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Resumen

El aumento en la expectativa de vida, tanto en Colombia como a nivel mundial, requiere

un mayor uso de tecnoloǵıas dentro del área de la salud que permita a los adultos may-

ores conservar su independencia y mejorar su calidad de vida. En esta tesis se analiza

la problemática de cáıdas en adultos mayores independientes, cuyas consecuencias pueden

minimizarse mediante un sistema portable de detección automática que env́ıe una alarma de

forma oportuna. Como punto de partida se elaboró una base de datos con 38 participantes

que realizaron 19 actividades de la vida diaria y simularon 15 tipos de cáıdas. Para ello se

utilizó un dispositivo portable con un acelerómetro triaxial.

Pruebas preliminares con algoritmos de extracción de caracteŕısticas comúnmente usados en

la literatura para discriminar entre cáıdas y actividades de la vida diaria presentaron una

precisión de hasta 96 %. Para ello se utilizó un clasificador de bajo costo computacional

basado en umbral que pudiese funcionar en tiempo real en sistemas embebidos. Un análisis

individual de actividades con cada uno de los algoritmos de extracción de caracteŕısticas

demostró que algunas de ellas son complementarias entre śı, este análisis se usó como punto

de partida para desarrollar métricas no lineales que mejoraron la discriminación a un 99 %.

También se observó que muchos de los falsos positivos son debidos a actividades periódicas

de alta aceleración, que pudieron ser detectados a partir de su periodo.

Con el fin de garantizar que la metodoloǵıa desarrollada fuese implementable en sistemas

embebidos sin que ello signifique una alta carga computacional (y el consecuente consumo

de bateŕıa), en este trabajo se propone un algoritmo basado en un filtro de Kalman, un

pre procesamiento basado en un filtro Butterworth de cuarto orden, una métrica no lineal

basada en dos caracteŕısticas de extracción comúnmente usadas, y un clasificador basado en

umbral. Este algoritmo fue implementado en un dispostivo embebido y validado mediante la

simulación de las mismas actividades de la base de datos adquirida en este trabajo, además

de una prueba piloto en condiciones reales con adultos mayores. Ambas pruebas presentaron

una tasa de error inferior al 1 %.

Palabras clave:

Adultos mayores, detección de cáıdas, actividades de la vida diaria, acelerómetro, proce-

samiento de señales.
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Abstract

The increase in life expectancy, both in Colombia and globally, requires higher use of health-

care technology to allow elderly adults maintain their independence and improve their quality

of life. In this thesis, we analyze the problem of falls in independent elderly people. The con-

sequences of a fall can be minimized by a portable automatic detection system, wich sends

an alarm right after an event. We started by creating a dataset with 38 participants that

conducted 19 activities of daily life and simulated 15 types of falls. They used a portable

device with a triaxial accelerometer.

Preliminary tests with feature extraction algorithms commonly used in the literature to

discriminate between falls and activities of daily living presented up to 96 % of accuracy.

They were implemented with a low computational cost threshold-based classifier, which can

operate in real-time on embedded systems. An individual activity analysis with each feature

extraction algorithm demonstrated that some of them are complementary to each other.

This analysis was used as a starting point to develop nonlinear discrimination metrics that

improved the accuracy to 99 %. We also noted that most false positives are due to high

acceleration periodic activities, and we could detect them solely based on their period.

In order to guarantee that the developed methodology can be implemented on embedded

systems without affecting their computational capability (and the consequent battery con-

sumption), we propose an algorithm based on a Kalman filter, with a pre-processing stage

based on a 4-th order Butterworth filter, a non-linear feature based in two commonly used

feature extraction characteristics, and a threshold-based classifier. This algorithm was im-

plemented in an embedded device and validated by simulating the same activities of the

dataset acquired in this work, along with a pilot test in real conditions with elderly adults.

Both tests presented an error rate below 1 %.

Keywords:

Elderly people, fall detection, activities of daily living, accelerometer, signal processing.
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1 Introduction

1.1 Problem description

The number of elderly people living alone has been continuously growing worldwide. This

independence comes with the risk of not receiving prompt attention if an accident occurs.

A third of the people over 65 years old suffer in average one fall per year [1], and it grows

with age [2] and previous falls, where about one third develop fear of falling again [3, 4].

Not receiving attention in the first hour of the accident increases the risk of dead and chronic

affections [5]. This issue has been widely addressed in recent years with systems that detect

falls in elderly people, and generate a prompt alert that can reduce the consequences related

to medical attention response time [6]. These systems have acceptance among the objective

population as a way to support their independence and reduce their fear of falling [7].

Falls are commonly detected with wearable or ambient-based systems (see [6, 8–10] for re-

views in the field). Ambient-based sensors such as cameras are intrusive and do not solve the

problem for independent adults, who are not confined to closed spaces [11–13]. According

to [2] up to 50 % of the falls in independent elderly people occur outside the home premises.

Wearable devices offer portability as they can be used regardless of the user location. Avail-

able wearable devices include smartphone apps and self-developed systems. In both cases the

preferred sensor is the triaxial accelerometer because of its low cost, small size, and because

it is built-in in almost all smartphones [6].

Independently of the device used, other authors have faced problems with energy consump-

tion, battery life, false positives (the alarm turns on with activities of daily living), false

negatives (the alarm does not turn on with falls), and user comfort. Solving these problems

is still an open issue due to the long-term real-time operation needed, and the low com-

putational capabilities that these systems have. In this work, we propose to develop a fall

detection methodology based on movements of interest, we will test it with a self-developed

dataset, and validate it with elderly people using a wearable device.
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1.2 Objectives

1.2.1 General

To develop a methodology to identify movement focused on detecting falls in elderly people,

and to implement it in a wearable system able to generate the corresponding alarm.

1.2.2 Specific

• To report the analysis of algorithms that identify movements of interest on elderly

people with acceleration data.

• To develop a fall detection methodology to generate alerts using acceleration signals

and movement identification.

• To design a test protocol and generate a dataset with movements of interests and falls

on young and elderly people.

• To implement the developed methodology in a wearable device with transmission, and

validate it in an elderly people population.

