
 

 

 

 

 

 

 

Advanced Control of a fed-batch reaction system to increase the yield in the 

polyhydroxyalkanoates production process. 

 

 

 

CESAR AUGUSTO GARCÍA ECHEVERRY 

Chem.Eng. 

 

Thesis work presented as partial requirement to qualify for the Master degree in 

Chemical Engineering. 

 

 

ADVISORS:  M.Sc., Dr. Ing. Silvia Ochoa Cáceres 

                 M.Sc Alejandro Acosta Cárdenas 

 

Master Program in Chemical Engineering 

Universidad de Antioquia 

Medellín-Colombia 

2016 



Advanced Control of a fed-batch reaction system to increase the yield in the polyhydroxyalkanoates production 
process.                                                                                                                                                              2 

 

 
Master's Thesis-Cesar Augusto García Echeverry 

Master Program in Chemical Engineering - Universidad de Antioquia-Colombia 

 

ACKNOWLEDGEMENTS 

 
I would firstly like to thank God for giving me strength and discernment. 

 

Very special thanks and to convey my sincere gratitude to Professor Dr. Silvia Ochoa for 

all her advice, and encouragement throughout the studies, research and personal life, for 

all the support and trust, along with my co-supervisor Professor M.Sc Alejandro Acosta 

for initiating the project and always being on hand to provide helpful comments. 

 

Very special thanks to Professor Dr Rosario Caicedo, for her trust, support and advice 

throughout the young researcher project and my studies, along with Professor M.Sc 

Gezira de Avila for giving me advice and encouragement to continue. 

 

I am very grateful to all those who have helped me and taken an interest in the project. 

Special thanks go to SIDCOP and BIOTRANSFORMACIÓN research groups for the 

knowledge and learning, to my co-workers and professors in general. 

 

Many thanks to my family, for the support and advice, specially my uncles Lucia 

Echeverry and Julio Echeverry for so kindly providing logistic support for the trip to 

Medellin. 

 

Special thanks to Wilman Alcaraz for helpful discussions, and support during the 

development of this work. 

 

 Financial support from the Universidad de Antioquia and Colciencias through the project 

CIEMB-107-14 and CIEMB-125-2015 (065-2015 COLCIENCIAS) is gratefully 

acknowledged. 

 

Last, but certainly not least, I am grateful to Kathleen Navarro, my occasional chef and 

Brandy, for being my workmate when I had to work until late, and my friends in general.  



Advanced Control of a fed-batch reaction system to increase the yield in the polyhydroxyalkanoates production 
process.                                                                                                                                                              3 

 

 
Master's Thesis-Cesar Augusto García Echeverry 

Master Program in Chemical Engineering - Universidad de Antioquia-Colombia 

 

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................................. 7 

1. STATE OF THE ART ........................................................................................................... 9 

2. THEORETICAL FRAMEWORK ......................................................................................... 17 

2.1 POLYHYDROXYALKANOATES (PHAS) GENERALITIES ....................................................... 17 

2.2 PHAS PRODUCTION ..................................................................................................... 20 

2.3 STATE ESTIMATION AND DYNAMIC OPTIMIZATION ........................................................... 22 

3. MODELLING OF THE PHA´S FERMENTATION PROCESS ............................................ 28 

3.1. BATCH MODEL .............................................................................................................. 28 

3.2. RE-OPTIMIZATION STRATEGY. ....................................................................................... 33 

3.2.1. Sensitivity Analysis ............................................................................................. 34 

3.3. FED-BATCH MODEL ...................................................................................................... 39 

3.3.1. Fed Batch sensitivity analysis ............................................................................. 41 

3.4. STRUCTURED KINETIC/POLYMERIZATION MODEL ............................................................ 45 

3.4.1. Batch: Structured kinetic/Polymerization Model .................................................. 45 

3.4.3. Fed-Batch: Structured kinetic/Polymerization Model ........................................... 52 

3.5. SOFT SENSOR DEVELOPMENT FOR PREDICTING THE WEIGHT NUMBER MOLECULAR WEIGHT 

(MW) AND THE NUMBER AVERAGE MOLECULAR WEIGHT (MN) ...................................................... 54 

3.5.1 Mn:  ANN Training, Identification and Validation ..................................................... 56 

4. OPTIMIZING CONTROL .................................................................................................... 60 

4.1. CASE 1: REFERENCED CASE STUDY: FEEDING POLICY SELECTION. ................................ 61 

4.2. CASE 2: SPECIFIC CASE STUDY, COMMON FERMENTATION. ............................................. 71 

4.3. DISTURBANCES SCENARIOS .......................................................................................... 77 

5. CONCLUSIONS................................................................................................................. 83 

6. RESEARCH PRODUCT .................................................................................................... 85 

7. REFERENCES .................................................................................................................. 86  



Advanced Control of a fed-batch reaction system to increase the yield in the polyhydroxyalkanoates production 
process.                                                                                                                                                              4 

 

 
Master's Thesis-Cesar Augusto García Echeverry 

Master Program in Chemical Engineering - Universidad de Antioquia-Colombia 

 

LIST OF FIGURES 

 

Figure 1 Metabolic pathway for the intracellular synthesis and degradation of PHB in Alcaligenes 

species . .................................................................................................................................... 19 

Figure 2 Chemical structure of Polyhydroxybutyrate (PHB) . ..................................................... 19 

Figure 3 Simulation of different Dynamics. a) Biomass, b) Carbon source, c) Polymer, d) 

Nitrogen source, e) Dissolved Oxygen, f) Dissolved Carbon dioxide, g) Specific Growth Rate. .. 33 

Figure 4 Global Sensitivity analysis. .......................................................................................... 34 

Figure 5 Sensitivity on Substrate concentration ......................................................................... 35 

Figure 6 Sensitivity on Polymer concentration ........................................................................... 35 

Figure 7 Sensitivity on Biomass ................................................................................................ 36 

Figure 8 Sensitivity on Nitrogen ................................................................................................ 36 

Figure 9 Sensitivity on Dissolved Oxygen Concentration .......................................................... 36 

Figure 10 Sensitivity on Carbon Dioxide Concentration ............................................................. 36 

Figure 11 Simulation of different Dynamics. a) Biomass, b) Substrate, c) Polymer, d) Nitrogen, e) 

Dissolved Oxygen, f) Dissolved Carbon Dioxide , g)Specific Growth Rate. ................................ 38 

Figure 12 Simulation of different fed-batch Dynamics a) Biomass, b) Polymer, c) Carbon source, 

d) Nitrogen Source, e) Dissolved Carbon Dioxide, f) Specific Growth rate, g) Fermentation 

Volume and h) Feeding Strategy................................................................................................ 41 

Figure 13 Equilibrium point for the function cost ........................................................................ 44 

Figure 14 Metabolic/Polymerization and Macroscopic Model. ................................................... 48 

Figure 15 Simulation of different batch Dynamics. a)Biomass, b)Polymer, c) Carbon source, 

d)Nitrogen Source, e) Number Average Molecular Weight (Mn). ............................................... 52 

Figure 16 Simulation of different batch Dynamics.a) Polymer, b) Carbon source, c) Number 

Average Molecular Weight (Mn). ................................................................................................ 54 

Figure 17 Artificial Neuronal Network built in Matlab 2014b Toolbox ......................................... 55 

Figure 18 a) Mn ANN response without Learning, ANN prediction (red), Identification Data 

(blue); b) Performance during Training; c) ANN performance (cyan), Identification Data 

(Magenta); d) ANN performance (red), Validation Data (blue); e) ANN Training and fitting; f) ANN 

Histogram with Validation data. .................................................................................................. 57 

Figure 19 a) Mw ANN response without Learning, ANN prediction (red), Identification data 

(blue); b) Performance During Training; c) ANN performance (cyan), Identification Data 

(Magenta); d) ANN performance (red), Validation Data (blue); e) ANN training and fitting; f) ANN 

Histogram with Validation data. .................................................................................................. 59 



Advanced Control of a fed-batch reaction system to increase the yield in the polyhydroxyalkanoates production 
process.                                                                                                                                                              5 

 

 
Master's Thesis-Cesar Augusto García Echeverry 

Master Program in Chemical Engineering - Universidad de Antioquia-Colombia 

 

Figure 20 Optimizing Control Scheme ....................................................................................... 60 

Figure 21 Optimal feeding profiles for the carbon source: Comparison of four policies. ............. 64 

Figure 22 Optimal feeding profiles for the nitrogen source: Comparison of four feeding policies.

 .................................................................................................................................................. 64 

Figure 23 Dynamic behavior of the Biomass: Comparison of four feeding policies. ................... 65 

Figure 24 Dynamic behavior of the Polymer concentration: Comparison of four feeding policies.

 .................................................................................................................................................. 65 

Figure 25 Dynamic behavior of the Carbon source concentration: Comparison of four feeding 

policies....................................................................................................................................... 66 

Figure 26 Dynamic behavior of the nitrogen source concentration: Comparison of four feeding 

policies....................................................................................................................................... 66 

Figure 27 ANN predictions for a) Number Average Molecular Weight distribution (Mn) and b) 

Weight Average Molecular Weight distribution (Mw).  ANN predictions are compared against the 

phenomenological-based semiphysical kinetic/polymerization model. c) PDI Prediction. ........... 68 

Figure 28 Growth inhibition due Initial carbon source Concentration in PHAs production by 

Ralstonia eutropha. .................................................................................................................... 71 

Figure 29 a) Feeding Strategy for Carbon Source. b) Feeding Strategy for Nitrogen Source. c) 

Nitrogen Source Profile. d) Carbon Source Profile. e) Polymer Profile. f) Biomass Profile. g) 

Number Average Molecular Weight (Mn); ANN prediction. h) Weight Average Molecular Weight 

(Mw); ANN prediction. I) Polydispersity Profile. .......................................................................... 75 

Figure 30 Disturbances due to the change in µm a) Carbon Source feeding polices; b) Nitrogen 

source feeding Polices; c) Nitrogen Source Profile; d) Polymer Profile; e) Carbon Source Profile; 

f) Biomass Profile. ...................................................................................................................... 79 

Figure 31 Disturbances due to the change in initial Biomass concentration X(0) a) Carbon 

Source feeding polices; b) Nitrogen source feeding Polices; c) Nitrogen Source Profile; d) 

Polymer Profile; e) Carbon Source Profile; f) Biomass Profile. ................................................... 80 

Figure 32 Disturbances due to the change in initial Carbon Source concentration S(0) a) Carbon 

Source feeding polices; b) Nitrogen source feeding Polices; c) Nitrogen Source Profile; d) 

Polymer Profile; e) Carbon Source Profile; f) Biomass Profile. ................................................... 82 

 

  



Advanced Control of a fed-batch reaction system to increase the yield in the polyhydroxyalkanoates production 
process.                                                                                                                                                              6 

 

 
Master's Thesis-Cesar Augusto García Echeverry 

Master Program in Chemical Engineering - Universidad de Antioquia-Colombia 

 

LIST OF TABLES 
 

Table 1 Models Proposed in the literature for PHAs production. 11 

Table 2 Molecular Weight for PHA’s reported for different strains . 18 

Table 3 Worldwide PHA: Production and applications  21 

Table 4 Strain type and industrial bacterial strains commonly used for pilot and large-scale 

production of PHA. 22 

Table 5 Recent observers categorized under different classes. 23 

Table 6 Parameters for the Batch process Model 30 

Table 7 Profitability Variables 43 

Table 8 Optimal Fermentation Conditions for the Fed-batch process. 44 

Table 9 Parameters of the polymerization–depolymerization model. 53 

Table 10 Comparison of Feeding strategies: productivity and comparison respect to productivity 

computational time for the solution of the Dyopt problem. 67 

Table 11 Molecular Weight Predictions for Smooth Feeding: Sinusoidal strategy at the end of the 

fermentation. 70 

Table 12 ANN Polymer Properties Predictions at 32h of fermentation. 76 

Table 13 Productivity at the final fermentation time evaluated for different disturbances scenarios 

in 32 hrs. 77 

 

  



Advanced Control of a fed-batch reaction system to increase the yield in the polyhydroxyalkanoates production 
process.                                                                                                                                                              7 

 

 
Master's Thesis-Cesar Augusto García Echeverry 

Master Program in Chemical Engineering - Universidad de Antioquia-Colombia 

 

ABSTRACT 

 

Plastics are one of the main products of the petrochemical industry, due to its wide 

variety of physical and chemical properties. However, the intensive use of plastics has 

created an important environmental problem, and therefore, many alternatives are 

currently explored for reducing it. The Polyhydroxyalkanoates (PHAs) are polymers from 

biological origins, which are an environmentally friendly option for replacing the use of 

petroleum based plastic materials in a wide number of applications [1], [2]. Currently, big 

companies in China, United States, Brazil and Canada are carrying out the production of 

PHAs at industrial level. However, in order to replace or at least to compete against the 

petroleum –based plastic materials, it is still needed to assure the technical and 

economic feasibility of the process. For this reason, it is important to develop strategies 

towards increasing the yield of the process. For this, advanced model-based control 

strategies must be applied instead of the classical control strategies, which have shown 

to be inefficient in many bioprocess applications [3], [4], [5] and [6]. Since 2012, the 

biotransformation research group at Universidad de Antioquia has conducted research 

projects towards finding a technical and economical feasible alternative for producing 

PHAs using Colombian agricultural wastes. Preliminary results obtained at bioreactor 

scale have shown to be promising assuring the technical feasibility of the production 

process. However, in order to increase the productivity of the process for assuring its 

economic feasibility, optimization and control tools are proposed to be used in this 

master thesis. In this work, the optimizing control of the PHAs fed-batch process is 

carried out by formulating and solving a dynamic optimization problem for maximizing the 

process productivity. The optimization problem is subject to constraints on the feed flow 

rates, the final volume and the maximum concentrations reached on the substrate and 

nitrogen source, in order to avoid inhibition. Furthermore, the number average molecular 

weight distribution (Mn) is predicted using state estimation strategy and is used as 

constraint in order to fulfill desired end-product specifications. By solving the problem 

stated, it was possible to find the optimal values for the substrate and the nitrogen-

source feed concentrations, as well as their optimal feeding profiles that maximize the 

process productivity. Solution of the dynamic optimization problem was carried out by the 
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control vector parameterization approach. Different kinds of parameterization for the 

control vector were tested in order to compare their advantages and disadvantages. 

