to properly select a relevant 
subset of original features that better represents the 
studied process [37]. In this sense, given a set of features 

 corresponding to each column of X, we 
can analyze the relevance of each  for finding Y. More 
precisely, we can identify the relevance of  looking at the 
vector  defined according to Eq. (13).

                        (13)

Therefore, the main assumption is that the largest values of 
 points out to the best input attributes, since they exhibit 

higher overall correlations with principal components. 
Finally, for the redundancy elimination process, the features 
with a linear correlation greater than 80% are removed 
from the analysis.

Selection based on Sequential Forward 
Floating Selection

This method is a heuristic algorithm that finds the best 
subset of features of the original set through the inclusion 
and exclusion of features. In this procedure after each 
forward step, a number of backward steps are applied as 
long as the resulting subsets are better than the previous 
[38]. Sorting features according to its discriminant capacity 
is necessary to get stable and consistent results, which 
is reflected in the overall performance of the system. The 
algorithm for the SFFS is as follows (Figure 5) [39]:

Where J is the criterion for evaluating the goodness of a 
particular subset of features. In this study J corresponds 
to the detection rate provided by a 1-Nearest Neighbor 
classifier. With this technique, dimensionality reduction is 
also achieved.

in a segment, and the standard deviation of the signal S is 

given by , where c is a scaling constant, T is the 
duration of the segment and HE is the Hurst exponent.

Lempel-Ziv Complexity (LZC): This feature can be used 
for the estimation of the complexity in a time series. The 
computation consists in finding the number of different 
“patterns” in a binary sequence [35]. The binary sequence 
is formed according to the difference between consecutive 
samples in the time series, i.e., if the difference is negative 
it is assigned a 0 to the sequence, in the other case, it is 
assigned a 1. The estimation of the LZC is based on the 
reconstruction of a sequence X according to the copy and 
insertion of symbols in a new sequence. Let’s consider the 
binary string  The first bit of the string 
is taken by default as the initial point. The variable S is 
defined to store the bits that have been inserted, i.e., at the 
beginning S only contains x1. The variable Q is defined for 
the accumulation of bits that have been analyzed from left 
to right in the string. On each iteration, the union of S and 
Q (denoted by SQ) is generated. Also, the string   is 
formed by the subtraction of the last bit in the stream SQ. 
If the sequence Q does not belong to , the insertion of 
the bits in the subset of symbols is finished. The value of LZC 
will be the number of subsets used for the representation 
of the original signal [35]. It ranges from 0 for deterministic 
sequences, to 1 for random sequences.

2.2. Automatic feature selection

The aim of automatic feature selection is to find out the 
 most relevant characteristics of the original feature 

space  (n: number of observations, p: number 
of original features), which allows building the subspace 
representation  The features 
contained in Y reduce the redundant information and the 
computational load in classification stages. In this study, 
two different algorithms for feature selection have been 
considered. The first one is based on PCA in order to have a 
subset of features that holds the maximum variance of the 
original features space. The second selection technique is 
based on a heuristic floating search, whose aim is to find 
a subset of features that better discriminates the studied 
classes: healthy and hypernasal.

Selection based on Principal Component 
Analysis

PCA is a statistical technique that allows finding  
a low-dimensional representation of the original features 
space, searching for directions with greater variance to 
subsequently project the data [36]. The PCA algorithm can 
be summarized as follows:
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54 healthy ones; the ages of the children range from 5 to 
15. All of the patients with CLP were evaluated by phoniatric 
experts and labeled as hypernasal. The recordings were 
performed in a quiet room, using an omnidirectional 
microphone, a professional audio-card, and with a sampling 
frequency of 44.1 KHz with 16 resolution-bits.

The Spanish vowels were uttered twice by every child, 
thus for each vowel in the database a total of 130 
recordings from hypernasal voices and 108 from healthy 
ones were captured. For the case of the Spanish words 

 each word was recorded once, 
forming a total of 65 hypernasal recordings and 54 healthy 
ones. The features considered in this paper are calculated 
through all of the utterance, i.e., no prior segmentation of 
voiced and unvoiced frames, is performed. This approach 
allows analyzing particular consonant sounds and 
articulation movements that are performed to produce 
the words /coco/ and /gato/. These words were selected 
because both have occlusive and velar characteristics 
that are useful to show problems in the velopharyngeal 
movement. Phonemes ,  which are present in 
the words  are consonants that force 
the velum occlusion to produce proper phonations. The 
inclusion of these two phonemes allows the evaluation of 
the velar movement in children with repaired CLP. This 
information is important for the speech therapy experts 
because velopharyngeal problems can be evidenced in 
phonations with weak obstruent consonants [41].

3.2. Experimental setup

The features described in the section 2.1 are calculated 
following a short-time strategy. CAV features are 
implemented considering frames with 40 ms length, and 
NLD features are implemented using frames of 55 ms 
length, as in [29]. The frame length defined for NLD feature 
assures the number of points required for a successful 
reconstruction of the embedded attractor, which has been 
established at around 10CD [42, 43]. 