1.3 Literature overview

Strategies to opportunely detect falls in elderly people have spread in recent years [6]. This

phenomena corresponds to the known consequences associated to a large waiting time to

receive medical attention after falling [6, 14]. Our analysis of these strategies begins listing

the different wearable devices and sensors used to detect falls and movement. Then, we

explore the wide variety of fall detection approaches available in the literature. We finish

this analysis with a review of walk and jog detection algorithms, as an input to the main

achievement of this thesis work: detecting specific daily living activities to reduce fall detec-

tion errors, which is something that other authors have not addressed before.

As stated in the problem description, ambient based devices are not feasible for independent

elderly people given that up to 50 % of falls may occur in outside premises [2]. Consequently,

we will focus exclusively on wearable devices.

1.3.1 Sensors used for fall detection

The most popular sensors used for wearable devices are accelerometer and gyroscope; some-

times used together with pressure sensors or magnetometers. However, most works found

in the fall and motion detection literature are solely based on capacitive accelerometers be-

cause of their small size, low weight, low energy consumption, and low cost [15]. These
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characteristics have popularized accelerometers in several electronic devices for a wide range

of uses (stabilizing cameras, video-game pads, smartphone positioning, etc.), and recently in

smart-watches or directly attached to clothes.

Specifically for fall detection, accelerometer based systems are highly popular. From 197

studies with portable devices reviewed in [6], 186 used them. Some accelerometer devices

include a gyroscope for detecting the position of the subject. However, as mentioned in

Bushching et al. [16], the power consumption in medical devices is critical; and as referred

in Igual et al. [6], the inclusion of a gyroscope does not significantly improves the accuracy

of the system.

Another commonly tested possibility for detecting falls is the use of several accelerometers

distributed through the body. Cleland et al. [15] stated that a single accelerometer is enough

for these tasks. However, Allen et al. [17] previously stated otherwise, and Gao et al. [18]

also stated that more sensors improve the energy efficiency of the device, due to the lower

complexity of the algorithms. Later, Gao et al. [19] analyzed multiple vs. single sensor sys-

tems for detecting activities, and they demonstrated that elaborated classifiers and feature

sets are not required to obtain high accuracies on a multi-sensor system.

Unfortunately, there are not standardized methodologies for determining the best fitted num-

ber and location of the sensors for both fall detection and motion capture, and few works

focus on it. In [15] the authors analyzed different locations for placing a triaxial accelerom-

eter for fall and motion detection. The authors concluded that most of the commonly used

positions in the body (waist, chest, leg, etc.) provide similar information, and they high-

lighted the waist as preferred for being in the center of mass of the body. But as an example

of the widespread of works in this field, Yuan et al. [20] proposed the wrist as the best

placement for detecting falls, despite the higher false positive rates they acknowledge this

position implies. For a wider overview, the review presented in Pannurat et al. [9] resumes

the most common locations of the sensors, reviewing 12 works using the chest, 8 the head,

29 the waist, 13 the thigh, 6 the wrist, 3 the back, and 5 the ankle or foot. In conclusion,

the waist is the best single location as the chest and head (that provide similar information)

are more uncomfortable for a device.

1.3.2 Wearable devices

Wearable devices used for fall detection can be divided in three categories: smartphones,

self-developed ones, and commercial systems. Smartphones are a popular selection for im-

plementing fall detection algorithms because they include a robust hardware, a powerful

processor, and they are economically affordable [6, 10, 21, 22]. However, the low cost of the

individual components and design tools has encouraged authors to develop their own em-
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bedded devices. This alternative has opened possibilities of devices with more than one

accelerometer, and other sensors such as gyroscopes, magnetometers, and barometric pres-

sure sensors, among others [19, 23–25]. There also exist commercial options that can be

purchased in the market [26–29]. But they are usually exclusive of private healthcare com-

panies [9, Table 6] preventing their use in research.

Authors face similar problems independently on the selected device. The main issues authors

report are: false alarm percentages, undetected falls, energy consumption (mainly affected

by the computational cost of the classification algorithms), and user comfort [6]. These is-

sues are more complex for smartphone based systems because they are multipurpose (more

energy consumption), and their free movement within the pocket highly increases the noise

(more classification errors) [10]. Igual et al. [30] performed a comparative analysis of dif-

ferent widely used algorithms with three public databases acquired with smartphones. The

authors demonstrated the low robustness of detecting falls due to the large variability among

datasets, i.e., the way people carry the smartphone.

For this project, we require a device permanently attached to the body of independent elderly

people. As presented above, smartphones are prone to be forgotten, to fall from the hand of

the user, and they have limited battery life. Then, in this work we developed an wearable

embedded device to record data and test our methodology. It is presented in Chapter 2.

1.3.3 Datasets

With the proper wearable device technology selected, candidate fall detection algorithms

must be evaluated before being implemented. It requires to acquire datasets with common

types of falls and activities of daily living –ADL–. In this sense, some authors analyzed how

elderly people fall. Back in 1993, authors in [5] performed a wide survey with 704 women

over 65 years old. They found that the most common causes reported were trips, slips and

lost of balance. About the conditions of the fall, in [31] the authors found that women were

three times more likely to hit the ground in the hips than men, and that most people fell

in forward direction with 60 % of prevalence. Most activities currently selected for testing

algorithms are based on results of these studies.

Once the selected ADL and falls are simulated and acquired, the raw acceleration data must

be processed and classified. Authors commonly filter the data, apply a feature extraction

method, and classify activities as falls or ADL. The literature provides a wide number of

features (Pannurat et al. [9, Table 4] has a complete list). Unfortunately, the absence of

public datasets has prevented fair comparisons among them, making it impossible to replicate

results [9, 32]. Additionally, most works have not been tested with the objective population

(elderly people, see [9, Table 1]). In [32] for example, authors tested 13 state-of-the-art
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approaches with real elderly people falls, and found that indeed their performance is affected

by the training datasets used. However, they did not release the validation dataset preventing

other authors to analyze why those features reduced their performance, and more important

how to solve it. To our knowledge, there only exist three public datasets, all acquired using

smartphones [25,33,34]. In Chapter 2, we present a new dataset with falls and ADL acquired

with a wearable device.