Results of the dynamic optimization problem have shown that sinusoidal type control 

profiles lead to higher productivity values (i.e. in comparison to step-type or constant 

feeding policies), while fulfilling the constraints, being remarkable that the number 

average molecular weight was kept around 4.05x105 g/mol and the productivity of the 

final amount of polymer over 138.44 g or 0.62 g/Lh for a 32 h fermentation and a final 

volume of 7 L. Finally, it was shown that the optimizing control strategy coupled to the 

prediction of Mn is an interesting and applicable alternative that could help to improve 

the PHAs productivity at industrial scale. Further work will be directed towards applying 

the mentioned strategy experimentally at pilot plant scale. 

 

Keywords: Polyhydroxyalkanoates, dynamic optimization, Soft-Sensors, Advanced 

control. 
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1. STATE OF THE ART  

 

Since 1970, the strain Ralstonia eutropha was recognized as a strain with a greater 

capacity to produce Polyhydroxyalkanoates (PHAs). From that moment, numerous works 

have been carried out in order to get a deep understanding of this bacterium. The 

development of molecular biology in recent decades, also allowed obtaining new tools 

for biological research that helped in deciphering the genetic information and the 

biosynthesis of PHAs. In the late 1980s, the genes encoding enzymes involved in the 

biosynthesis of PHAs were inserted into Ralstonia eutropha strains and E. coli. In the 

mid-90s, two R. eutropha studies allowed to establish the three most important enzymes 

in the metabolic pathway of this organism for biosynthesis of the biopolymer. In addition, 

it was identified that the PHA synthase was intracellular allowing polymerization. The 

success of genetic modification of microorganisms to promote the production of PHAs 

has led to the generation of transgenic plants that accumulate the polymer and have 

established the potential to expand the production at industrial level [7], [8].  

 

At the industry level, first industrial production of poly-3-hydroxybutyrate-co-3-

hydroxyvalerate (P (HB-co-HV)) was started in 1982 [9]. On that year, the British 

company Imperial Chemical Industries Ltd (ICI) started the production of a biodegradable 

thermoplastic polyester called BiopolTM, which was employed in the preparation of films 

and fibers [10]. The technology used involved a fermentation process on a large scale; 

with the intracellular accumulation of polymer equal to 90% of the cell weight of bacteria 

Alcaligenes eutrophus, later renamed as Ralstonia eutropha. 

 

In the 90s, the bacterial fermentation of PHAs was commercially available by Zeneca 

and then by Monsanto under the trade BiopolTM brand, however, the costs of production 

of PHBV were too high (about 6.60 USD / kg) due the fermentation and separation 

technology available at that time and failed to be cost competitive when compared to 

conventional plastics [9]. Meanwhile, in the same period Metabolix, Inc. developed a 

PHAs fermentation technology at lower cost (below $ 2.20 / kg), which allowed the 
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company to reach a commercial-scale production of PHAs [10]. All this industrial efforts 

have opened the market of new biomaterials in the world.  

 

There are currently over 19 PHAs production companies worldwide, 6 in China, 3 in 

United States and 6 in Canada, there exist potential for new companies; 4 in Europe, 2 in 

Japan and 1 in Brazil. In Brazil, PHB Industrial SA, uses sugar cane to manufacture PHB 

with BiocycleTM registered brand. This company started since 1992 and it is a partnership 

between the sugar producer Irmãos Biagi and the alcohol producer Balbo Group. By 

2010, the company produced 4,000 tons per year and plans to increase its production 

capacity to 14,000 tons per year [10]. Although it has been seen that there is already 

available technologies for PHAs production at industrial level, the production of these 

biopolymers does not reach the expected volumes due to high operating costs. 

According to [11], [12], in the United States, the production costs of PHAs are five times 

higher than the production costs of petrochemical-based thermoplastics. The review 

presented in [13], discusses several research works dedicated to the production of PHAs 

from sustainable raw materials of low cost, such as molasses, whey, and wastewater 

from oil producing plants, among other works. The works presented in [14], [3], [15] and 

[16] reported the use of whey as raw material. Reports shown in references [17], [18], 

[19] and [20] studied the production of PHAs using nutrients from the wastewater (from 

different types of industries, including municipal wastewater). Although most works 

reported that it is technically feasible to produce PHAs from the low-cost raw materials 

mentioned, it is important to note that the raw material resulting in the best performance 

(in terms of higher PHAs concentration) was obtained by using sugar cane molasses 

[21]. However, from an industrial point of view, in Colombia, using sugarcane molasses 

as the sole substrate of the process would not be considered profitable because this is 

not a low-cost feedstock in the country. 

 

Different modes of operation (batch, fed batch and continuous) have been used for 

producing PHAs. The Continuous operation has the advantage of achieving high yields 

and productivity but have a high risk of contamination. Batch production is a more 

conventional process, but several works have reported that higher productivities can be 
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achieved in Fed Batch operation [22]. The different production strategies depend on 

various factors such as the carbon source, the culture (pure or mixed), type of bioreactor 

(bubble columns or stirred tank) and operation mode (Batch, Fed Batch or Continuous). 

Productivities reported in [23] using sugar cane molasses as carbon source in batch 

cultures by P. aeruginosa are close to 0.1 g/Lh. In reference [24], reported productivities 

are around 0.45 g / Lh by B. megaterium using molasses. On the other hand, [24] 

reported productivities around 1.27 g / Lh for the same raw material, but using a Fed-

batch reactor. The advantage of operating in fed-batch mode is that the carbon source 

and other nutrients are provided at a different rate during the process, depending on the 

culture stage. Therefore, some stress conditions can be induced which has shown to 

increase the accumulation of biopolymer. 

 

In Table 1, a summary of the most relevant works in the modeling of the PHAs process is 

presented. 

Table 1. Models Proposed in the literature for PHAs production. 

State Variables Type of Model Microorganism Reference 

Biomass, Substrates 

and Product 

Concentration 

Structured  and 

metabolic model 
Animal cells  [15] 

Biomass, Fructose, 

Nitrogen and PHB 

concentration 

Unstructured Model 
Alcaligenes 

eutrophus 
[3] 

Biomass, Intracelular 

PHB, Substrate and 

acetate Concentration 

Unstructured Model 
Paracoccus 

Pantotrophus 
[16] 

Biomass, polymer, 

carbon and nitrogen 

sources  

And oxygen. 

Unstructured Model 
Azohydromonas 

Lata 
[17] 

Biomass, Nitrogen, 

Fructose and PHB 

concentration 

Unstructured Model 
Wautersia 

eutropha 
[18] 
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On the other hand, it is important to notice that in recent years much effort has been 

done from the academia in order to achieve higher productivity in bioprocesses, including 

the biopolymers production. Many of these works have used tools from the Process 

Systems Engineering (PSE) for addressing the modeling, optimization and control of the 

process. Many advanced control strategies have been already applied for controlling 

bioprocesses. For example, in  [3], the authors  implemented a model predictive 

controller (MPC) accompanied with a metabolic reaction model controller for controlling 

ethanol and n-pentanol concentrations and the mole fraction of monomer units in the 

production of poly(β-hydroxybutyrate-co-β-hydroxyvalerate), P(HB-co-HV), a 

biodegradable co-polyester. Ethanol and n-pentanol concentrations were well controlled 

by the MPC, compared with Proportional-Integral (PI) controller and 

feedforward/feedback controller. As a result, P(HB-co-HV) production was maximized 

with a given value of mole fraction of 3HV units at the end of cultivation. In another 

application, in [25] the authors deal with a hybrid adaptive feeding control strategy for 

fed-batch cultivation of high cell density Escherichia coli (E. coli). The control strategy 

was designed in order to maintaining the growth of the cells in optimal critical value 

despite disturbances and modeling uncertainties. For this purpose first an optimal 

controller was suggested by the authors and it was made such that fosters the growth 

rate to the optimal critical value and then a sliding mode controller (SMC) was applied, 

which powerfully strengthens the optimal controller against disturbances and 

uncertainties. The combined controller is capable of achieving the maximum amount of 

biomass and recombinant protein production despite a large number of uncertainties and 

disturbances. In [26], [27] and [28] the authors applied second-order sliding observer 

based on biomass concentration measurement, multiple kinetic rates observer and on-

line measurements, in order to get a practical stabilizer, by combining the observer with 

an input–output linearizing controller and provides a smooth estimate that converges in 

finite time to the time-varying parameter. On the other hand, in [29] and [30], the authors 

propose a robust nonlinear control in order to decrease the trajectory disturbances. The 

proposed controller is proven to guarantee the uniform ultimate boundedness of the 

closed-loop system by the Lyapunov theory. 
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For implementing successfully advanced control strategies, it is necessary to monitor the 

main process variables, and particularly in biopolymer´s production, it is highly desirable 

to monitor end-product specifications on-line. However, it is well known that difficulties 

arise on monitoring bioprocesses. Different strategies have been applied to overcome 

such difficulties, which include the development of Kalman filters and state observers. 

According to [4] a system is said to be observable if we can estimate the state variables 

from the available measurements, but first it is necessary determine the observability of 

the system. In [4] the author propose many ways to build an observer, depending if the 

system is linear or non-linear and for each one there is an observer, like Luenberger 

Observer, PI observer, and the different versions of the Kalman Filter. In [31] and [32] the 

authors deal with some classical state estimation techniques for bioprocess applications, 

the extended Kalman filter and the asymptotic observer, as well as a more recent 

technique based on particle filtering. In this application context, all these techniques are 

based on a continuous-time nonlinear prediction model and discrete-time measurements. 

A hybrid asymptotic particle filter was proposed, which combines the advantages of both 

techniques (robustness to model uncertainties and a rigorous consideration of the 

process and measurement noises). 

 

On the other hand, recent published works in the literature apply modelling and 

optimization tools for improving the productivity specifically in the PHAs process [33], [8], 

[34], [35], [36]. The work presented in [14], deserves special attention. In that work, the 

application of Multi-Objective Optimization (MOO) was carried out to find suitable feeding 

profiles in order to maximize the productivity of the PHAs process in a 9-liter bioreactor. 

The authors proposed the multi-objective for finding a compromise between productivity 

maximization and minimization of the frequency of gradual changes in the actuator. 

Many authors have studied the fed- batch fermentations (fed-batch) to improve 

production yields of PHAs. Improving the production of PHAs is generally achieved 

through the establishment of special feeding conditions. These techniques have been 

developed on an experimental basis and procedures of trial and error. The results have 

shown a considerable increase in the productivity of PHB with respect to previous works. 

However, the trial and error procedures can easily result in sub-and over-feeding of the 
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substrate, which can lead to cell starvation, cell inhibition, and the formation of 

undesirable products. On the other hand, some authors have developed multiple fed-

batch experiments to increase the productivity of PHAs. They have focused on obtaining 

a phase of high cell density, followed by a high production of PHAs by a non-growth-

associated mechanism. For example, some authors recommend that for an efficient 

production of PHAs by Alcaligenes eutrophus, the concentration of the carbon source 

must be maintained at an optimum value [3]. In [3]  dynamic optimization of PHAs 

production process in fed-batch operation using fructose as a carbon source in a 

bioreactor of 10 liters is presented. The authors of that study concluded that dynamic 

optimization is an excellent tool to predict the optimum operating conditions that achieve 

maximum productivity of PHB, greatly reducing the time and cost of the process. Indeed, 

this is one of the strategies to be used in the development of this project, where PSE 

tools (modeling, control, optimization, etc.) will be used to improve the technical and 

economic feasibility in the PHAs production process using low cost substrate (i.e. wastes 

from the alcohol industry). 

 

As it can be seen in Table 1, it is possible to find in the literature [37], [38], [39] and [40] 

that the unstructured models are well used to describe, in the simplest way, what is 

happening with the state variables. However, in [5] and [6] the authors proposed a 

combined kinetic/polymerization model in order to determine Mn and Mw. 

 

According to [19], the development of an effective methodology for optimizing of the 

polyhydroxyalkanoates (PHAs) fermentation with Ralstonia eutropha requires online 

measurement of some state variables. In that work, biomass viability information was 

obtained by measuring on-line the capacitance. Furthermore, oxygen uptake rate, 

specific oxygen uptake rate and specific growth rate were measured in real-time and 

compared with the capacitance value. In addition, a fed-batch control strategy based on 

the on-line capacitance measurement was proposed and showed to improve the PHAs 

production by 22%. This mentioned work pointed out the need of correlating important 

state variables with on-line measurements in order to increase the productivity.  
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In the present project, it is proposed to develop soft-sensors that will be useful for 

applying an advanced control strategy in the real process. Soft-sensors are software-

based monitoring systems. In real-time they estimate those process variables, which are 

difficult to measure on-line or whose measurement by analytical procedures is tedious, 

expensive and time-consuming. In [20], the Genetic Programming (GP), an artificial 

intelligence based data-driven modeling formalism, is introduced for the development of 

soft-sensors for biochemical processes. The novelty of the GP is that for a given input–

output data, it searches and optimizes both the structure and parameters of an 

appropriate linear/nonlinear model. In the mentioned reference, GP-based soft-sensors 

were developed for two bioprocesses, the extracellular production of lipase enzyme 

(where the soft-sensor predicted the time-dependent lipase activity) and the bacterial 

production of P (HB-co-HV) copolymer (where the amount of accumulated biopolymer 

was predicted). As conclusion, it was shown that the GP-based soft-sensor predictions 

where much better than those obtained by the Neural network, but according to [41], 

artificial neuronal network (ANN) based soft-sensor are useful for real case control 

applications with a fast computational time and control output response. 

 

In [42] the authors proposed an analytical and experimental analysis of the MWD of 

Poly((R)-3-hidroxy-butirate) using Alcaligenes Latus, in [38] the authors deal with a 

combined metabolic/polymerization kinetic model in order to predict the molecular weight 

distribution. This is very important because the molecular weight is important for 

establishing the final industrial application of the polymer. It determines in an important 

degree, the physical, chemical, mechanical and rheological characteristics of the 

polymer. When the weight average molecular weight (Mw) is lower than 4x105 Da, the 

polymer cannot be used for thermoplastic applications. Additionally, typical values of the 

number average molecular weight (Mn) of PHB are in the range from 8x104 to 1x106 Da 

[38]. 