After having built both feature vectors, mean values and 
standard deviations are calculated for each one, building 
the input spaces  and

 for vowels, and  

 and  for words.

To find the features that better represent the phenomenon, 
the feature selection is performed repeating 10 times 
cross-validations with 10 folds; for a total of 100 vectors 
with the selected features on each technique (PCA and 
SFFS). In the case of SFFS, the best feature vector is 
obtained after counting and sorting the times that each 
feature is selected as relevant on each fold; only those 
that appear as relevant on every fold will be considered 
in the final vector. For vectors selected as relevant using 
the PCA-based selection technique, since each feature is 
associated to a relevance weight, the final vector will be the 
result of sorting the features considering the sum of their 
weights on each fold.

Figure 5 Algorithm to compute the SFFS

2.3. Classification

Given the subsets of features  a SM-SVM 
classifier is trained using a radial basis Gaussian kernel 
with band-width  The SVM are supervised learning 
models based on the concept of decision hyperplanes. The 
SVM perform the classification task by constructing a set 
of hyperplanes that separates different class labels. The 
main aim of a SVM is to maximize the separation between 
classes finding a hyperplane that has the largest distance 
to the nearest training data point of any class by the concept 
of support vectors.

To achieve a more robust machine, the number of support 
vectors are also optimized with respect to the accuracy in 
the training process; with this optimization, the over fitting 
is avoided, thus the implemented SVM can generalize the 
process and exhibit good results in the classification stage 
[40].

3. Experiments and results

3.1. Database

The database used in this study was provided by Grupo de 
Procesamiento y Reconocimiento de Señales - (GPRS) from 
the Universidad Nacional de Colombia, branch Manizales. It 
contains recordings from 65 children with repaired CLP and 
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technique is applied. The last two rows in the table also 
show the results obtained when the most relevant features 
are combined for vowels and words separately. Note that 
the best result is reached out using vowel /i/, and the 
combination of all vowels. For Tables 2, 3 and 4, the results 
with the highest AUC values are highlighted in bold-face.

Table 3 shows the results obtained in the automatic 
detection of hypernasality in the Spanish vowels and in 
the words  using NLD features. The 
accuracies obtained by combining the most relevant NLD 
features for vowels and words are also indicated in the 
last two rows. Note that in this case, again the overall 
performance of the system increases when the feature 
space includes information from all the best subsets of 
features per vowel and words, and that the best individual 
accuracy is reached out with the vowel /i/. Note also that 
the results for NLD features are similar to those obtained 
in CAV; it indicates that nonlinear analysis provide relevant 
information that should be considered as an alternative 
to complement classical techniques for the evaluation of 
hypernasality.

Table 4 shows the results of the combination of features 
related to NLD and CAV for the five Spanish vowels, and the 
two words, in order to verify if the NLD analysis can be used 
to improve the overall accuracy of the system.

Note that the results have been improved when the features 
of both domains are combined. Also, the confidence 
intervals of the results are narrower when both spaces are 
joined, indicating that combining CAV and NLD features not 
only increases the accuracy of the system but also improves 
its stability, which is in accordance with results obtained for 
different pathologies [29].

When the five vowels are considered and the NLD and CAV 
features are merged, an accuracy of 95.4% is obtained. This 
is the highest accuracy obtained in all of the experiments, 
and it represents an improvement in the absolute and 
relative errors of about 2.2%  and 32%, respectively, with 
respect to the results obtained with only NLD features. 
For CAV features the reduction in the absolute and relative 
errors is about 1% and 18%, respectively.

For the case of the combination of features from words 
, the best results are also obtained for 

the fusion of NLD and CAV features. The highest accuracy 
is 93.3%, which means improvements in the absolute and 
relative errors of about 3% and 32%, respectively, with 
respect to the results obtained with only NLD features. 
Comparing the result of the fusion with respect to those 
obtained with CAV features, the reduction in the absolute 
and relative errors is about 2% and 24%, respectively. In 
terms of AUC, there is an absolute improvement of 10%.

Figures 6 and 7 show the ROC curves with the best 
results obtained with the Spanish vowels and the words 

 Note that for both cases (vowels and 
words) the AUC values present a significant increment 
when the CAV and NLD are merged.

Once the most relevant features are chosen with each 
selection strategy, classification is performed using a SVM 
with a radial basis Gaussian Kernel. The parameters of 
the classifier: regularization trade-off (C) and the standard 
deviation of the Kernel’s machine ( ), were optimized also 
using a 10- fold cross-validation strategy, where the feature 
set is divided into 10 groups or folds of approximately equal 
size. The first fold is used as test set for the SVM, and the 
remaining 9 folds are grouped and used as train set for the 
SVM. The procedure is repeated 10 times, in each time a 
different fold is used as test set.
 
The methodology that the authors proposed in [13] has 
been used for the evaluation of the system, thus results are 
presented in terms of the overall accuracy of the system 
and also with specificity and sensitivity to indicate the 
probability of a healthy register to be correctly detected, 
and the probability of a pathological signal to be correctly 
classified, respectively.