1.3.4 Fall detection algorithms

Most fall detection algorithms follow a three stages methodology: preprocessing, feature ex-

traction, and classification. Preprocessing is critical in the performance of the classification

algorithms and their computational burden, but most authors just mention it and most works

just include a simple low-pass filter followed by a baseline removal. In Chapter 3 we analyzed

the effect of this kind of filtering and we conclude that it is effectively enough to this purpose.

On the other hand, there is a wide amount of feature extraction algorithms proposed in

the literature [6, 9]. These algorithms process the acceleration signal in order to obtain dis-

criminative features among falls and ADL, such as acceleration peaks, variance, angles, etc.

(see [9, Table 4] for a complete list). These features are initially divided between static and

dynamic. Static algorithms compute point-wise acceleration, and dynamic ones commonly

use a sliding window. Among dynamic features it is usual to find statistic metrics (mean,

variance, etc.), changes in orientation (sometimes using time, as falls change faster than

common activities), and area under the curve (computed with integrals). In Chapter 3, we

provide results of some of the most commonly used detection features tested with both young

and elderly people.

Regarding classification (between falls and ADL), threshold based detection is still the most

opted choice over other alternatives such as nearest neighbors (NN) and support vector ma-

chines (SVM), mainly because the latter ones are not practical for real-time implementation.

Habib et al. [10] show various examples of SVM approaches consuming the battery in a few

hours. In recent years, authors have focused on tackling the issues of threshold based ap-

proaches. A simple but clever solution to avoid false positives was proposed by Koshmak

et al. [22], allowing the user to cancel the alarm signal in case of false alarm. However, it

does not solve the main problem of these algorithms: the high number of false positives and

negatives. Because of that reason authors insist in using SVM. Some of the many exam-

ples are the proposal of Kau. et al. [35] for solving the movement-in-the-pocket problem of

smartphones, and the detection of falls as novelties of Medrano et al. [34]. But none of them

addresses the battery issues.

Vavoulas et al. [33] published and tested a dataset (called Mobifall) acquired with a smart-
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phone and achieved good detection and classification results, but again with SVM. More

recently, Igual et al. [30] tested that dataset and other two public ones with NN and SVM

strategies. Despite the fact that their algorithms are too complex for implementation in

embedded devices (in terms of battery life), their conclusion that algorithms are highly de-

pendent on the specific dataset used for training is an important issue not addressed by

other authors. In Chapter 4, we achieved 99 % of accuracy with a threshold based algorithm

implemented over Mobifall dataset. We tried to test the other two datasets tested in [30] but

we found another issue, their files are too short and they do not provide enough information

about the specific activities.

1.3.5 Identification of specific activities

The individual activity analysis performed in Chapter 3 shows us that most failures in

fall detection are focused on few activities. Most of these activities coincide in periodic

waveforms and high peak accelerations. But motion capture with accelerometers has not

previously been analyzed with fall detection purposes. The closest approach comes from

Cola et al. [36], who detected gait deviation as fall risk feature. However, there are previous

approaches in the literature for detecting jog and walk with accelerometers. Oner et al. [37]

used the peaks of the acceleration signal measured with a smartphone to find steps, and sub-

sequently the kind of activity based on the period between steps. Wundersitz et al. [38] also

used the acceleration peaks but using their own device. Other authors used more elaborated

metrics but all peak based. Clements et al. [39] computed principal components of the Fast

Fourier Transform (FFT) to cite an example.

One alternative to detect non-peak based measures is using wavelets. In Godfrey et al.

[40], the authors used wavelets for classifying activities and postural transitions in young

and elderly people. The wavelet was initially used to eliminate low frequency drift, and

then to determine with vertical acceleration the type of postural transition. Yazar et al.

[41] proposed a wavelet based algorithm called single-tree complex wavelet to detect falls

versus ordinary activities, with a feature vector composed by wavelet energy. Both wavelet

algorithms presented good performance metrics (up to 99 %), but complexity issues were

not addressed. In this sense, authors have used Discrete Wavelet Transform (DWT) in

portable devices. For example, in [42] and [43] the authors implemented 1D and 2D DWT

for image processing and compression in smartphones and embedded systems. Being the

image analysis more computationally intensive than the 1D acceleration data used here.

1.3.6 Kalman-filter-based detection

Finally, in Chapter 6 we propose a fall detection algorithm based on Kalman filtering, which

simultaneously detects orientation changes and periodic activities. The Kalman filter is a
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well-known quadratic optimal estimator [44], widely used in several research fields. The

Kalman filter is Markovian (avoiding large memory storage) and linear (simple computa-

tions for lower energy consumption). Both characteristics are desirable for implementation

in embedded devices.

The Kalman filter has been previously used to identify movements of interest with accelerom-

eters. [45] used a Kalman filter to determine the lie-to-sit-to-stand-to-walk states, which are

commonly used to measure the risk of falling in elderly people (with the Berg Balance Scale

BBS for example [46]). In that work, the authors used an Extended Kalman filter to de-

termine the orientation of the device. [47] proposed a novel user context recognition using a

smartphone. There, the Kalman filter was used to obtain the orientation of the device based

on its multiple sensors (not only the accelerometer). But the authors did not specify how they

did it. Finally, [48] used a multiple sensor system to determine gait initiation and termina-

tion. In their work, the Kalman filter was used again to obtain the orientation of the devices.

The aforementioned works coincide in the objective of the Kalman filter (identifying locomo-

tion activities) but they differ on the way they implement it, and none of them is interested

in detecting falls. In [49], the authors again used the Kalman filter to obtain the device

angle, but with the purpose of detecting falls with three sensors (including gyroscope). All

previously mentioned works demonstrate that the orientation of the device computed with a

Kalman filter is a strong feature extraction characteristic, and that the Kalman filter is use-

ful to detect periodic activities such as walking or jogging. However, none of them combine

these capabilities as we propose in Chapter 6.

1.4 Publications

As result of this work, five publications were developed. One of them was already published,

two are under review, and the final two are in preparation. A copy of all papers and white

papers is included as Supplementary Material.