 

The molecular weight distribution of biopolymers is affected by many variables, including 

the host microorganism, the substrate type and concentration, the nutritional (e.g. 

nitrogen source and oxygen concentration), the operating conditions (e.g. pH and 
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temperature), the feeding policy (in fed-batch and continuous processes), as well as the 

downstream polymer separation and processing. 

 

In order to find smooth and continuous feeding profiles (for the substrate, and the 

nitrogen-source) suitable for bioprocess applications operating in fed-batch mode, the 

work presented in [43]  proposed to parameterize the control vector by using sinusoidal 

functions. Typical works in bioprocess applications as well as in specifically the PHAs 

process, uses constant, pulse-type and/or piecewise constant feeding policies. In this 

work, sinusoidal parameterization is compared against a constant input flow and a 

piecewise constant control policies. 

 

In summary, this work addresses the advanced control problem for a fed-batch process 

for Polyhydroxyalkanoates production using the optimizing control strategy. Solution of 

the optimizing control problem is solved by formulating and solving a Dynamic 

Optimization problem in order to maximize the process productivity. The optimization 

problem is subject to constraints on the feed flow rates, the final volume and the 

maximum concentrations allowable to be reached on the substrate and nitrogen-source, 

in order to avoid inhibition. For solving the Dynamic optimization problem, different 

parameterization strategies of the control vector were used in order to compare their 

effect on the dynamic behavior of the biological variables, and therefore, on the process 

productivity. Furthermore, it is proposed to couple the optimizing control strategy to a 

neural network soft sensor developed for predicting Mn, Mw and/or the rate of 

polydispersity (PDI). 

  



Advanced Control of a fed-batch reaction system to increase the yield in the polyhydroxyalkanoates production 
process.                                                                                                                                                              17 

 

 
Master's Thesis-Cesar Augusto García Echeverry 

Master Program in Chemical Engineering - Universidad de Antioquia-Colombia 

 

2. THEORETICAL FRAMEWORK  

 
In this section, the more important aspects of the theoretical framework needed for the 

development of this master thesis are presented. First, the generalities about the 

polyhydroxyalkanoates are given. Second, the current tendency for PHA’s production. Is 

presented, in section 2.3, a brief mention about State Estimation and dynamic 

optimization is carried out. Section 2.3 presents an overview for dynamic optimization 

applications and how it helps to get a better performance and fermentation process. 

 

2.1  Polyhydroxyalkanoates (PHAs) Generalities  

 
PHAs are natural polymers produced by bacteria, which can accumulate around 90 % of 

the dry cell weight [21]. Such polymers have attracted the attention of the scientific 

community due to its high biodegradability, to the physical and mechanical properties 

comparable to those of petroleum-based plastics and for being produced from renewable 

resources [22]. PHAs are a family of polyesters with optically active organic monomer 

units (R) - 3HA. 3 - hydroxyalkanoates acids are all in the R configuration due to the 

stereo specificity of the enzyme polymer, PHA synthase [23]. Concerning PHAs, it can 

be highlighted the thermoplastic character and / or elastomer of these materials.  

 

Different types of PHA’s can be obtained depending on the strain and the substrates 

used for its production. Table 2 shows the most common bacteria used at both, industrial 

and lab levels for PHA’s production and the commonly reported values for the average 

molecular weight and the polydispersity of produced polymer when such bacteria are 

used. 
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Table 2 Molecular Weight for PHA’s reported for different strains [44]. 

Polymer 
Molecular Weight 

(g/mol) 
Polydispersity 

Index 

P3HB from R. eutropha 939000-1400000 1.9-2.25 

PHA from P. 
oleovorans 

178000-330000 1.8-2.4 

PHAfrom P. putidas 56000-112000 1.6-2.3 

 

As mentioned, PHAs are microbial polyesters produced by a variety of microorganisms, 

under conditions of nutrient limitation or excess of carbon source. PHA’s exhibit 

significant advantages over conventional polymeric materials, as they are produced from 

renewable sources; they are 100% non-toxic and biodegradable. The poly (3 - 

hydroxybutyrate) or PHB is the most important member of the PHAs, which was the first 

PHA discovered and remains the most studied. It is a biopolymer with a wide range of 

applications since their mechanical properties are similar to conventional commercial 

polymers such as polypropylene. Despite the potential of PHAs, their introduction into the 

world market is currently limited due to a number of economic considerations  [1], [7] and 

[45]. However, many efforts in the recent years have been done in order to speed up the 

development of profitable processes for PHAs production. An important point in order to 

improve the process is to understand the effect of the oxygen, carbon and nitrogen 

sources on the metabolic behavior of the bacteria responsible for the production, For 

example, Figure 1 shows the metabolic pathway for synthetizing PHB by Alcaligenes 

species. From this, it is possible to observe the effect of carbon, nitrogen and oxygen 

source in the production of biomass and polymer, besides, the direct relation between 

the production of CO2 and the obtained biomass. The Etner-Doudoroff pathway explains 

the required electron transfer in order to obtain the biomass and polymer under stress 

conditions such as excess of carbon source and limitation of nitrogen and/or oxygen 

source. 
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Figure 1 Metabolic pathway for the intracellular synthesis and degradation of PHB in 

Alcaligenes species [38]. 

 

The molecular structure of PHB is shown in Figure 2. It is possible to observe the 

presence of the carboxylic acid ester group in the main chain. 

 

  

Figure 2 Chemical structure of Polyhydroxybutyrate (PHB) [24]. 

 

The average molecular weight and the polydispersity index of a polymer are important 

parameters that characterize the physical and mechanical properties of a polymer. There 

have been several reports concerning the effects of cultivation conditions, such as 

carbon sources, temperature, pH, and trace elements, on the molecular weight and 

polydispersity of bacterial polyesters. However, the mechanism for controlling the 
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molecular weight of PHA in vivo has not been clarified yet. Some Scientific works 

reported in [33] have studied the kinetics of the in vivo synthesis and degradation of 

P(3HB) in R. eutropha, and have proposed a kinetic model involving chain propagation 

and chain transfer reactions on the active site of PHA synthase. Although PHA synthase 

has been identified as a key enzyme in PHA biosynthesis, only few studies [46] and [47] 

have been focused on the relation between the synthase activity and the molecular 

weight properties of the intracellular PHA. In [47] and [48], the authors deal with the 

importance in the control of the final molecular weight of P(3-HB) in a fermentation 

process. This is due to the challenge of achieving appropriate mechanical performance 

characteristics for industrial applications. By this reason, the authors keeps Mn and Mw 

in a desired value applying feeding control strategies in order to achieve the final goal. 

This is varying the carbon and nitrogen source concentration using different carbon 

sources. 

 

The advantages of the used strategies by the authors is that are tools easy to implement 

and with a good approximation of the macroscopic behavior in the fermentation process. 

The disadvantage is that in many cases with the macroscopic approximation is not 

possible get the enough information of the real kinetic and microscopic process and the 

deviations could be very important for the control implementation.  

 

2.2  PHAs production  

 

There are mainly two predominant methods used to produce PHBs depending on the 

microorganisms used. The most frequently applied method is a fermentation process 

consisting on two stages: i) a stage for cell growth under favorable conditions to provide 

high cell density, and ii) a stage for PHB production at unbalanced growth conditions by 

using limiting nutritional conditions (i.e. nitrogen, oxygen or phosphate sources limitation) 

to trigger the synthesis and accumulation of PHB. The second method is a process that 

occurs in a single-stage, in which PHB is accumulated in association with growth [34].  
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There exist many companies in the business of production of PHBs; The British Imperial 

Chemical Industries Ltd (ICI) with BiopolYMER [9]. Metabolix, Inc. developed a 

fermentation technology  [10], which gave greater openness to new biomaterials market 

in the world, PHB Industrial SA, with Biocycle registered brand. 

 

In Table 3 a complete list of worldwide PHA producing and researching companies is 

presented. It shows the different efforts in order to get a high productivity of many types 

of PHA including their applications.   

 

Table 3 Worldwide PHA: Production and applications [49] 

 

 

The different types of polymer are obtained due the type of strain, carbon source and 

feeding strategy. In Table 4 is presented the most common strains for industrial 

applications, including the amount and the type of polymer.   

 

Company Types of PHA Production scale (t/a) Period Applications

ICI, UK PHBV 300 1980s to 1990s Packaging

Chemie Linz, Austria PHB 20–100  1980s  Packaging & drug delivery

btF, Austria PHB 20–100 1990s Packaging & drug delivery

Biomers, Germany PHB Unknown 1990s to present Packaging & drug delivery

BASF, Germany PHB, PHBV Pilot scale 1980s to 2005 Blending with Ecoflex

Metabolix, USA Several PHA Unknown 1980s to present Packaging

Tepha, USA Several PHA PHA medical implants 1990s to present Medical bio-implants

ADM, USA (with Metabolix) Several PHA  50 000 2005 to present Raw materials

P&G, USA Several PHA Contract manufacture 1980s to 2005 Packaging

Monsanto, USA PHB, PHBV Plant PHA production 1990s Raw materials

Meredian, USA Several PHA 10 000 2007 to present Raw materials

Kaneka, Japan (with P&G) Several PHA Unknown 1990s to present  Packaging

Mitsubishi, Japan PHB 10 1990s Packaging

Biocycles, Brazil PHB 100 1990s to present Raw materials

Bio-On, Italy PHA (unclear) 10 000 2008 to present Raw materials

Zhejiang Tian An, China PHBV 2000 1990s to present Raw materials

Jiangmen Biotech Ctr, China PHBHHx Unknown 1990s  Raw materials

Yikeman, Shandong, China PHA (unclear) 3000  2008 to present  Raw materials

Tianjin Northern Food, China PHB Pilot scale 1990s  Raw materials

Shantou Lianyi Biotech, China Several PHA Pilot scale 1990s to 2005 Packaging and medical

Jiang Su Nan Tian, China PHB Pilot scale  1990s to present  Raw materials

Shenzhen O’Bioer, China Several PHA Unknown 2004 to present  Unclear

Tianjin Green Bio-Science (+DSM) P3HB4HB 10 000 2004 to present Raw materials & packaging

Shandong Lukang, China Several PHA Pilot scale  2005 to present  Raw materials & medica
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The standard fermentation conditions for the strains are; pH 7, 30°C, D.O 20-40% and 

time fermentation around 24 and 48 hours, depending the polymer accumulation and the 

feeding strategy, that is, the final manipulated variable in the control strategy. 

 

Table 4 Strain type and industrial bacterial strains commonly used for pilot and large-

scale production of PHA [49]. 

Strain PHA Type 
Carbon 
Source  

Final dry cell 
weight (DCW) 

(g/L) 

Final PHA 
(%DCW) 

Ralstonia Eutropha PHB Glucose >200 >80% 

Ralstonia Eutropha PHBV 
Glucose + 
propionate 

>160 >75% 

Ralstonia Eutropha P3HB4HB 
Glucose + 1,4-

Butanediol 
>100 >75% 

Ralstonia Eutropha 
PHBHHx 

(1) 
Fatty Acids >100 >80% 

Alcaligenes Latus PHB 
Glucose or 

Sucrose 
>60 >75% 

Escherichia Coli PHB Glucose >150 >80% 

Aeromonas 
hydrophila 

PHBHHx 
(1) 

Lauric Acid <50 <50% 

Pseudomonas 
putida 

mcl PHA Fatty Acids ~45 >60% 

P. Oleovorans mcl PHA Fatty Acids ~45 >60% 

Bacilus spp. PHB Sucrose >90 >50% 

 

2.3 State Estimation and Dynamic Optimization  

The optimizing control strategy implemented in this work includes the development of an 

observer based soft-sensor and the solution of a dynamic optimization problem. 

Therefore, the theoretical framework on these two topics is briefly discussed.  
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2.3.1  Observers  

 

According to [50], observers are systems whose task is state estimation. The inputs of 

the observer are the inputs of and the outputs of the given system. Furthermore, it is 

always important to estimate those states prior to developing state feedback laws for 

control. A recent work by [51], presents a classification of recent observers applied to 

chemical process systems. Such classification is shown in Table 5, where the main 

differences are in the linearity/nonlinearity and noise of the system. 

 

Table 5 Recent observers categorized under different classes applied to chemical 

process systems. [51]. 

Class 

Luenberger-
based observers 

Finite-
dimensional 

system 
observers 

Bayesian 
estimators 

Disturbance 
and fault 
detection 
observers 

Artificial 
intelligence-

based 
observers 

Hybrid 
observers 

Specific observer  

1. Extended 
Luenberger 

observer (ELO)  

1. Reduced-order 
observer  

1. Particle 
filter (PF)  

1. Disturbance 
observer (DOB)  

1. Fuzzy Kalman 
filter  

1. Extended 
Luenberger-
asymptotic 
observer  

2. Sliding mode 
observer (SMO)  

2. Low-order 
observer  

2. Extended 
Kalman filter 

(EKF)  

2. Modified 
disturbance 

observer 
(MDOB)  

2. Augmented 
fuzzy Kalman 

filter  

2. Proportional-
integral 

observer  

3. Adaptive state 
observer (ASO)  

3. High gain 
observer 

3. Unscented 
Kalman filter 

(UKF) 

3. Fractional- 
order 

disturbance 
observer  

3. Differential 
neural network 

observer  

3. Proportional-
SMO  

4. High-gain 
observer  

 4. Asymptotic 
observer (AO)  

 4. Ensemble 
Kalman filter 

(EnKF)  

4. Bode-ideal 
cut-off observer  

4. EKF with 
neural network 

model 

4. Continuous-
discrete 
observer  

5. Zeitz nonlinear 
observer  

5. Exponential 
observer  

5. Steady 
state Kalman 
filter (SSKF)  

5. Unknown 
input observer 

(UIO)  
  

5. Continuous-
discreteinterval 

observer  

6. Discrete-time 
nonlinear 

recursive observer 
(DNRO)  

6. Integral 
observer  

6. Adaptive 
fading 

Kalman 
filtering 
(AFKF)  

6. Nonlinear 
unknown input 

observer  
  

6. Continuous-
discreteEKF  
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7. Geometric 
observer  

7. Interval 
observer 

7. Moving 
horizon 

estimator 
(MHE)  

7. Extended 
unknown input 

observer  
  

7. High-
gaincontinuous-

discrete 

8. Backstepping 
observer 

  
8. Generic 
observer  

8. Modified 
proportional 

observer 
    

    
9. Specific 
observer 

      

 

In current thesis, an Artificial intelligence-based observer was developed. In [52] the 

authors built bioprocess model using ANN. The authors considered two cases; the first 

one is a common industrial application that is the fed-batch penicillin fermentation. The 

second case is continuous mycelium fermentation. Both systems serve to demonstrate 

the utility, flexibility and potential of the artificial neural network approach to process 

modelling.  