3.3. Results and discussion

Low frequency analysis

For the sake of comparison, the experiments presented 
in [5] were reproduced. The authors consider features 
based on Modified Group Delay Functions (MGDF) to model 
the low frequency region (around 250 Hz) of registers 
from non-repaired CLP patients. Our database contains 
registers from repaired CLP patients, it is interesting to 
compare the performance of the pointed out method with 
the one we are proposing in this work.

The sampling frequency of the recordings is 44.1 kHz, in 
order to get  comparisons to the methodology described 
in [5], for the experiments based on the MGDF, the first 
step was to down sample the recordings to 8000 Hz. Table 
1 summarizes the results obtained by applying the cited 
methodology upon the recordings of the five Spanish vowels 
of our dataset.

Table 1  Results with MGDF applied over voice 
recordings of children with repaired CLP

Notwithstanding, the good results reported in [5], this 
methodology is not suitable to assess the voice of children 
with repaired CLP.

Experiments with CAV features

Table 2 shows the results obtained with the features grouped 
in CAV (perturbation, noise and MFCC) for the automatic 
detection of hypernasality in the five Spanish vowels and in 
the words   The results include accuracy 
rates, specificity, sensitivity and the area under the ROC 
curve (AUC) when the techniques for feature selection are 
used (SFFS and PCA-based) and when no feature selection 
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Table 2  Classification results for vowels and words using perturbation, noise and cepstral features, 
where SM:Selection Method, WS: Without Selection, NF: Number of Features

Table 3 Classification results for vowels and words using non-linear dynamics analysis, where SM: 
Selection Method, WS: Without Selection, NF: Number of Features 
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Table 4  Classification results for vowels and words using a combination of perturbation, noise, 
cepstral and non-linear dynamics features, where SM: Selection Method, WS: Without Selection, NF: 

Number of Features
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Figure 7  ROC curves for the evaluation of 
the words  /coco/ and /gato/ in the same 
representation space considering CAV, NLD 

analysis and its combination

Figure 6  ROC curves for the evaluation of the 
five Spanish vowels in the same representation 

space considering CAV, NLD analysis and its 
combination

Figure 8  Improvement of the accuracies in vowels while the number of features is increased
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Figure 8 shows the improvement in the accuracy of the 
system when more features are considered to model the 
five Spanish vowels merged in the same representation 
space. Parts (a), (b), and (c) in Figure 8 are included to 
compare the results obtained with PCA, SFFS, and without 
feature selection, respectively. Figure 8 part (b) indicates 
that when SFFS selection technique is applied the number 
of required features is smaller than in the other cases. Note 
also that the accuracy obtained when using 130 features is 
the same as when using 60 features. On the other hand, it 
can also be observed that the results are more stable when 
PCA is applied than with SFFS. 

Figure 9 shows the improvement of accuracies when 
more features are considered to model the words 

 and merged in the same space. Parts 
(a), (b), and (c) in Figure 9 include results with PCA, SFFS, 
and without feature selection technique, respectively. Note 
that the highest accuracies are obtained when no feature 
selection technique is applied. 

The results indicate that the methodology proposed is 
suitable to detect Hypernasal speech for children with 
repaired cleft lip and palate, improving the results obtained 
using other methodologies such as the presented in [5]. 

Also, the presented results are higher than the obtained in 
previous works using the same database [11, 44].

4. Conclusions
Two different approaches for the characterization of 
healthy and hypernasal speech signals are presented. 
The first one is based on the classical analysis of voice 
(CAV), which includes pitch perturbation measures, noise 
measures, and 11 MFCC. The second approach is included 
to model the nonlinear behavior in speech and considers 
four complexity measures, correlation dimension, largest 
Lyapunov exponent, Hurst exponent and Lempel-Ziv 
complexity. The results show that nonlinear analysis 
provides complementary information to model hypernasal 
speech signals. The combination of both sets of features 
into a single feature space shows higher accuracies than 
applying each set of features separately.

The results indicate that the relative errors can be reduced 
in up to 32%, when the Spanish vowels or the words 

 are modeled with the fusion of NLD and 
CAV features.

Figure 9  Improvement of accuracy in words while the number of features is increased
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The results indicate that the proposed approach is suitable 
to detect Hypernansality in children with repaired cleft 
lip and palate, which contributes in two stages for the 
assessment of speech therapy of the patients. First, the 
detection allows the phoniatricians to make informed 
decisions regarding the speech and language therapy of the 
patients, and second it is the first step for the development 
of computer aided tools that assist the evaluation of the 
progress of the speech therapy. The third issue related with 
the measurement of the degree of Hypernasality must be 
evaluated in future studies.

Additional experiments should be performed using 
speech recordings of different languages to evaluate the 
suitability of this methodology in different languages and 
databases. Further work must be carried out to extrapolate 
the proposed methodology for the evaluation of running 
speech.
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