• J.D. López, A. Sucerquia, L. Duque-Muñoz, and F. Vargas, “Walk and jog characteri-

zation using a triaxial accelerometer”, in IEEE International Conference on Ubiquitous

Computing and Communications, 2015, pp. 1406–1410.

• A. Sucerquia, J.D. López, and F. Vargas,“Two-threshold energy based fall detection

using a triaxial accelerometer”, in 38th Annual International Conference of the IEEE-

EMBS, 2016.

• J.D. López, A. Sucerquia, F. Vargas, “Analyzing Multiple Accelerometer Configura-

tions to Detect Falls and Motion”, CLAIB 2016 (Accepted for publication).

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7363254&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D7363254
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7363254&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D7363254
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=7363254&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D7363254
http://ieeexplore.ieee.org/document/7591385/
http://ieeexplore.ieee.org/document/7591385/
http://ieeexplore.ieee.org/document/7591385/
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• A. Sucerquia, J.D. López, and F. Vargas,“SisFall: A Fall and Movement Dataset”,

2016 (Submitted to Sensors).

• A. Sucerquia, J.D. López, and F. Vargas, “Kalman filter based elderly fall detection

with a triaxial accelerometer”, (In preparation).



2 Datasets

2.1 Introduction

Research on fall and movement detection with wearable devices has witnessed promising

growth. However, there are few publicly available datasets, all recorded with smartphones,

that prevent authors to evenly compare their new proposals. Additionally, most works are

not tested with the objective population (elderly people), reducing their accuracy in real-life

applications [32]. In order to tackle this issue, the movement and fall detection approaches

proposed in this thesis were tested with two datasets, the publicly available Mobifall dataset

[50], and a novel dataset (called Sistemic Research Group Fall and movement dataset –

SisFall–) specifically developed for this work. SisFall dataset is available for download at

http://sistemic.udea.edu.co/wp-content/uploads/2016/03/SisFall_dataset.zip.

2.2 SisFall

In this section, we present the Sistemic Research Group Fall and movement dataset –SisFall,

a dataset of falls and activities of daily living –ADL– acquired with a self-developed device

composed of two types of accelerometer and one gyroscope. It consists of 19 ADL and 15

fall types performed by 23 young adults, 15 ADL types performed by 14 participants over

60 years old, and data from one additional participant of 60 years old that performed ADL

and falls.

2.2.1 Selection of activities

Prior to define the activities of the dataset, we analyzed those falls and ADL commonly

tested in the literature (see [9, Table 4]). Then, we completed the information by perform-

ing a survey with elderly people living alone and administrative personnel from retirement

homes. The survey consisted in three main questions: For each fall incident, (i) which

activity were you performing when the fall happened? (ii) What produced the fall? a

sliding, a faint, a trip, other? (iii) In which orientation the fall happened? what part of

the body received the impact?. The survey was conducted with 15 elderly people from the

psycho-physic program of the Universidad de Antioquia (between July and August 2014, in

Medelĺın, Colombia), and 17 retirement homes (between October 2014 and January 2015, in

http://sistemic.udea.edu.co/wp-content/uploads/2016/03/SisFall_dataset.zip
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Medelĺın and Manizales, Colombia).

As a result of the survey, the independent elderly people fall more when walking, taking a

shower, and walking up or down stairs; and fall less when trying to get-up or sit-down in

a chair or a bed, or bending. On the other hand, elderly people living in retirement homes

fall more when walking and when trying to get-up from a chair or a bed; and fall less when

walking up or down stairs. The answers given by the participants were consistent with the

results presented by [5]. Table 2-1 shows the types of fall we selected for this work.

Table 2-1: Types of fall selected to this work.

Code Activity Trials Duration

F01 Fall forward while walking caused by a slip 5 15s

F02 Fall backward while walking caused by a slip 5 15s

F03 Lateral fall while walking caused by a slip 5 15s

F04 Fall forward while walking caused by a trip 5 15s

F05 Fall forward while jogging caused by a trip 5 15s

F06 Vertical fall while walking caused by fainting 5 15s

F07 Fall while walking, with use of hands in a table to dampen

fall, caused by fainting

5 15s

F08 Fall forward when trying to get up 5 15s

F09 Lateral fall when trying to get up 5 15s

F10 Fall forward when trying to sit down 5 15s

F11 Fall backward when trying to sit down 5 15s

F12 Lateral fall when trying to sit down 5 15s

F13 Fall forward while sitting, caused by fainting or falling asleep 5 15s

F14 Fall backward while sitting, caused by fainting or falling asleep 5 15s

F15 Lateral fall while sitting, caused by fainting or falling asleep 5 15s

ADL of Table 2-2 were selected based on: common activities, activities that are similar (in

acceleration waveform) to falls, and activities with high acceleration that can generate false

positives. All ADL and falls selected for this work were approved by a physician specialized

in sports. According to the survey, falling when walking up or down stairs is a common

type of fall, but we did not include it in our protocol because of the high risk of having an

accident.
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Table 2-2: Types of ADL selected to this work.

Code Activity Trials Duration

D01 Walking slowly 1 100s

D02 Walking quickly 1 100s

D03 Jogging slowly 1 100s

D04 Jogging quickly 1 100s

D05 Walking upstairs and downstairs slowly 5 25s

D06 Walking upstairs and downstairs quickly 5 25s

D07 Slowly sit in a half height chair, wait a moment, and up slowly 5 12s

D08 Quickly sit in a half height chair, wait a moment, and up

quickly

5 12s

D09 Slowly sit in a low height chair, wait a moment, and up slowly 5 12s

D10 Quickly sit in a low height chair, wait a moment, and up

quickly

5 12s

D11 Sitting a moment, trying to get up, and collapse into a chair 5 12s

D12 Sitting a moment, lying slowly, wait a moment, and sit again 5 12s

D13 Sitting a moment, lying quickly, wait a moment, and sit again 5 12s

D14 Being on one’s back change to lateral position, wait a moment,

and change to one’s back

5 12s

D15 Standing, slowly bending at knees, and getting up 5 12s

D16 Standing, slowly bending without bending knees, and getting

up

5 12s

D17 Standing, get into a car, remain seated and get out of the car 5 25s

D18 Stumble while walking 5 12s

D19 Gently jump without falling (trying to reach a high object) 5 12s

Fig. 2.2.1 includes a video of a participant jogging, tripping and falling (activity F05). It is

clear how the amplitude of the accelerometer is highly sensitive to each state, and how the

amplitude raises during the fall. This video has low resolution for technical issues, but high

resolution videos of each type of fall and ADL performed by the participants are available

at http://sistemic.udea.edu.co/wp-content/uploads/2016/03/SisFall_videos.zip.