 

In [53] the authors proposed ANN techniques for modeling of the microbial production of 

PHB by Azohydromonas lata as function of the glucose concentration and CDW getting a 

good approximation to experimental data and a low Minimum Mean Square Error 

(MMSE). 

 

Artificial Neuronal Networks (ANN) are very useful for approximating the complex 

nonlinear relationships with less a prior knowledge of the model structure [54], [55] [59] 

This method develops mathematical algorithms derived from artificial intelligence 

techniques that try to model the present understanding of human brain. ANN models are 

proposed in this work for on-line estimation of the Molecular Weight Distribution (MWD) 

in the fermentation process. The most common structure is feedforward ANN.  

 

 

2.3.2  Dynamic optimization  

 

Advanced control strategies typically use models (i.e. Phenomenological-Based 

Semiphysical Models or black box models) in order to predict the dynamic behavior of 
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the main process variables for choosing the best set of control actions that must be 

applied in order to optimize a specific objective. The computation of optimal control 

policies in fed-batch processes requires special effort due to problem characteristics and 

to the presence of path constraints in the state and control variables. Moreover, adding 

the possible existence of discontinuities and non-differentiability in the variable profiles 

and differential equations, a complex dynamic optimization problem is generated, whose 

solution strategies must be investigated [10]. 

 

According to [56] a mathematical description of a dynamic optimization problem (Dopt) is 

described by Equation 1. 

 

=  [∅ (𝑿(𝒕𝒇)) + ∫ 𝑳(𝑿(𝒕), 𝒖(𝒕), 𝜽(𝒕), 𝒕)𝒅𝒕
𝒕𝒇

𝒕𝟎
]𝒖(𝒕),𝒕𝒇

𝒎𝒊𝒏
𝒖(𝒕),𝒕𝒇 
𝒎𝒊𝒏 𝑱

            (1) 

s.to                        
 𝒅𝑿

𝒅𝒕
= 𝒇(𝑿(𝒕), 𝒖(𝒕), 𝜽(𝒕))                                          (1a) 

                               𝑿(𝒕𝟎) = 𝑿𝟎                                                             (1b) 

                               𝒈(𝑿(𝒕), 𝒖(𝒕), 𝜽(𝒕)) = 𝟎                                           (1c) 

                               𝒉(𝑿(𝒕), 𝒖(𝒕), 𝜽(𝒕)) ≤ 𝟎                                           (1d) 

                               𝑿𝒍 ≤ 𝑿(𝒕) ≤ 𝑿𝑼                                                      (1e) 

                               𝒖𝒍 ≤ 𝒖(𝒕) ≤ 𝒖𝑼                                                       (1f) 

 

Where ∅ (𝑿(𝒕𝒇)) is called the Mayer Term, which is related to the state of the process at 

the final time. Moreover, ∫ 𝑳(𝑿(𝒕), 𝒖(𝒕), 𝜽(𝒕), 𝒕)𝒅𝒕
𝒕𝒇
𝒕𝟎

 is called Lagrange Term, and 

represents an economical function related to the dynamic behavior of the state variables 

during the transition from the initial optimization time (0) to the final optimization time (tf). 

 

Based on [56], there exist three types of Dopt solution methods. The first one is Dynamic 

Programming, which leads to the so-called Hamilton –Jacobi Bellman (HJB) equation, a 
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partial differential equation (PDE) in the state space. The second approach includes the 

indirect methods, which uses the necessary conditions of optimality to derive a two-point 

boundary value problem (BVP). This includes also the calculus of variations, the Euler-

Lagrange differential equations, and the so-called Pontryagin Maximum Principle. If the 

problem requires the handling of active inequality constraints, this kind of methods are 

usually avoided. 

 

The third approach are the direct methods, which transform the original problem into a 

finite dimensional nonlinear programming problem (NLP) which is then solved by 

numerical optimization problems. Methods than apply NLP solvers, can be separated 

into two groups. First, the sequential approach also called Control Vector 

Parametrization (CVP) or single shooting, which in Equation 1, only discretizes u(t). The 

second approach is the so-called simultaneous strategy, which usually uses collocation 

methods, for discretizing u(t) and X(t) simultaneously.  

 

The sequential methods are relative easy to construct and to apply as they rely on the 

use of Differential Algebraic Equations (DAE) solvers as well as NLP solvers. Repeated 

numerical integration of the DAE model is required, which may become time consuming 

for large-scale problems. On the other hand, in the simultaneous methods, the use of 

collocation or multiple shooting results in larger NLP problems with junction constraints to 

handle the system dynamics, which requires the use of specific optimization methods 

and may be computationally intensive for large-scale dynamic system. 

 

According to [57], dynamic optimization allows the computation of the optimal operating 

policies in order to get the best time-varying feed rate(s) which ensure the maximization 

of a pre-defined performance index (usually, a productivity, or an economical index 

derived from the operation profile and the final concentrations). Once computed in a 

reliable way, these operating policies can be implemented using different control 

strategies, such as adaptive control, model predictive control or optimizing control. 
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The authors in [57], proposed that the general dynamic optimization (optimal control) 

problem of a bioprocess, considering a free terminal time, can be stated as finding the 

control vector and the final time to minimize (or maximize) a performance index. In order 

to surmount these difficulties, the authors presented several alternatives; stochastic and 

hybrid techniques based on the CVP approach. As it was mentioned before, the CVP 

approach is a direct method, which transforms the original problem into a NLP problem, 

which must be solved by a suitable (efficient and robust) solver. However, in [43], the 

author presented a smoothest alternative than CVP called sinusoidal parameterization, 

that lies with the feeding polices avoiding inhibitory terms due the strong changes in 

substrates concentration.  
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3. MODELLING OF THE PHA´s FERMENTATION PROCESS 

 

In this chapter, the different Phenomenological-Based Semiphysical Models (PBSM) 

used on the development of this work for describing the fermentation stage on the 

polyhydroxyalkanoates production are presented. First, a batch model of the process 

describing the dynamic behavior of biomass, polymer, carbon and nitrogen sources, 

dissolved oxygen and carbon dioxide is shown. Then, extension of this model is carried 

out for formulating a fed-batch process model. Finally, a polymerization/kinetic model is 

described, which is useful for obtaining the dynamic data of Mn and Mw for building, 

training and validating an ANN in section 3.5 

 

3.1. Batch model 

 

The batch model was developed taking as a base the works by [58], [18]. The following 

assumptions are considered: 

 

 A Monod-Sigmoidal expression with uncompetitive substrate limitation and oxygen 

limitation is used for biomass growth rate. 

 It is expected that production of product will vary dependently of biomass 

generation and it will not compete for energy resources. The system is analyzed 

macroscopically (No discretization of elements that exist in it). 

  Biomass (R) is composed of two components: i) The catalytically active 

component consists of proteins and nucleic acids (X), and ii) Product PHA (P) is 

an inert component 

 Nitrogen is the limiting nutrient affecting the PHA production in a complex manner. 

 Good control of temperature and pH (30°C and 7) on the set values is reached. 

 The culture media is perfectly mixed, it is assumed that a small portion of the 

fermentation broth is exactly equal to a different portion, also considered 

homogeneous system (the same phase). 
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 The inoculum corresponds to the exponential part of the growth of the strain. 

The Model (based on the work by [41]) is described by Equations (2-8), where the 

dynamic equations describing the behavior of the state variables biomass (X), substrate 

(S), product (P), nitrogen-source (N), dissolved oxygen (O2L) and carbon dioxide (CO2) 

concentrations. The specific growth rate (μ) depends of the substrate concentration (S), 

nitrogen-source concentration (N) and Oxygen concentration (O2), following a sigmoidal 

relationship [38], [46]. Equation 2 describes the biomass specific growth rate. This 

equation is proposed in this work for taking  into account the effect of the ratio of nitrogen 

and carbon source and the limitation in dissolved oxygen based in work presented in 

[17]. 

 

𝜇 = 𝜇𝑚 (
(
𝑁

𝑆
)

(
𝑁

𝑆
)+𝐾𝑠𝑟

) ∗ (1 − (
𝑁

𝑆

𝑆𝑚
)

𝑛𝑘

) ∗ ((
𝑂2𝐿

𝐾𝑜𝑥∗𝑋+𝑂2𝐿
))                                                  (2) 

�̇� = μX                                                                                                                  (3) 

�̇� = − ((𝐶𝑠𝑥μ𝑋) + (𝑅𝑐𝑠𝑥𝑋) + 𝐶𝑠𝑝((𝐾1μ𝑋) + (𝐾2𝑋)))                                            (4) 

�̇� = (𝐾1μ𝑋) + (𝐾2𝑋)                                                                                              (5) 

�̇� = −((𝐶𝑛𝑥 μ 𝑋) + (𝑅𝑐𝑛𝑥 𝑋))                                                                                 (6) 

𝑂2𝐿̇ = ((𝐾𝐿(𝑂2𝐿𝑒𝑞 − 𝑂2𝐿)) − (𝐾3μ𝑋) − ((𝐾4𝐾1μ𝑋) + (𝐾4𝐾2𝑋)))                         (7) 

𝐶𝑂2̇ = (𝛼1𝜇 + 𝛼2)𝑋 + 𝛼3                                                                                        (8) 

 

Table 6 shows the nomenclature used in Equations (2-8). The model contains 19 

parameters. For identifying those parameters, a hybrid strategy combining the simulated 

annealing optimization algorithm and the interior point method was used, as suggested 

in [18]. The minimization criteria for parameter identification used was: 

 

 
𝑺𝑺𝑾𝑹 = ∑ ∑

∆𝒊𝒋

𝑾𝒋
𝟐

𝒎
𝒋=𝟏

𝒏
𝒊=𝟏            .                                                                                          (9) 
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Where: 

 SSWR represents the sum of the square of weighed residuals, 

 ‘𝑖’ and ‘𝑗’ are the number of experimental data points and number of variables, 

respectively, 

 ‘𝑛’ and ‘𝑚’ are the total number of experimental data points and total number of 

variables, respectively, 

 𝑊𝑗  is a normalization factor for each variable (i.e. the maximum value of each 

variable), and  

 𝛥𝑖𝑗 is the difference between the predicted values by the model and the 

experimental data (𝑦𝑚𝑜𝑑𝑒𝑙  − 𝑦𝑒𝑥𝑝𝑡). 

The experimental data for identification and validation were taken from [58]; the 

optimized model parameters are shown in Table 6. 

 

Table 6 Parameters for the Batch process Model 

Parameter 
Seed 

Value 

Optimal 

Value 

Re-

optimize

d value 

Meaning (Units) 

𝛍𝐦 0.54 0.42 0.61 Maximum specific growth rate h-1 

Ksr 0.15 0.015 0.015 Saturation Constant (g/L) 

Sm 0.3 3.7 5.2 
Maximum Value of substrate at 

which μ is zero (gN/L /gS/L) 

Csx 1.76 1.18 1.37 
Yield of substrate respect to 

biomass gS/gX 

Rcsx 0.022 1.64*10-4 7.55*10-5 Consumption Rate (gS/gXh) 

Csp 1.75 0.0039 0.0039 
Yield of substrate respect to product 

(gS/gP) 

k1 0.14 0.36 0.35 
Yield of product respect to biomass 

(gP/gX) 

k2 0.74 0.006 0.006 Consumption rate (gP/gXh) 

Cnx 0.336 0.0096 0.0096 Consumption rate (gN/gNh) 

KL 0.1 0.62 0.62 Aeration constant (L/h) 

k3 93 191.3 191.3 Yield of oxygen respect to biomass 
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(gO2/gX) 

k4 85 77.25 77.25 
Yield of oxygen respect to Product 

(gO2/gP) 

O2Leq 0.0076 0.0066 0.0066 
Dissolved Oxygen in saturation 

stage (g/L) 

nk 1.22 9.85 21.6 Exponent on the equation (1) 

Rcnx 0.16 0.0017 0.0014 Consumption rate (g/gh) 

α1 0.143 0.75 0.75 
Constant for CO2 with growth 

(mmolCO2/gX) 

α2 4*10-7 2.13*10-6 2.13*10-6 
Constant for CO2 with maintenance 

energy (mmolCO2/gXh) 

α3 1*10-4 6.84*10-4 6.84*10-4 
Constant for CO2 with product 

(mmolCO2/Lh) 

Kox 0.02 7.9*10-4 7.9*10-4 
Yield of oxygen respect to biomass 

in μ (gO2/gX) 

 

Figure 3 shows the simulation results for the main states variables and for the specific 

growth rate. Such results are named as Model identification, meaning that those model 

predictions were obtained after parameter identification (i.e. performed by solving the 

optimization problem for the objective function described by equation (9)). The obtained 

parameters are listed on column 3 of table 6. The dissolved oxygen concentration was 

kept constant at 40% of saturation, as suggested in the literature [58], [18]. 
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Figure 3 Simulation of different Dynamics. a) Biomass, b) Carbon source, c) Polymer, d) 

Nitrogen source, e) Dissolved Oxygen, f) Dissolved Carbon dioxide, g) Specific Growth 

Rate. 

 

As it can be seen from Figures 3a) to 3d), the parameter identification need to be 

improved, since there are still important deviations between the model predictions and 

the experimental data.  In the next section a re-optimization strategy as suggested by 

[59] is carried out towards finding the set of most sensitive parameters that should be re-

optimized, in order to improve the parameter identification and therefore, the model fit.  

 

3.2. Re-optimization strategy.  

 

First, sensitivity analysis is carried out in order to determine the most sensitive 

parameters affecting the objective function (i.e. the residuals for the main state 

variables). Then, the most sensitive parameters are re-optimized, using the set of 

validation data, whereas the remaining parameters are kept fixed at their original values 

(i.e. the shown in the third column at Table 6). 
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3.2.1. Sensitivity Analysis 

 

In order to get the most sensitive parameters, both, a global as well as a relative 

sensitivity analysis were carried out. The first one is related to the prediction error, 

whereas the latter to analyze the influence of each parameter on each state variable. In 

both cases, sensitivity was tested for a variation of 10% in the value of each parameter. 

Figure 4 shows the results for the global sensitivity analysis, where the %Error is the 

deviation of the optimal value. According to the results, from the set of 19 parameters, 

the most sensitive parameters are Sm, μm, Csx, Rcsx, k1, nk and Rcnx. 

 

 

Figure 4 Global Sensitivity analysis. 

 

The relative sensitivity analysis per state variable is carried out in the following [9]. In a 

general formulation, a state space model can be written as: 

 

 �̇� = ∅(𝜺, 𝜽, 𝝁)                      (10) 

where ∅ is function of the states (𝛆), parameters (𝛉) and feed flow rates (𝛍) for the fed-

batch and continuous cases. 
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In [9] the relative sensitivity function, which finds the change of each state variable with 

respect to each parameter, is given by:  

 

𝑺𝜽𝒋
𝜺𝒊 = (

𝝏𝜺𝒊

𝝏𝜽𝒋
)
𝜽𝒋
∗

𝜺𝒊
∗                    (11)  

 

Where for our specific problem,𝑖 = 1,… ,6. 𝑗 = 1,… ,19. Using a central finite differences 

approximation, Equation (11) becomes,   

 

𝑺𝜽𝟏
𝜺𝟏 = (

𝝏𝜺𝟏

𝝏𝜽𝟏
)
𝜽𝟏
∗

𝜺𝟏
∗ = (

𝜺𝟏(𝒕,𝜽𝟏+∆𝜽𝟏)
−𝜺𝟏(𝒕,𝜽𝟏−∆𝜽𝟏)

𝟐∆𝜽𝟏
)
𝜽𝟏
∗

𝜺𝟏
∗        (12) 

 

Figures 5 to 10 show the results for the relative sensitivity analysis of some parameters 

on the state variables. In conclusion, the relative sensitivity analysis reinforces the results 

obtained by the global analysis, and therefore, the most sensitive parameters affecting 

the objective function (i.e. a measurement of model prediction’s error) are taken to be 

Sm, μm, Csx, Rcsx, k1, nk and Rcnx. 
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3.2.2. Parameters re-optimization using the validation data 

 

As it was shown, 7 parameters (from the 19 that compose the model) have been 

identified as the most sensitive. Therefore, the re-optimization strategy is applied towards 

finding a better value for this set of sensitive parameters, while keeping fixed the 

remaining 12 parameters (i.e. fixed at the values found previously). For the re-

optimization, the same hybrid strategy that for the first identification (simualted annealing 

+ interior point method) was used. Resutls of the re-optimization using the validation data 

0 10 20 30 40 50
-5

0

5

10

15
x 10

-5

Time (h)

 

 
µ

m

S
m

Ksr

K
ox

n
k

0 10 20 30 40 50
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

Time (h)

 

 

Others

C
nx

R
cnx

0 10 20 30 40 50
-2

0

2

4

6

8
x 10

-3

Time (h)

 

 

µ
m

S
m

K
ox

K
L

O
2Leq

Others

0 10 20 30 40 50

0

0.5

1

1.5

2

Time (h)

 

 


1


2


3

µ
m

S
m

Figure 9 Sensitivity on Dissolved 

Oxygen Concentration 

Figure 8 Sensitivity on Nitrogen Figure 7 Sensitivity on Biomass 

Figure 10 Sensitivity on Carbon Dioxide 

Concentration 



Advanced Control of a fed-batch reaction system to increase the yield in the polyhydroxyalkanoates production 
process.                                                                                                                                                              37 

 

 
Master's Thesis-Cesar Augusto García Echeverry 

Master Program in Chemical Engineering - Universidad de Antioquia-Colombia 

 

are shown in Figure 11. In Figures 11-c) and 11-g), it can been observed a lower limit in 

the carbon source concentration and the specific growth rate, and it was induced using a 

restriction of the type “If” in order to get a more adecuated behaviour in the states . As it 

can be seen, model predictions have been improved, and now fit very well the 

experimental data. 
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Figure 5 Simulation of different Dynamics. a) Biomass, b) Substrate, c) Polymer, d) 

Nitrogen, e) Dissolved Oxygen, f) Dissolved Carbon Dioxide , g)Specific Growth Rate. 
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3.3. Fed-Batch Model 

 

The fed-batch model of the process was developed based on the previous batch model. 

It keeps the same mathematical structure with the addition of the dilution rates and 

feeding strategy. Equations 13 to 19 represent the fed-batch model, where F1, F2 and F3 

(L/h) correspond to the feed flow rates of carbon, nitrogen and oxygen sources 

respectively. Sin, Nin and Oin correspond to the concentrations of carbon, nitrogen and 

oxygen sources at F1, F2 and F3, respectively. Finally, V is the fermentation volume.  

 

�̇� = μX−
𝐹1+𝐹2

𝑉
X                                                                                                            (13) 

�̇� = − ((𝐶𝑠𝑥μ𝑋) + (𝑅𝑐𝑠𝑥𝑋) + 𝐶𝑠𝑝((𝐾1μ𝑋) + (𝐾2𝑋))) +
𝐹1

𝑉
𝑆𝑖𝑛 −

𝐹1+𝐹2

𝑉
S                             (14) 

�̇� = (𝐾1μ𝑋) + (𝐾2𝑋) −
𝐹1+𝐹2

𝑉
𝑃                                                                                        (15) 

�̇� = −((𝐶𝑛𝑥 μ 𝑋) + (𝑅𝑐𝑛𝑥 𝑋)) +
𝐹2

𝑉
𝑁𝑖𝑛 −

𝐹1+𝐹2

𝑉
N                                                              (16) 

𝑂2𝐿̇ = ((𝐾𝐿(𝑂2𝐿𝑒𝑞 − 𝑂2𝐿)) − (𝐾3μ𝑋) − ((𝐾4𝐾1μ𝑋) +  (𝐾4𝐾2𝑋))) +
𝐹3

𝑉
𝑂𝑖𝑛 −

𝐹1+𝐹2

𝑉
𝑂2𝐿      (17) 

𝐶𝑂2̇ = (𝛼1𝜇 + 𝛼2)𝑋 + 𝛼3 −
𝐹1+𝐹2

𝑉
𝐶𝑂2                                                                              (18) 

�̇� = 𝐹1 + 𝐹2                                                                                                                    (19) 

 

The experimental data, modelling conditions and the feeding strategy for validating the 

fed-batch model were taken from [18]; the parameter adjustment was done in a similar 

way as described in section 3.2. Figure 12 shows the model predictions (i.e. Model 

validation) against the experimental data for the feeding policy in Figure 12-h). It can be 

observed that the model fitting has a good approximation to the experimental data. The 

pulse feeding strategy is one of the most important strategies in bioprocess, but, in 

section 4.1 it will be analyzed other common strategies. 
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Figure 6 Simulation of different fed-batch Dynamics a) Biomass, b) Polymer, c) Carbon 

source, d) Nitrogen Source, e) Dissolved Carbon Dioxide, f) Specific Growth rate, g) 

Fermentation Volume and h) Feeding Strategy. 

 

3.3.1. Fed Batch sensitivity analysis 

 

A sensitivity analysis for the fed-batch process was carried out in order to analyze the 

effect of the initial conditions, feeding strategy and feed concentrations into a profitability 

function. 

 

The set of ordinary differential equations (13-19) can be expressed as a vector of seven 

components, where i, corresponds to the number of the states described before 

[𝑋, 𝑆, 𝑃, 𝑁, 𝑂2𝐿, 𝐶𝑂2, 𝑉] : 

 

𝒅𝒙

𝒅𝒕
= 𝒇(𝒙, 𝑭)                                                                                                          (20) 

 

Initial conditions: xi(0)  𝑖 = 1, 2, … ,7:  
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𝒙𝒎𝒊𝒏,𝒊 ≤ 𝒙𝒊(𝟎) ≤ 𝒙𝒎𝒂𝒙,𝒊, 𝒊 = 𝟏, 𝟐, … , 𝟕                                                                   (21) 

The state vector x is an (7x1) vector and F is an (2x1) control vector bounded by 

 

𝑭𝒎𝒊𝒏,𝒋 ≤ 𝑭𝒋 ≤ 𝑭𝒎𝒂𝒙,𝒋, 𝒋 = 𝟏, 𝟐                                                                               (22) 

 

The objective is to maximize the profitability function (𝑷𝑭). The decision variables are the 

substrates and feed initial concentrations and feed flow rates for carbon and nitrogen 

sources. The constraints values were taken based on [60] in inhibition conditions for that 

specific case of 4 Lts fermentation. 

 

   𝑃𝐹𝐹𝑖(𝑡),𝑥𝑖(0),𝑥𝑖 𝑖𝑛
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒                           (23) 

s.to                         0.02 ≤ 𝐹𝑗 ≤ 0.1, (
𝐿

ℎ
)   𝑖 = 1,2             (23a) 

                               10 ≤ 𝑥2(0) ≤ 100, (
𝑔

𝐿
)                     (23b) 

                               0.22 ≤ 𝑥4(0) ≤ 1.2, (
𝑔

𝐿
)                   (23c) 

                               150 ≤ 𝑥2𝑖𝑛 ≤ 600, (
𝑔

𝐿
)                     (23d) 

                               6.3 ≤ 𝑥4𝑖𝑛 ≤ 70, (
𝑔

𝐿
)                        (23e) 

                               𝑥7 ≤ 7𝐿                                           (23f) 

 

The profitability function was defined according to [61], [62], [63], [64]. In equation 24, is 

defined the profitability function that is used to solve the Equation 23. In Table 7 are the 

values of the main profitability variables in order to get a solution of Equation 23. 

 

𝑃𝐹 = (𝑃𝐻𝐵 ∗ 𝑉 ∗ 𝐺) − 𝑉 ∗ {𝑅1 ∗ 𝑆0 + 𝑅2 ∗ 𝑁0} − 𝑡𝑖 ∗ {𝑀1 ∗ 𝐹1 +𝑀2 ∗ 𝐹2} − [𝐸𝑃 ∗ 𝑡𝑖]  (24) 

 

Where G, R1 , R2, ti, M1, M2 and EP are raw polymer price, cost of the initial carbon 

source concentration, cost of the initial nitrogen source concentration, fermentation time, 

cost of feeding carbon source, cost of feeding nitrogen source and  operational and 

energetic cost respectively. 
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Table 7 Profitability Variables 

Variable Amount/cost 

(USD) 

G($/g) 1.45 

R1($/g) 0.7 

R2($/g) 0.25 

ti(h) 50 

M1($/L) 0.8 

M2($/L) 0.33 

EP($/h) 1.1 

 

 

Based in the economic information, an equilibrium point evaluation was performed taking 

into account the minimal polymer production required in order to reach the zero point 

with the revenue and costs. It was built based in the information described above and it 

was a simple calculation in order to determine the minimal production. 

 

Figure 13 shows that the minimal production should be at least 20 g/l of polymer. Based 

on this result, the optimal initial conditions for the fed-batch fermentation were found, as 

it is shown in Table 8. 
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Figure 7 Equilibrium point for the function cost 

Table 8 Optimal Fermentation Conditions for the Fed-batch process obtained by 

Equation (23). 

 

Variable/Value 

Final 

Polymer 

(g/L) 

 

Profitability $USD 

N0 

(g/L) 

S0 

(g/L) 

F1 

(L/h) 

F2 

(L/h) 

Sin 

(g/L) 

Nin 

(g/L) 

 

26 

 

30.27 

0.87 21.75 0.092 0.06 600 61.8 

 

 

As it is shown in Table 8, productivity is related with the profitability; so, it is important for 

real case applications, to ensure the obtention of a high amount of polymer, but with 

desired end-product specifications (i.e.  Molecular weight, polydispersity index).  This is 

precisely the reason that makes necessary to develop a control strategy that allows 
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reaching a high value in polymer concentration, with the required properties, in order to 

assure the profitability of the biopolymers production. 

 

3.4. Structured kinetic/Polymerization Model  

 

As was mentioned before, the Molecular Weight Distribution (MWD) is a fundamental 

polymer property that directly influences many of the characteristics of the product, such 

as its mechanical properties. Maintaining the instantaneous molecular weight constant 

during the polymerization process allows narrowing the final cumulative MWD, which 

influences stress–strain properties, stress crack resistance, impact resistance, and 

thermal properties of many polymer systems [65]. Furthermore, the weight average 

molecular weight (Mw) influences also the melt and concentrated solution viscosity. 

Therefore, developing strategies for monitoring and control the molecular weight and the 

MWD is still a very important industrial issue. Based on the reported works in [38], [46] a 

macroscopic/polymerization kinetic model was simulated and validated in order to be 

used for obtaining “in silico” data. Such in silico data are then used for building a soft 

sensor capable to predict the MW and MWD on-line.  

 

3.4.1. Batch: Structured kinetic/Polymerization Model 

 

The polymerization–depolymerization kinetic scheme is given in the following works [38], 

[66] and [67]. The polymerization–depolymerization kinetic scheme is as follow: 

 

Initiation:  

E-SH+M#
E-SH-M# 

𝑘𝑖
→𝑃1 − 𝐸𝑆 + 𝐶𝑜𝐴 − 𝑆𝐻                                     (25) 

 

Propagation: 

𝑃𝑛 − ES+M#
𝑘𝑚2
→  𝑃𝑛-ES-M# 

𝑘𝑝
→ 𝑷𝒏+𝟏 − 𝐸𝑆 + 𝐶𝑜𝐴 − 𝑆𝐻                         (26) 
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Chain Transfer: 

𝑃𝑛 − ES+𝐻2𝑂
𝑘𝑡
→𝐷𝑛+E-SH                                                                  (27) 

 

Degradation: 

𝐷𝑛 + E-OH
𝑘𝑑
→ 𝐷𝑛−1+𝐷1 + E-OH                                                          (28) 

 

Where E-SH, M#, CoA-SH and E-OH denote the concentration of shynthase dimer, 

monomer coenzyme A complex (M-SCoA), coenzyme A and depolymerase, respectively. 