They were recorded as an effort to solve another drawback in the literature: showing the

exact conditions of the recordings.

http://sistemic.udea.edu.co/wp-content/uploads/2016/03/SisFall_videos.zip
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Figure 2-1: Video example of activity F05 (jog-trip-fall). High definition videos of all ac-

tivities are available at http://sistemic.udea.edu.co/wp-content/uploads/

2016/03/SisFall_videos.zip

2.2.2 Participants

This database was generated with collaboration of 38 volunteers divided in two groups:

Elderly people and young adults. Elderly people group was formed by 15 participants (8

male and 7 female), and young adults group was formed by 23 participants (11 male and 12

female). Table 2-3 shows age, weight, and height of each group. Individual information is

available in the Readme of the dataset.

Table 2-3: Age, height and weight of the participants.

Sex Age Height [m] Weight [kg]

Elderly
Female 62 – 75 1.50 – 1.69 50 – 72

Male 60 – 71 1.63 – 1.71 56 – 102

Adult
Female 19 – 30 1.49 – 1.69 42 – 63

Male 19 – 30 1.65 – 1.83 58 – 81

Young adults performed ADL and falls while elderly people performed only ADL, except

the participant of 60 years old identified by code SE06, who is an expert in Judo and

also simulated falls. Elderly people did not perform activities D06, D13, D18, and D19

from Table 2-2 due to recommendations of the physician specialized in sports. Additionally,

some elderly people did not perform some activities due to personal impairments (or medical

recommendation).

2.2.3 Experimental set-up

The dataset was recorded with a self-developed embedded device composed of a Kinets

MKL25Z128VLK4 microcontroller, an Analog Devices ADXL345 accelerometer (configured


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}


http://sistemic.udea.edu.co/wp-content/uploads/2016/03/SisFall_videos.zip
http://sistemic.udea.edu.co/wp-content/uploads/2016/03/SisFall_videos.zip
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for ±16 g, 13 bits of ADC), a Freescale MMA8451Q accelerometer (±8 g, 14 bits of ADC),

an ITG3200 gyroscope (±2000 ◦/s, 16 bits of ADC), a SD card for recording, and a 1000

mA/h battery. The device was fixed to the waist of the participants (Fig. 2-2). This location

provides high distinction among activities for a single accelerometer system.

x

yz

Figure 2-2: Device used for acquisition. The self-developed embedded device included

two accelerometers and one gyroscope. It was fixed to the waist of the

participants.

Only acceleration data acquired with the ADXL345 sensor was used in this work, as it is

the most energy efficient of the three sensors used. However, the data recorded with the

other accelerometer and the gyroscope are also publicly available for further studies. The

orientation of the sensor (see Fig. 2-2) presents the positive z axis in forward direction, the

positive y axis in the gravity direction, and the positive x axis pointing to the right side of

the participant. All activities were acquired with a frequency sample of 200 Hz.

The classrooms and open spaces of a coliseum at the Universidad de Antioquia were used for

recording the activities. In order to guarantee health safety conditions, falls were simulated

using safety landing mats. Activity D17 from Table 2-2 was recorded using the copilot chair

of a Renault Logan car. The time required for recording all trials was approx. 1.5 hours for

each elderly person and 3.5 hours for each young adult.

2.3 MobiFall

Some of the algorithms proposed in this thesis were also validated with a third-party public

dataset. Mobifall dataset was acquired by Vavoulas et al. [50] and is publicly available in

the website http://www.bmi.teicrete.gr/index.php/research/mobifall. The second

version of MobiFall dataset was formed by 24 participants (17 male with ages between 22–

47, and 7 female with ages between 22–36), 9 of these subjects simulated falls and ADL,

http://www.bmi.teicrete.gr/index.php/research/mobifall
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and 15 subjects simulated only falls. The dataset consists of 9 ADL and 4 fall types (Ta-

ble 2-4). The signals were acquired with a Samsung Galaxy S3 cellphone, inertial module

LSM330DLC. The device was located in a trousers pocket with random direction.

Table 2-4: Types of ADL and Falls included in the MobiFall dataset

Code Activity Trials Duration

STD Standing with subtle movements 1 5m

WAL Normal walking 1 5m

JOG Jogging 3 30s

JUM Continuous jumping 3 30s

STU Stairs up (10 stairs) 6 10s

STN Stairs down (10 stairs) 6 10s

SCH Sitting on a chair 6 6s

CSI Step in a car 6 6s

CSO Step out a car 6 6s

FOL Fall Forward from standing, use of hands to dampen fall 3 10s

FKL Fall forward from standing, first impact on knees 3 10s

BSC Fall backward while trying to sit on a chair 3 10s

SDL Fall sidewards from standing, bending legs 3 10s

This dataset includes acceleration, orientation and rotation data, but only acceleration was

used in this work. Acceleration signals were acquired with a sampling rate around 87 Hz.

File SDL acc 16 01.txt was removed from the dataset (the recording begins at the middle

of the fall).

2.4 Summary

Research on elderly fall detection lacks of public datasets with enough activities and falls

simulated by elderly people. Available datasets have few activities and none includes falls

performed by elderly people. In this chapter we presented and made publicly available the

SisFall dataset. It consisted of up to 34 activities (falls and ADL) performed by 38 partici-

pants, acquired with a self-developed wearable device.

This dataset includes an elderly person (subject SE06) that performed ADL and falls. Sub-

ject SE06 is to our knowledge the only publicly available dataset of an elderly person simu-

lating falls. Together with a wide variety of activities and subjects, the SisFall dataset will

help the scientific community as a complete benchmark in future years. As supplementary
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material, we included videos of all simulated activities as an effort to help other researchers

to replicate this work.