Besides, 𝑃𝑛 − ES  (𝑃𝑛), 𝑃𝑛-ES-M#  (𝑃𝑛
∗), and Dn are the corresponding concentrations of 

active, intermediate and inactive polymer chains with a degree of polymerization equal to 

n. 

 

The mathematical model of set of reactions (25-28) is as follow: 

 

Assumptions:  

 

 Initiation is assumed to occur in two steps with the formation of an intermediate 

‘synthase–monomer’ complex (E-SH+M#). 

 A two-step reaction is also considered for polymer chain propagation where an 

intermediate ‘active polymer–monomer’ complex (𝑃𝑛-ES-M#). 

 It is assumed that the polymerase (PhaC), depolymerase (PhaZ) and chain 

transfer agent concentrations are constant throughout the course of 

polymerization. 

 It is considered that the rate-limiting step in the degradation mechanism is the 

binding of the inactive polymer chain to depolymerase. 

 The effects of population heterogeneity (i.e. segregation of cells) and mass-

transfer limitation phenomena are not taken into account [38]. 
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The mathematical kinetic/polymerization model for the PHAs production, based on the 

reaction scheme (25-28), and the mentioned assumptions the net production rates for 

the various intracellular molecular species, following equations (29-33): 

 

Active Polymer Chains of length “n”  

 

𝑑[𝑃𝑛]

𝑑𝑡
= 𝑘𝑖[𝐸 − 𝑆𝐻 −𝑀

#]𝑑(𝑛 − 1)-𝑘𝑚2[𝑃𝑛][𝑀
#] + 𝑘𝑝[𝑃𝑛−1

∗ ]𝐻(𝑛 − 1) − 𝑘𝑡
∗[𝑃𝑛]   (29)   

n=1,2…∞ 

 

Intermediate polymer chains of length “n” 

 

𝑑[𝑃𝑛
∗]

𝑑𝑡
= 𝑘𝑚2[𝑃𝑛][𝑀

#] − 𝑘𝑝[𝑃𝑛
∗]   n=1,2…∞                                                                        (30) 

 

Inactive polymer chains of length ‘‘n’’ 

 

𝑑[𝐷𝑛]

𝑑𝑡
= 𝑘𝑡

∗[𝑃𝑛] − 𝑘𝑑
∗ [𝐷𝑛] + 𝑘𝑑

∗ [𝐷𝑛+1]    n=1,2…∞                                                              (31) 

 

Monomer 

 

𝑑[𝑀#]

𝑑𝑡
= 𝐽𝑀(𝑡) − 𝑘𝑚1

∗ [𝑀#] + 𝑘𝑚2
∗ [𝑀#] ∑ [𝑃𝑛]

∞
𝑛=1                                                                  (32) 

 

Synthase–Monomer complex 

 

𝑑[𝐸−𝑆𝐻−𝑀#]

𝑑𝑡
= 𝑘𝑚1

∗ [𝑀#] − 𝑘𝑖[𝐸 − 𝑆𝐻 −𝑀
#]                                                                      (33) 

 

Where 𝑘𝑚1
∗ = 𝑘𝑚1[𝐸 − 𝑆𝐻], 𝑘𝑑

∗ = 𝑘𝑑[𝐸 − 𝑆𝐻] and 𝑘𝑡
∗ = 𝑘𝑡[𝐻2𝑂]. The Kronecker delta 

function, d(x), and the Heaviside step function, H(x), are defined by the following 

equations: 
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𝑑(𝑥) = {
1, 𝑖𝑓 𝑥 = 0

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                                                                   (34) 

 

H(𝑥) = {
1, 𝑖𝑓 𝑥 > 0
0, 𝑖𝑓 𝑥 ≤ 0

                                                                                                       (35) 

 

An important term on the model that deserves special attention is the term  𝐽𝑀(𝑡), which 

corresponds to the monomer production rate (flux) from upstream metabolic steps. This 

term is important because it would be used for linking the macroscopic model with the 

polymerization model, as it is shown in Figure 14. 

 

 

Figure 8 Metabolic/Polymerization and Macroscopic Model [46]. 

 

Finding 𝐽𝑀(𝑡) is not a straightforward task. In the following some recommendations given 

by Dr.Giannis Penloglou [68], on how to calculate 𝐽𝑀(𝑡) are given. 

 

“The first approach is to calculate the monomer concentration via the consumption rate 

of the substrate. A simple production yield can be used and calculated along with the 

remaining kinetic constants through the parameter estimation algorithm. This is the 

simplest approach”. 
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“The second approach is to integrate the kinetic model with a macroscopic one and 

define an additional equation based on the total polymer concentration. This equation will 

allow to estimate an extra unknown, which is the monomer concentration”. 

 

“The third approach is to solve a complete metabolic flux analysis problem that can 

provide with the concentration of every intracellular metabolite, thus the monomer 

concentration. It is a more demanding solution, since it will need to know the complete 

metabolic pathway and the stoichiometry of the reactions. Moreover, it will have to utilize 

experimental measurements for biomass, substrate, polymer, nitrogen, O2 and CO2 

concentrations. The solution is based on steady state conditions, thus it will need to 

solve the flux analysis in every time-point of the experimental measurements”. 

 

For the sake of simplicity, the first approach suggested was used in order to determine 

𝐽𝑀(𝑡). On the other hand, numerical solution of the system of equations (29-33) requires 

the use of specific techniques. In this work, the so-called Fixed Pivot Technique 

described in [38], [66], [67], was used in order to discretize the set of equations. 

 

3.4.2. Fixed Pivot Technique 

 

The model was simulated and validated using the conditions given in [38]. According to 

the literature, the maximum degree of polymerization usually lies in the range of 106 to 

107. Equations (29-31) are discretized into (36-38) [46]. 

 

Lumped molar balance equations for the ‘active’ polymer chains 

 

𝑑𝑃̅̅ ̅̅ 𝑗

𝑑𝑡
= 𝑘𝑖[𝐸 − 𝑆𝐻 −𝑀

#]𝑑(𝑗 − 1) − 𝑘𝑚2�̅�𝑗[𝑀
#] + 𝑘𝑃𝐻(𝑗 − 1)∑ �̅�𝑘

∗𝐴𝑗,𝑘 − 𝑘𝑡
∗�̅�𝑗       

𝑗
𝑘=1         (36) 

𝑗 = 1,2, . . , 𝑛𝑡 
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Lumped molar balance equations for the ‘intermediate’ polymer chains 

 

𝑑�̅�𝑗
∗

𝑑𝑡
= 𝑘𝑚2�̅�𝑗[𝑀

#] − 𝑘𝑝�̅�𝑗[𝑀
#] + 𝑘𝑃�̅�𝑗

∗               𝑗 = 1,2, . . , ∞                                           (37) 

 

Lumped molar balance equations for the ‘inactive’ polymer chains 

 

𝑑𝐷̅̅ ̅̅ 𝑗

𝑑𝑡
= 𝑘𝑡

∗�̅�𝑗 − 𝑘𝑑�̅�𝑗 + 𝑘𝑑
∗ ∑ �̅�𝑘𝐵𝑗,𝑘

𝑗+1
𝑘=𝑗       j=1,2,…,nt                                                          (38) 

 

The matrices 𝐴𝑗,𝑘 and 𝐵𝑗,𝑘 are defined as: 

 

𝐴𝑗,𝑘 = {

𝑥𝑗+1−𝑥𝑡

𝑥𝑗+1−𝑥𝑗
𝑥𝑗 ≤ 𝑥𝑡 ≤ 𝑥𝑗+1

𝑥𝑡−𝑥𝑗−1

𝑥𝑗−𝑥𝑗−1
𝑥𝑗−1 ≤ 𝑥𝑡 ≤ 𝑥𝑗

𝑤ℎ𝑒𝑟𝑒 𝑥𝑡 = 𝑥𝑘 + 𝑥1                                                          (39) 

 

𝐵𝑗,𝑘 = {

𝑥𝑗+1−𝑥𝑡

𝑥𝑗+1−𝑥𝑗
𝑥𝑗 ≤ 𝑥𝑡 ≤ 𝑥𝑗+1

𝑥𝑡−𝑥𝑗−1

𝑥𝑗−𝑥𝑗−1
𝑥𝑗−1 ≤ 𝑥𝑡 ≤ 𝑥𝑗

𝑤ℎ𝑒𝑟𝑒 𝑥𝑡 = 𝑥𝑘 − 𝑥1                                                           (40) 

 

The total polymer chain length distribution of polymer chains is calculated from the sum 

of the individual ‘active’, ‘intermediate’ and ‘inactive’ polymer chain distributions: 

 

�̅�𝑗 = �̅�𝑗 + �̅�𝑗
∗ + �̅�𝑗                                                                                                            (41) 

 

The number average molecular weight (Mn) and the weight average molecular weight 

(Mw) are given by: 

 

𝑀𝑛 = (
∑ 𝑥𝑗�̅�𝑗
𝑛𝑡
𝑗=1

∑ �̅�𝑗
𝑛𝑡
𝑗=1

)𝑀𝑊                                                                                                      (42) 
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𝑀𝑤 = (
∑ 𝑥𝑗

2�̅�𝑗
𝑛𝑡
𝑗=1

∑ 𝑥𝑗�̅�𝑗
𝑛𝑡
𝑗=1

)𝑀𝑊                                                                                                    (43)                                        

Where MW is the molecular weight of the repeating unit and for β-hydroxybutyrate is 

103.04 g/mol. 

 

Now, according to [38], in the case that the biomass concentration is constant, the 

monomer production rate, 𝐽𝑀(𝑡) can be assumed to be proportional to the fructose 

consumption rate, 𝐽𝐹(𝑡): 

 

𝐽𝑀(𝑡) = 𝑌𝑀
𝐹

  𝐽𝐹(𝑡)                                                                                                          (44) 

 

Where 𝑌𝑀
𝐹

, is a monomer to substrate yield coefficient (mol of monomer produced/mol of 

fructose consumed). 

 

Based on the information of Tables 6 and 9 and with a nt value of 51, Figure 15 

compares the model predictions with the experimental data (extracted from [38]). Figure 

15-e) deserves special attention, because it shows the validation for the Number average 

Molecular Weight (Mn), and this is also compared to the approximation obtained by [38], 

[46]. From this, it can be seen that the model simulation results obtained in this work are 

in good agreement with the experimental data and with [38] predictions for Mn.  
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Figure 9 Simulation of different batch Dynamics. a)Biomass, b)Polymer, c) Carbon 

source, d)Nitrogen Source, e) Number Average Molecular Weight (Mn). 

 

3.4.3. Fed-Batch: Structured kinetic/Polymerization Model 

 

As the optimizing control strategy proposed in this work will be applied to a fed-batch 

process, it is necessary to validate the kinetic/polymerization model under fed-batch 

conditions. Figure 16 shows the model validation results, including Mn predictions. As it 

can be seen, model predictions are still in good agreement with experimental data for the 

product and substrate concentrations and for the average number molecular weight. 

Figure 16-e) compares the simulation results obtained in this work by solving the 
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problem using the fixed pivot technique, against the predictions obtained by [38] and the 

reported experimental data.  

 

Table 9 shows a comparison between the reported kinetic constants [38], [46] and the 

identified parameters by optimization. Some differences could be due to the differences 

in the number of parameters used in each model, but result shows a good fitting with the 

reported parameters. 

 

Table 9 Parameters of the polymerization–depolymerization model. 

 

Parameters 

Authors Estimation 

[38], [46] 

 

Adjusted Parameters 

ki (h-1) 0.62 ±9 x 104 0.64x104 

kP(h-1) 0.46±5x105 0.44x105 

𝑘𝑡
∗ (h-1) 0.14±1x101 0.101x101 

𝑘𝑚1
∗ (h-1) 0.11±2x10-3 0.114x10-3 

km2(l/mol/h) 0.85±15x107 0.75x107 

𝑘𝑑
∗ (h-1) 0.83±6x102 0.25x102 

𝑌𝑀
𝐹

 0.35±2x10-2 0.23x10-2 

 

After validating the simulation results for the fed-batch kinetic/polymerization model and 

its interaction with the macroscopic model, it is possible to use such model in order to get 

enough “in silico data” for building a state estimator able to predict the number average 

molecular weight, the  weight average molecular weight and the polydispersity index.  



Advanced Control of a fed-batch reaction system to increase the yield in the polyhydroxyalkanoates production 
process.                                                                                                                                                              54 

 

 
Master's Thesis-Cesar Augusto García Echeverry 

Master Program in Chemical Engineering - Universidad de Antioquia-Colombia 

 

  

 

Figure 10 Simulation of different batch Dynamics.a) Polymer, b) Carbon source, c) 

Number Average Molecular Weight (Mn). 

 

3.5. Soft sensor development for predicting the weight number molecular 

weight (Mw) and the number average molecular weight (Mn) 

 

An Artificial Neuronal Network (ANN) was developed for being used as state estimator 

for the present case study. The ANN was developed by using the “in silico” data obtained 

from the kinetic/polymerization model described in the previous section. The ANN was 

selected to be used as online estimator instead of the kinetic/polymerization model 

because the latter has an increased computational demand when used at online 

0 20 40 60
0

1

2

3

Time (h)

P
 (

g
/l
)

 

 

Model Validation

Experimental Data a)

0 20 40 60
0

2

4

6

Time (h)

S
 (

g
/l
)

 

 
Model Validation

Experimental Data

b)

0 20 40 60
0

2

4

6

8

10

12
x 10

5

Time (h)

M
n
 (

g
/m

o
l)

 

 
Model Validation

Experimental Data

Penloglou et al. (2010)

c)



Advanced Control of a fed-batch reaction system to increase the yield in the polyhydroxyalkanoates production 
process.                                                                                                                                                              55 

 

 
Master's Thesis-Cesar Augusto García Echeverry 

Master Program in Chemical Engineering - Universidad de Antioquia-Colombia 

 

applications. Therefore, towards looking for tools that could be really applied online at 

industrial level, it was decide to use the ANN for Mw and Mn predictions. 

 

Figure 17 shows the structure of the ANN built. As it can be seen, the ANN is composed 

by fourteen inputs and one output, twelve neurons in the inner layer and one neuron in 

the outer layer. The regressor, which is the vector of measured (or known) signals, 

comprises the following variables [F1(t-1); F1(t-2); F2(t-1); F2(t-2); X(t-1); X(t-2); S(t-1);S(t-

2); N(t-1); N(t-2); P(t-1); P(t-2); CO2(t-1); CO2(t-2)]. Two ANNs were built, one for 

predicting the Mn and the other for predicting the Mw. Therefore, with de predicting Mn 

and Mw it is possible to estimate PDI.   

 

The “in silico data” for the regressor vector were generated using persistently excited 

signals, obtained by using random piecewise feeding profiles in a range between 0-10 

L/h in the macroscopic model described in sections 3.3 and the kinetic /polymerization 

model described in section 3.4. In silico data were obtained for building the ANN for Mw 

prediction, the 70% to those data were used for training and the remaining data were 

used for validating the ANN. It is important to notice that all the data were normalized 

between 0-1. 

. 

 

 

Figure 11 Artificial Neuronal Network built in Matlab 2014b Toolbox 
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3.5.1 Mn:  ANN Training, Identification and Validation 

 
A script code developed by [69] and the Matlab Toolbox “newfft” were used for building a 

feed-forward back propagation neural network. Neurons in the inner and outer layers use 

a hyperbolic tangent function (tansig) as activation function. The output neuron use a 

linear activation function (purelin). The Levenberg-Marquardt backpropagation (using the 

‘trainml’) and the Gradient descent with momentum weight and bias (using the 

‘learngdm’) methods were used for training and learning functions, respectively. Finally, 

the MSE was used as performance index.  

 

The results during the learning and training procedures for building the ANN for 

predicting the Mn are shown in Figure 18. As it can be seen, the results show a very 

good fit, with small deviation with a Mean Absolute Error of 0.85% and R2 of 0.999. 

Figure 18-a) shows the ANN response with the initial deviation without training, 18-b) 

shows the performance index during the training. Figures 18-c) and 18-d) show the 

comparison for the ANN predictions for the identification and validation data, 

respectively. Finally, figures 18-e) and 18-f) show the fitting response and error variation 

during training. The histogram shows how the error is reduced with time and it 

corresponds with the fitting. 
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Figure 12 a) Mn ANN response without Learning, ANN prediction (red), Identification 

Data (blue); b) Performance during Training; c) ANN performance (cyan), Identification 

Data (Magenta); d) ANN performance (red), Validation Data (blue); e) ANN Training and 

fitting; f) ANN Histogram with Validation data. 

The same methodology was applied for building the ANN for the weight average 

molecular weight. The results are shown in figure 19. It can be seen that it was found a 

very good fit with a small deviation with a Mean Absolute Error of 0.78% and R2 of 0.999.  
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Figure 13 a) Mw ANN response without Learning, ANN prediction (red), Identification 

data (blue); b) Performance During Training; c) ANN performance (cyan), Identification 

Data (Magenta); d) ANN performance (red), Validation Data (blue); e) ANN training and 

fitting; f) ANN Histogram with Validation data. 

For the weight average molecular weight (Mw), it is important to remind that it is 

necessary to validate experimentally the model described in section 3-4. 

 

By estimating Mw and Mn it is possible to calculate the polydispersity index. According to 

[70], the Polydispersity Index (PDI) is a measurement of the dispersion in the polymers. It 

is defined as the ratio of Mw and Mn. When the polydispersity index is equal to one, 

then, all the polymeric species in the mass have the same molecular weight and in this 

case, there not exist dispersion. As higher the index, higher the dispersion in the 

molecular weight distribution for the polymer. The polydispersity index (PDI) is then 

calculated as: 

 

𝑃𝐷𝐼 = 𝑀𝑤/𝑀𝑛……………………………………………………………………………… (45) 

 

In the next section, the Mn predictions will be used inside an optimizing control strategy 

in order to allow searching for maximum profitability while keeping end-product 

properties inside typical desired values. Finally, it will be estimated Mw and PDI in time 

variations.  
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4. OPTIMIZING CONTROL  

 
In previous section, it has been established and validated (using reported experimental 

data) the prediction of state variables and the molecular weight distribution for the fed-

batch PHAs fermentation process, using the strain Ralstonia Eutropha. In this section, an 

optimizing control strategy is proposed and applied (in simulation) to the process, in 

order to maximize the process productivity, while keeping the number average molecular 

weight between a desired range (i.e. literature reported). 

 

The optimizing control scheme used in this work is given in Figure 20. The optimizing 

control problem solves a Dynamic Optimization problem (DyOpt), where the decision 

variables’ vector is composed by the manipulated variables (i.e. control vector). For the 

PHAs fermentation case study, the considered manipulated variables are the feeding 

profiles for the carbon and nitrogen sources. The DyOpt problem considers a 

productivity-related objective function, which is subject to constraints (i.e. on the input 

flows and some state variables). One important point of this optimizing control scheme is 

that the Mn and Mw are important constraints that should be fulfilled at the optimal 

solution. The ANN carries out estimation of Mn and Mw  

 

 

Figure 14 Proposed Optimizing Control Scheme 

 

In the next sections, the optimizing control scheme is applied at two different cases in 

PHAs fermentation. Case 1 is a reported case study that can be found elsewhere [60]. In 
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this scenario, the idea is to establish the more suitable feeding strategy in order to 

assure maximal productivity. For this reason, in this case, four different types of control 

policies (i.e. feeding strategies) are compared: i) Constant ii) single pulse, iii) piecewise 

constant, and iv) sinusoidal feeding profiles. On the other hand, Case 2 deals with the 

optimizing control problem of a PHAs fermentation process using standard conditions, 

which have been determined by the Biotransformación research group at UdeA. Such 

standard conditions have been determined in order to avoid inhibition effects in the PHAs 

fermentation process by R. Eutropha. ATCC 17699. 

 

4.1. Case 1: Referenced Case Study: Feeding Policy Selection. 

 

The feeding strategy comparison was based in the fermentation conditions reported in 

[60], these fermentation conditions are the same reported and validated in [18]. 

 

As it was mentioned, the idea is to compare four different feeding policies. The first two 

strategies (i.e. the constant flow and pulse) are commonly applied due to the easiness on 

its implementation. The piecewise constant and the sinusoidal policies have been 

recently reported in the literature. 

 

The sinusoidal feeding policy parameterizes the control vector by using equation (46) in 

[43], where; 

 

𝑢𝑘 = 𝑎𝑜𝑘 + ∑ 𝑎ℎ𝑘𝐶𝑜𝑠 (𝑤ℎ𝑘 (
𝑡−𝑡0

𝑡𝑓−𝑡0
) + ∅ℎ𝑘)

𝑟
ℎ=1                                                               (46) 

 

In this work, r = 2 in Eq. (46). Therefore, the Carbon and Nitrogen feed flow rate profiles 

are described by: 

 

𝐹1 = 𝑎𝑜1 + 𝑎11𝐶𝑜𝑠 (𝑤11 (
𝑡−𝑡0

𝑡𝑓−𝑡0
) + ∅11) + 𝑎21𝐶𝑜𝑠 (𝑤21 (

𝑡−𝑡0

𝑡𝑓−𝑡0
) + ∅21)                      (47) 
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𝐹2 = 𝑎𝑜2 + 𝑎12𝐶𝑜𝑠 (𝑤12 (
𝑡−𝑡0

𝑡𝑓−𝑡0
) + ∅12) + 𝑎22𝐶𝑜𝑠 (𝑤22 (

𝑡−𝑡0

𝑡𝑓−𝑡0
) + ∅22)                   (48) 

 

Where w1, w2 are the frequency, and ∅1 and ∅2 are the phase angle of the sinusoidal 

profile. For this specific case, this type of parameterization uses seven parameters for 

each flow rate.  

 

The piecewise constant feeding strategy is parameterized using equation (49) [71]. 

 

𝐹1,2 = ∑ 𝑎𝑖𝑜𝑘𝜑(𝑡𝑖−1, 𝑡𝑖)(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛) + 𝑢𝑚𝑖𝑛
𝑚
𝑗=1                                                   (49) 

 

𝜑(𝑡𝑖−1, 𝑡𝑖)={

0,          𝑡 < 𝑡𝑖−1

1,  𝑡𝑖−1 ≤ 𝑡 < 𝑡𝑖

0,              𝑡 ≥ 𝑡𝑖

                                                                               (50) 

 

Where, for this case were selected m=12 that is the number of steps. umax=0.3 and 

umin=0 correspond to the maximum and minimum values for each step. The 𝑎𝑖𝑜𝑘 is the 

parameter that defines the control vector profile, and is therefore the decision variable of 

the dynamic optimization problem. For this specific case, this type of parameterization 

uses 12 parameters for each flow rate.  

 

The dynamic optimization problem solved in the optimizing control scheme is described 

by Equations (51-51h). Bounds for the constraints were taken from the referenced case 

study described in [60]. 

 

                                        (𝑃(𝑡𝑓) ∗ 𝑉(𝑡𝑓))𝐹1(𝑡), 𝐹2(𝑡),   𝑆𝑖𝑛, 𝑁𝑖𝑛
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒            (51) 

                                             s.to. 𝐹1 0 (
𝐿

ℎ
)            (51a) 

                                                     0 ≤ 𝐹2 ≤ 2(
𝐿

ℎ
)          (51b) 

                                                     max (𝑆(𝑡)) ≤ 90.11 (
𝑔

𝐿
)         (51c) 
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                                                     max(𝑁(𝑡)) ≤ 10.11 (
𝑔

𝐿
)         (51d) 

                                                    𝑆𝑖𝑛 ≤ 800 (
𝑔

𝐿
)                       (51e) 

                                                    𝑁𝑖𝑛 ≤ 70 (
𝑔

𝐿
)                          (51f) 

                                                    𝑉 ≤ 10𝐿           (51g) 

                                          
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝐹)                                  (51h) 

 

Equation (51) includes constraints on max S and max N, which are the maximum Carbon 

and Nitrogen source concentration that can be reached in fermentation. In addition, on 

the Sin and Nin, which are the Carbon and Nitrogen concentrations in the F1 and F2, 

respectively. Finally, constraints on the values for F1, F2 and the volume (V) are also 

considered. 

The dynamic optimization problem was solved by parameterizing the control vector using 

the four mentioned policies. Figures 21 and 22 show the optimal feeding profiles after 

solving the problem. As it can be seen, the sinusoidal and piecewise policies have similar 

profiles. Figures 23 and 24 show the dynamic behavior for the Biomass and Polymer 

concentrations. It can be seen that the best behavior is obtained when using the 

sinusoidal feeding profile, followed by the piecewise and constant strategies. The Single 

pulse strategy resulted in the worst behavior. Figures 25 and 26 show the dynamic 

behavior for the carbon and nitrogen-source concentrations. The piecewise feeding 

profile resulted in strong changes in the carbon source concentration. The more suitable 

behavior is for the sinusoidal and constant feeding strategies, which, resulted in the 

smoothest response. For the Nitrogen source, both strategies, sinusoidal and piecewise, 

have the same smoothest profiles. 

 

These tendencies show the importance of feeding strategy selection, according to the 

type of fermentation, strains, bioreactors and availability of control systems. In the case 

of high inhibitory fermentations, the selection of the feeding policy, play an important role 

in order to get a high productivity and profitability, while avoiding cellular stress due to 

sudden and high variations on the substrate concentration at the culture media. The 
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sinusoidal feeding strategy is a smooth strategy that can minimize the cellular stress due 

to big changes in nutrients concentrations.  

 

 

Figure 15 Optimal feeding profiles for the carbon source: Comparison of four policies. 

 

Figure 16 Optimal feeding profiles for the nitrogen source: Comparison of four feeding 

policies. 
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Figure 17 Dynamic behavior of the Biomass: Comparison of four feeding policies. 

 

Figure 18 Dynamic behavior of the Polymer concentration: Comparison of four feeding 

policies. 
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Figure 19 Dynamic behavior of the Carbon source concentration: Comparison of four 

feeding policies. 

 

Figure 20 Dynamic behavior of the nitrogen source concentration: Comparison of four 

feeding policies. 
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Table 10 compares the results obtained by using the four different strategies. 

Furthermore, the computational time required for solving the dynamic optimization 

problem in all cases is also included for the sake of comparison. As it can be seen, the 

sinusoidal feeding policy resulted in the highest productivity, whereas the single pulse 

policy resulted in the lowest. Furthermore, the lowest computational time was obtained 

by the constant and single pulse feeding strategies, whereas the higher one was the one 

by the piecewise strategy. 

 

The optimal initial substrate and nitrogen-source concentrations are quite similar for all 

strategies, except for the single pulse (as it was expected), which requires the highest 

concentration (e.g. 750.59 g/L of carbon source in F1). 

 

Table 10 Comparison of Feeding strategies: productivity and computational time for the 

solution of the Dyopt problem for a fermentation time of 49h. 

Feeding Strategy 
Productivity 

(g) 
Nin (g/L) in F2 Sin(g/L) in F1 

Computational 

Time (seconds) 

1. Constant 364.45 48.66 495.93 2.87 

2. Pulse 183.61 38.44 790.59 2.88 

3. Piecewise 402.90 43.37 448.52 4.11 

4. Sinusoidal 405.17 42.35 463.61 3.12 

 

Analyzing the results, it is seen that the sinusoidal parameterization is the best strategy 

due to: i) it reaches the highest productivity by applying a smoother control policy (which 

avoids cellular stress and possibly substrate shock), and ii) the required computational 

time for solving the optimization problem is manageable (i.e. in comparison with the 

piecewise policy it requires a fewer number of parameters to be found during the 

optimization). 

 

Figures 27-a) and 27-b) show the ANN predictions for Mn and Mw when applying the 

sinusoidal feeding strategy. Such predictions are compared against the 

phenomenological-based semiphysical model described in section 3.4. It is important to 
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remark that the Mw (Figure 27-b) has not been validated against experimental data, but it 

has a similar behavior as Mn along the fermentation time, and the final values are in the 

range of the values reported in the literature. 

 

Figure 27-c) show the PDI prediction for sinusoidal feeding strategy based in equation 

(45). It shows an increase after 30 hours due to the decrease in Mn, while, Mw remains 

approximately constant. 