3 Fall detection algorithms from the

literature

3.1 Introduction

In this chapter, we test the SisFall dataset presented in the previous chapter with widely

used features and a simple to implement threshold based classification. We achieved up to

96 % of accuracy in fall detection with young adults and 99 % in ADL with elderly people.

An individual activity analysis demonstrates that most errors coincide in a few number of

activities, suggesting authors to develop algorithms focused on these particular ones. Finally,

validation tests with the elderly participant that simulated falls significantly reduced the

performance of the features. This validates findings of other authors and encourages to

develop new strategies with this new dataset as benchmark.

3.2 General fall detection scheme

Preprocessing stage: Preprocessing is critical in the performance of the classification algo-

rithms and their computational burden. In this work, we performed a comparison between

using preprocessing or not in fall detection. The preprocessing stage consisted of a 4-th

order IIR Butterworth low-pass filter with cut-off frequency of 5 Hz. This filter was selected

due to its low computational cost, as preliminary tests with more elaborated IIR and FIR

filters did not improve the classification accuracy. Some features based on peak amplitude

required bias (DC Level) rejection. This was performed using the first derivative between

two consecutive samples.

Feature extraction: The objective of this stage is to maximize the separation between

ADL and falls. We tested 28 features listed in [9, Table 4] (coded in the original paper as

F1–F11, F16, F21–F29, F32–F35, F44–F46). From the 28 features, only six achieved over

90 % of accuracy on preliminary tests (not shown here). Within this group, we selected three

of them for presenting in this work, they are listed in Table 3-1. The sum vector magnitude

on horizontal plane was selected because it was the best static feature, the standard devi-

ation magnitude presented the higher accuracy among all features, and the activity signal

magnitude was the best feature among the area under the curve approaches. Not all tested
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features were initially intended for detecting falls, which may explain why only six achieved

high accuracy.

Feature C1 from Table 3-1 is static. The other two features require a sliding window selected

for this paper of 0.5 s, being this the minimum value that includes the critical phase of the

fall [51]. Here, acceleration signal of one sample in the three axis is defined as the vector

~a = [ax, ay, az]
T ∈ <3, the sliding window used for computing the dynamic features is denoted

with ã[k] = [~aT [k−Nv], . . . ,~a
T [k]]T ∈ <Nv×3, at time step k, with Nv = 100 samples (0.5 s).

The standard deviation operator was defined as std(·), and the integral in C3 was computed

with trapezoid method.

Table 3-1: Features used to test the proposed dataset.

Code Feature Equation

C1 Sum vector magni-

tude on horizontal

plane

C1[k] =
√
a2x[k] + a2z[k]

C2 Standard deviation

magnitude

C2[k] =
√
σ2
x[k] + σ2

z [k]; with σi = std
(
ãi[k]

)
C3 Activity signal

magnitude area

C3[k] =

∫ k

k−Nv

(√
ã2x[n] + ã2y[n] + ã2z[n]

)
dn

For the tests with preprocessing, the Butterworth filter was applied to the raw data be-

fore computing features. Additionally, C1 and C3 behaved better with bias removal (with

derivative) implemented after the filtering stage.

Classification: A simple to implement threshold-based classifier was selected for this work.

Threshold-based classification is still the most widely used strategy for fall detection, as

it is less computationally intensive than support vector machines and similar classification

algorithms [10].

For each feature, the threshold was obtained as follows:

1. A set of candidate thresholds was established between the minimum acceleration in a

fall, and the maximum acceleration in ADL.

2. The sensitivity and specificity of training data for each candidate threshold value was

obtained.

3. The threshold that guaranteed a minimum difference between sensitivity and specificity

was chosen.
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4. Validation data was tested with the chosen threshold. This procedure was performed

in ten cross-validation rounds.

Sensitivity (SEN) and specificity (SPE) were calculated as specified in [52]:

SEN =
TP

TP + FN
SPE =

TN

TN + FP
(3-1)

where TP are falls correctly classified, FN are falls that the algorithm did not detect, TN are

ADL correctly classified, and FP indicates false falls. The accuracy (ACC) was calculated

using Eq. (3-2), where N is the number of files of the dataset:

ACC =
TN + TP

N
(3-2)

This balanced computation of the accuracy is selected due to the large difference between

the number of ADL and fall files.

Fig. 3-1 shows an example of the preprocessing stage and the computation of feature C2 for

ADL D11 (trying to get-up from a chair and fail – figures on left) and fall F05 (trip and fall

while jogging – figures on right). This ADL was selected because of its high peak acceleration.

Despite this, C2 peak was around 40 % below the threshold value (Fig. 3.1(a) –bottom left).

On the other hand, feature C2 far crossed the threshold during fall F05 (Fig. 3.1(b) –bottom

right). Note that while jogging before the fall, which is a high acceleration activity, feature

C2 was always below the threshold.

Cross-validation: The robustness of the classification stage was analyzed with a cross-

validation set-up. A first analysis was performed including only young adults guaranteeing

the same proportion of falls and ADL in all groups (3542 files randomly divided into 10

groups). Ten independent cross-validation rounds were performed, each with 3195 files for

training and 347 files for validation. Each group was used in one round as validation data.

The elderly people group was not initially included in the cross-validation, in order to deter-

mine the effect of setting-up an algorithm intended for elderly people only with young adults.

A second cross-validation analysis was performed with all participants except SE06. In this

case, we analyzed the performance of the algorithm when including ADL of elderly people.

Participant identified by code SE06 was not included in the cross-validation because he is

the only elderly that simulated falls. SE06 data were only used in a final validation as the

closest to real-life conditions example.

3.3 Results and discussion

We initially tested the features of Table 3-1 on the young adults group data without per-

forming preprocessing. Features C2 and C3 presented average accuracies over 90 % in 10-fold
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(a) ADL: Trying to get-up from a chair and fail.
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(b) Fall: Trip and fall while jogging.

Figure 3-1: Example of processing and classification. The features are computed after the

filtering process of the raw data. (a) ADL D11 gives C2 values (bottom) below

the threshold (horizontal red line). (b) C2 feature of fall F05 crosses the threshold

when the fall is detected.

cross-validation (Table 3-2). Feature C1 (which is one of the most used in the literature,

mostly for comparison purposes) presented the lowest performance (88.8 %), but it required

1/100 of memory and simpler computations than C2 and C3 because it is static. This fact

may be counterproductive, as poor features require more elaborated classifiers, which are

commonly more computationally intensive [10].

Table 3-2: Cross-validation over young adults data without preprocessing.

C1 C2 C3

Specificity [%] 88.85 ± 2.40 90.32 ± 2.53 91.68 ± 1.35

Sensitivity [%] 88.74 ± 2.44 90.23 ± 2.27 92.13 ± 1.60

Accuracy [%] 88.79 ± 1.88 90.26 ± 2.05 91.93 ± 1.00

All features increased their performance after applying preprocessing on the young adults

group data (Table 3-3). Feature C2 obtained the best accuracy with 96.36 % in validation.

This result is consistent with the literature [9, Table 1]. Feature C3 presented a small

improvement in accuracy with respect to Table 3-2, which is expected as it is an integration

based feature (it can reduce high frequency noise as a low-pass filter). Table 3-3 also includes

the mean and percentage of variation (abs-error, compared as absolute error) of obtained

thresholds. For C1 and C2 the thresholds varied around 2.5 % along the 10-fold cross-

validation. Note that the accuracy presented lower variations (in percentage) than the

thresholds, meaning that the tested methodology is not sensitive to small changes in the
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parameters. C3 presented a considerably lower threshold variation, but it also had the lower

accuracy.

Table 3-3: Cross-validation with preprocessing.

C1 C2 C3

Specificity [%] 92.53 ± 2.62 96.34 ± 1.28 91.91 ± 1.20

Sensitivity [%] 92.60 ± 2.38 96.31 ± 1.67 91.85 ± 2.36

Accuracy [%] 92.60 ± 1.19 96.36 ± 0.78 91.90 ± 1.12

Threshold 14.42 107.20 7.30

abs-error [%] 2.71 2.49 0.14

The inclusion of the filtering stage defines the minimum allowed frequency sample. A pre-

liminary analysis demonstrated that more elaborated filters (or with higher cut frequency

values) did not improve the accuracy. This result is meaningful as it may suggest that a

frequency sample of up to 11 Hz could be enough for fall detection (for a cut frequency of

5 Hz), with its respective computational cost reduction. The frequency sample is critical in

wearable devices because (i) the system remains more time in idle state, and (ii) more sep-

aration among samples allows more computations (however, it may compromise the battery

life).

3.3.1 Tests with elderly people

The group “Elderly” of Table 3-4 shows the specificity (ADL estimation) of testing the

thresholds of Table 3-3 in the elderly people group (they only performed ADL, participant

SE06 was excluded of this analysis). All features presented higher performance than the

overall results of Table 3-3, and again feature C2 obtained the best performance with 99.14 %

of specificity. An additional test performed after including elderly people in the training

process gave similar threshold and accuracy values than those of Table 3-4, i.e., training an

algorithm with ADL of young adults is feasible to use in ADL of elderly people. This result

is expected given that young adults usually get higher accelerations when performing the

same activities.

A new test consisted in using the thresholds obtained in Table 3-3 to validate with sub-

ject SE06 data (the subject from elderly group that simulated falls). Group “SE06” in

Table 3-4 shows the specificity, sensitivity, and accuracy of this test. Similar to [32], all fea-

tures severely decreased their fall detection performance (sensitivity). C2 maintained high

specificity (100 %) and presented the higher sensitivity (80.00 %). Unfortunately, it is still

unfeasible for real applications (1 in 5 falls was not detected), and it is far from the original

results obtained with young adults. This result may be biased by the way subject SE06
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Table 3-4: Validation tests with only elderly people.

Group C1 C2 C3

Elderly Specificity 97.79 99.14 97.17

SE06

Specificity 91.14 100 92.41

Sensitivity 64.00 80.00 62.67

Accuracy 77.92 90.26 77.92

SE06 Full

Specificity 91.14 97.47 92.41

Sensitivity 65.33 81.33 64.00

Accuracy 78.57 89.61 78.57

performed the falls (softening the fall with the arms).

Finally, thresholds obtained with cross-validation over young adults and elderly people (ex-

cluding SE06) were used as an attempt to increase the sensitivity values with subject SE06

(group “SE06 full” in Table 3-4). However, none of the features presented a significant

improvement, i.e., other authors must take into account that not including falls with elderly

people will severely bias the behavior of fall detection algorithms.

3.3.2 Individual activity analysis

A final close review of individual activities of SisFall provided the following findings: (i)

ADL and falls simulated by elderly people were smaller in amplitude than those simulated

by young people. This suggests that algorithms trained with young people data tend to bias

the thresholds upwards in amplitude, with the consequent increase in false negatives. (ii)

As a preparation to this work we tested up to 28 features and most tended to fail in the

same activities [9, Table 4]. Fig. 3-2 shows box-plots of the maximum value obtained per

activity with C2 feature (with young adults group exclusively). Note that only few activities

severely crossed the threshold (horizontal red line): jogging quickly (D04), jump (D18), and

fall backward when trying to sit (F11).

There are not many works focused on the types of falls elderly people suffer (most authors

limited to perform same activities of previous works). But based on our survey, previous

works [5] and our findings, other authors may focus their own work on some representative

activities where the algorithms are prone to fail.
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Figure 3-2: Box-plots of C2 per activity. Maximum value per activity obtained with C2.

Most threshold crossings (horizontal red line) are contained in activities D04,

D18 and F11.

3.4 Summary

In this chapter, the SisFall dataset was tested with some of the most widely used features to

detect falls. Two proof-of-principle experiments were performed: the effect of the preprocess-

ing stage, and the importance of including elderly people data. Preprocessing explanations

are commonly simplified in most approaches available in the literature. However, with a

simple 4-th order Butterworth filter we obtained a 6 % increment of accuracy with the best

feature (C2). Preprocessing is crucial in fall detection as it defines the minimum acquisition

frequency, that in this work we found at 11 Hz.