 

  

 

Figure 21 ANN predictions for a) Number Average Molecular Weight distribution (Mn) 

and b) Weight Average Molecular Weight distribution (Mw).  ANN predictions are 

compared against the phenomenological-based semiphysical kinetic/polymerization 

model. c) PDI Prediction. 
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Table 11 shows a comparison between the predictions by the ANN and the 

phenomenological-based semiphysical kinetic polymerization model developed in section 

3.4. The computational time is an important aspect when making this comparison, because 

application of the optimizing control strategy requires online prediction of the polymer end-

properties. As it was expected, the phenomenological-based semiphysical model has the 

higher computational time, whereas the ANN calculations are faster. However, it is important 

to notice that more experimental data are required to build a more robust ANN for predicting 

Mn and Mw. Unfortunately, at this moment to the author´s knowledge, there are on the open 

literature no more experimental data available than those already used in section 3.4. Finally, 

it is important to remark that even though ANN predictions differ from those from the 

phenomenological-based semiphysical model in an order of magnitude, the approximation is 

good enough and it gives an idea about what is happening with Mn and Mw because ANN 

predictions are in agreement to the values reported in the literature for the type of 

fermentation addressed in this work (e.g. fed-batch by Ralstonia eutropha), according to [38], 

the mechanical properties of biopolymers considerably deteriorate when the weight average 

molecular weight (Mw) is lower than 4x105 Da. Moreover, for thermoplastic applications the 

value of Mw should be higher than 6x105 Da and typical values of the number average 

molecular weight (Mn) of PHB, range from 8x104 to 1x106 Da.  

 

Due to the absence of experimental data, at this point, it is not possible to state which model 

(the ANN vs the semiphysical kinetic/ polymerization) gives the most accurate predictions for 

the Mn and Mw values. Of course, the semiphysical kinetic/ polymerization model is more 

reliable because its structure relays on the first principles, although some terms on it are 

empirical. Also, the model parameters were kept constant at the values determined by using 

other conditions. On the other hand, the ANN model is a pure black box model that depends 

strongly on the experimental data used for building and training the network, and as it was 

mentioned before, in the available literature there is just one report available with Mn data 

[38], and therefore, more experimental data are required in order to validate the results 

associated to the Mn and Mw predictions. Although the model predictions are very important 

and determine the successful implementation of the optimizing control strategy, it is important 

to emphasize that this work wanted to show the potential application of dynamic optimization 
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for maximizing the productivity, but coupling some constraints to the optimization problem, 

specially constrains related to the polymer end-product characteristics.   

 

Table 11 Molecular Weight Predictions for Smooth Feeding: Sinusoidal strategy at the 

end of the fermentation (49 h). 

Prediction Method 
Mn 

(g/mol) 

Mw 

(g/mol) 

Computational Time 

(seconds) 

1. Artificial Neuronal 

Network (ANN) 
1.09x105 5.83x105 3.12 

2. Phenomenological-

based semiphysical 

kinetic/ polymerization  

4.41x104 1.38x106 121.08 
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4.2. Case 2: Specific case study, common Fermentation. 

 
In most common cases during fermentation, inhibition is a big problem that influences 

negatively the process productivity. This inhibition can be due to many causes, as high 

initial nutrients concentrations, application of an inappropriate feeding strategy, and a 

wrong determined dissolved oxygen concentration. 

 

The Biotransformación research group from the University of Antioquia has carried out 

many studies in order to find the optimal initial conditions that maximize the specific 

growth rate while minimizing the inhibition effect in fermentations for obtaining PHAs by 

Ralstonia eutropha. ATCC 17699, using as raw material glucose syrup. In this section, 

the optimizing control problem is solved for this specific case study.  

 

Figure 28 shows the experimental results of the effect of the initial concentration of 

glucose in the specific growth rate. There were evaluated glucose concentration values 

from 4 to 30 g/l (concentrations higher than 30g/l were evaluated but showed a strong 

inhibitory effect).  

 

 

Figure 22 Growth inhibition due Initial carbon source concentration in PHAs production 

by Ralstonia eutropha. 
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The same analysis was performed for the Nitrogen source (ammonium sulfate in 

balanced medium), concentrations higher than 10.11 g/l showed an inhibitory effect. The 

dissolved oxygen concentration is kept at 40% D.O, by having an airflow rate of one 

Vessel Volume per Minute (VVM). The initial Polymer concentration is almost equal to 

zero and the initial Biomass concentration is 0.18 g/L. The dynamic optimization problem 

to be solved is given in equation (52): 

 

                                        (𝑃(𝑡𝑓) ∗ 𝑉(𝑡𝑓))   𝐹1(𝑡), 𝐹2(𝑡),   𝑆𝑖𝑛, 𝑁𝑖𝑛
𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒                           (52) 

                                             s.to. 𝐹1 0.3 (
𝐿

ℎ
)             (52a) 

                                                     𝐹2 ≤ 0.3 (
𝐿

ℎ
)                      (52b) 

                                                     max (𝑆(𝑡)) ≤ 30 (
𝑔

𝐿
)                     (52c) 

                                                𝑆(𝑡𝑓) ≤ 0.8𝑆(𝑡0),  (
𝑔

𝐿
)                         (52d) 

                                                     max(𝑁(𝑡)) ≤ 10.11 (
𝑔

𝐿
)           (52e) 

                                               𝑁(𝑡𝑓) ≤ 0.8𝑁(𝑡0), (
𝑔

𝐿
)                          (52f) 

                                                    𝑆𝑖𝑛 ≤ 800 (
𝑔

𝐿
)                          (52g) 

                                                    𝑁𝑖𝑛 ≤ 70 (
𝑔

𝐿
)                             (52h) 

                                                    𝑉 ≤ 7𝐿                        (52i) 

                        400000 (
𝑔

𝑚𝑜𝑙
) ≤ 𝑀𝑛(𝑡) ≤ 2000000 (

𝑔

𝑚𝑜𝑙
)                          (52j) 

                                                
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝐹)                                      (52k) 

 

Where the objective function is the productivity quantified as P*V at the final time (32 h), 

max S and max N are the maximum “desirable” Carbon and nitrogen source 

concentrations (due to inhibition), S(tf), N(tf), are the final Carbon and nitrogen source 

concentrations, which must be below 80% of the Initial concentrations, in order to avoid 

inhibition conditions and to increase de Yield of substrate respect to biomass gS/gX. Sin 

and Nin are the Carbon and Nitrogen source concentrations in F1 and F2 respectively. V is 
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the final fermentation volumen, Mn is the Number Average Molecular Weight, and it must 

be kept at a range of 4x105-2x106 g/mol, which according to [46] is a range for having 

good thermoplastic applications. 

The dynamic optimization problem stated in Equation (52) was solved by using the direct 

approach and parameterizing the control vector by using the sinusoidal parameterization. 

In Figures 29-a) and 29-b) the obtained optimal feeding profiles for F1 and F2 are shown. 

Figures 29-c) and 29-d) show the Nitrogen and Carbon source concentration along the 

fermentation. Figures 29-e) and 29-f) show the Polymer and Biomass predicted profiles. 

Figure 29-g) and 29-h) show the Mn and Mw predictions. Mn predictions are between the 

desired ranges (i.e. constraint used for assuring end-product specifications). Finally, 

Figure 25-i) shows the predictions of the polydispersity index. Results for the 

polydispersity index are also in agreement with the required values for desired PHAs 

applications, according to [44].  

 

The variation in PDI after time 20h in Figure 25-i) is due to the time variation in Mn 

looking to fulfill the constraint and the carbon source variation in Figure 25-d) looking for 

the optimum. It seems to be that Mn changes in a faster way than Mw does. It is 

necessary to take into consideration the fact of performing control strategies using and 

validating Mw and PDI in the Dopt as desired constraints. 

 

It is important to notice, in Figures 25-g) and 25-h), the comparison between the ANN 

and the phenomenological based model predictions. Both models show a similar 

tendency in the final behavior, but with a deviation in the initial stage. Mw is the most 

deviated, and this is due to the absence of validation during the development of the 

ANN. 
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Figure 23 a) Feeding Strategy for Carbon Source. b) Feeding Strategy for Nitrogen Source. 

c) Nitrogen Source Profile. d) Carbon Source Profile. e) Polymer Profile. f) Biomass Profile. 

g) Number Average Molecular Weight (Mn); ANN prediction. h) Weight Average Molecular 

Weight (Mw); ANN prediction. I) Polydispersity Profile. 

 

Table 12 summarizes the obtained results. It can be observed that the final Mn value fulfilled 

the constraints. Furthermore, it is possible to observe that the productivity reached is 138.44 

g, which is a lower value than the obtained in the previous case study, however, conditions 

worked in the current case study are more realistic. Finally, the final polidispersity is 1.54 that 

corresponds with literature values for Ralstonia eutropha and glucose syrup as raw material 

[44].  
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Table 12 Polymer Properties Predictions by ANN at 32h of fermentation. 

Prediction Method 
Mn 

(g/mol) 

Mw 

(g/mol) 

Productivity 

(g) 

Polydispersity 

(PDI) 

Computational 

Time (seconds) 

Artificial Neuronal 

Network (ANN) 

 

4.05x105 

 

6.25x105 

 

138.44 

 

1.54 

 

2.34 

 

  



Advanced Control of a fed-batch reaction system to increase the yield in the polyhydroxyalkanoates production 
process.                                                                                                                                                              77 

 

 
Master's Thesis-Cesar Augusto García Echeverry 

Master Program in Chemical Engineering - Universidad de Antioquia-Colombia 

 

4.3. Disturbances Scenarios 

 
In this section, the dynamic behavior of the main process variables was analyzed when 

facing different disturbances scenarios (i.e. variations of ±50% in the nominal value of 

the most important parameters or process conditions) such as maximum specific growth 

rate and initial conditions such as biomass and carbon concentrations. Those are the 

most common disturbances in fermentation processes that affect the final productivity. 

 

The disturbances scenarios are compared to the nominal case (Case 2, Specific case 

study in section 4.2). Table 12 shows the analyzed scenarios and the final productivity 

reached due to the variations in the nominal value of the mentioned parameters. The 

optimizing control problem was solved again at each evaluated scenario, looking for the 

best feeding policies in order to keep a maximal productivity. 

 

Table 13 Productivity at the final fermentation time evaluated for different disturbances 

scenarios in 32 h and 7 L. 

 

Parameters 

 

Productivity (g) 

 

μm 

-50% 49.49 

Nominal: 0.61 h-1 138.43 

+50% 242.77 

 

𝐗(𝑡0) 

-50% 143.76 

Nominal: 0.18 g/L 138.43 

+50% 152.38 

 

𝐒(𝑡0) 

-50% 169.79 

Nominal: 20 g/L 138.43 

+40% 158.85 
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In Table 13 is possible to see the positive effect in the productivity due to +50% of 

change in the nominal value of the maximum specific growth rate. This could be due to 

the effect of increasing the biomass and in this sense the polymer concentration. Figures 

30-a) and 30-b) show the optimal feeding policies due to the disturbances in the 

maximum specific growth rate. Figures 30-c), 30-d), 30-e) and 30-f) show the optimal 

response due to the change in the feeding polices. If µm decreases, the biomass 

concentration decreases as well, which results in an important reduction on the process 

productivity (from 138.43 g at the nominal case, to 49.49 g). 
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Figure 24 Disturbances due to the change in µm a) Carbon Source feeding polices; b) 

Nitrogen source feeding Polices; c) Nitrogen Source Profile; d) Polymer Profile; e) 

Carbon Source Profile; f) Biomass Profile. 

The same evaluation was performed when varying the initial biomass concentration, 

whose results can be seen in Figures 31-a) to 31-f). Figures 31-a) and 31-b)  show the 

optimal feeding policies to reach a productivity of 152.38 g with a +50% of change in the 

nominal value. Figures 31-d), -e) and -f) show a similar tendency in the concentration 

profiles due the changes in the feeding polices. Figure 31-c) have an important deviation 

due the changes in nitrogen feeding polices as Figure 31-b) shows. 
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Figure 25 Disturbances due to the change in initial Biomass concentration X(0) a) 

Carbon Source feeding polices; b) Nitrogen source feeding Polices; c) Nitrogen Source 

Profile; d) Polymer Profile; e) Carbon Source Profile; f) Biomass Profile. 

 

Figures 32-a) and –b) show the feeding polices due the change in the initial carbon 

source concentration. It was performed -50% of change in the nominal value of the initial 

state and +40% of change in the nominal value of the initial state, because of the 

constraint, in order to avoid inhibition conditions (at concentrations higher than 30 g/L). 
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Figures 32-d) and –f) shows a similar tendency with respect to the feeding polices 

changes. Nevertheless, Figures 32-c) and e) show an important deviation from the 

nominal value due the changes in the concentration profiles. 
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Figure 26 Disturbances due to the change in initial Carbon Source concentration S(0) a) 

Carbon Source feeding polices; b) Nitrogen source feeding Polices; c) Nitrogen Source 

Profile; d) Polymer Profile; e) Carbon Source Profile; f) Biomass Profile. 
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5. CONCLUSIONS 

 

Advanced control strategies, as optimizing control, are essential tools that can be 

implemented in order to achieve maximal productivity and profitability in bioprocess 

applications. By applying the optimizing control concept coupled to a soft-sensor for 

predicting number average molecular weight, it was possible to reach a high productivity  

while keeping desired end-product specifications. 

 

Sinusoidal parameterization has shown to provide higher productivity through the use of 

smooth feeding profiles that are suitable for avoiding cellular stress due to substrate 

shock. Furthermore, as such, parameterization uses a lower number of parameters; the 

dynamic optimization problem was solved in a faster way, when compared to a traditional 

piecewise parameterization. 

 

In the disturbances scenario analysis it was possible to observe that when important 

process parameters change, it is necessary to solve once again the optimizing control 

problem, in order to look for the best new feeding policies leading to a higher productivity 

while fulfilling the constraints in the Mn.  

 

For real case applications it is necessary to think about implementation issues, where the 

minimum requirements will be a computer based control system and final control 

elements (i.e. proportional valves, variable speed drive pumps).  

 

More experimental data are required for validating the Mw and the PDI in order to obtain 

more accurate predictions for fulfilling the constraints in the solution of the optimizing 

control problem.  
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Further work is now directed towards applying the optimizing control-ANN strategy 

developed here in a 500L pilot plant located at the Biotransformación research group lab, 

for producing polyhydroxyalkanoates, by using as raw material a mixture of 

vinasses/molasses as carbon source.   
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