The classification threshold values obtained with young people data behaved well when we

included elderly people ADL data (with up to 99 % of specificity). An expected result

because young people tend to be faster than elderly people doing the same activities (higher

peak acceleration expected). But when the algorithms were tested with subject SE06, a judo

expert of 60 years old that performed falls, the sensitivity (fall detection) values significantly

dropped down to 80 % and less. Bagalà et al. [32] obtained the same conclusion when testing

state-of-the-art algorithms with real-life falls (but they did not release the dataset).
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detection

4.1 Introduction

In this chapter, we propose a double threshold fall detection strategy that can be imple-

mented either in fixed self-developed devices or smartphones. The first threshold is a com-

bination of the widely used acceleration peak and area under the curve features. This

combination was selected after analyzing on which activities each feature was weak. The

second threshold corresponds to a novel energy based strategy. We focused on two premises:

• A not too computationally complex solution (composed of only O(n) computations

and 1 s recording windows).

• The possibility of implementing it in different hardware systems (smartphones and

self-developed embedded ones).

This methodology was validated with the MobiFall and SisFall datasets.

4.2 Individual activity analysis

Daily activities such as jumping and jogging have high acceleration peaks comparable with

those obtained in some falls. Additionally, some falls such as falling from a chair may not

have higher acceleration that several ADL. These are the main problems threshold based

approaches face. Fig. 4-1 shows box-plots with the maximum values achieved when testing

two different features per file of the 13 activities of MobiFall. The first feature was the sum

vector magnitude, which is the root mean square (RMS) value of the acceleration signal in

the three axis ~a = [ax, ay, az]
T ∈ <3 for a given time step k [9]:

E1[k] =
√
ax[k]2 + ay[k]2 + az[k]2 (4-1)

The second feature was the signal magnitude area, computed as the sum of integrals per

axis [9]:

E2[k] =
1

Nv

∑
i=x,y,z

(∫ k

k−Nv

|ai[n]|dn
)

(4-2)
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where Nv is the size of a sliding horizon window (here Nv = 1 s).
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Figure 4-1: Box-plots of two features separated by activity in the dataset MobiFall. Note

how in both cases the maximum values of some ADL overlap with those of falls,

meaning that a threshold is not a good classification option. However, also note

that both features fail in the opposite activities.

Fig. 4-1(Top) shows that for E1 walk, jog and jump had higher overall acceleration than all

falls. However, they presented good performance with E2 (Fig. 4-1(Bottom)), being getting

in and out of a car and sitting the ones that failed. These results suggest that a product

between both features would improve the separation among classes, as it will be shown in

the following section.

4.3 Energy based fall detection

The proposed fall detection methodology consists of three stages: pre-processing, feature

extraction and classification. The pre-processing stage consists of a simple to implement

4-th order Butterworth filter, and for E1 a derivative is applied for removing the bias.

Once the acceleration data is pre-processed, both E1 and E2 features are computed, and

a novel non-linear feature is also computed: E3 = E1 · E2. Given that both E1 and E2

are consistent in falls and fail in different activities, their multiplication reduces all ADL

amplitude values while keeps high the ones of falls. Fig. 4-2(Top) shows the same box-plot
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of Fig. 4-1 with this new feature. Even all ADL reduced their values (and dispersion), jog

and jump still overlap with the falls, being necessary a new feature to fix this problem.
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Figure 4-2: Box-plots of the two new proposed features separated by activity in the dataset

MobiFall. The Energy feature separates falls with almost all ADL except those

of low energy (such as sit and stand, see the horizontal red lines –Thresholds),

but E3 does separate those, being the interception of both features ideal for

classification.

A second new feature is proposed in order to avoid false positives due to high energy activities.

The proposed feature computes the normalized energy of a set of time windows, with the

purpose of differentiating short duration events from repetitive activities of high energy (such

as walk or jog). First, the signal magnitude area E2 of five consecutive non-overlapping

windows is stacked in a vector ~e:

~e =
[
E2[k − 4Nv], E2[k − 3Nv], . . . , E2[k]

]T ∈ <5 (4-3)

i.e., in practice it is computed each second (The same size Nv of the sliding window). Then,

instant high energy activities (falls) are separated from periodic ones by normalization:

p =
1

5

∑
~e

max(~e)
(4-4)

giving a single value every second that can be compared with a threshold. Finally, a fall is

detected if during each second a value of E3 is higher than a threshold: E3[k] > T1, and p

is below a second threshold: p < T2. The need of five 1 s windows implies that a fall will

be detected 5 s after it occurs (see Fig. 4-3(Bottom)). A preliminary analysis with smaller
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number and size of windows showed less accuracy.

Fig. 4-2(Bottom) shows the key component of this strategy. All falls have lower normalized

energy than most ADL, being simple to set a threshold just above them. Those activities

with low energy (sit and stand) have also low acceleration values, being discarded by a

threshold in E3 (none overlaps with falls).

The selection of both thresholds can be automatically performed with a bi-level optimization,

as follows:

1. Find the maximum E3 value of each fall, and set T1 as the minimum among these

maxima (the one with most failure probability).

2. Move T2 within its training span and select the value that provided the higher accuracy.

3. With the selected T2 value, move T1 within its current value (it only grows) and the

maximum magnitude of ADL activities.

4. Iterate until convergence (both T1 and T2 vary less than 1 %). It is achieved after 3 or

4 iterations.

The first threshold (T1) avoids false positives caused by low power energy activities, and

the second (T2) avoids false positives caused by high energy periodic activities. Because of

this, both thresholds will converge close to the limits of fall activities (low false negative rate).

Fig. 4-3 shows an example of a fall after jogging caused by tripping, in SisFall dataset.

Remember that a fall is present if both thresholds are crossed by their respective features.

However, due to the 5 s window it may be tricky to see. Note how feature E3 crosses the

threshold (red horizontal line) at 4.7 s (tripping) and then during the fall with a maximum

at 5.2 s. Meanwhile, in the Energy plot the threshold is crossed 5 s later.
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Figure 4-3: Example of a fall detection with the proposed algorithm. The raw data of a

person jogging, tripping and falling (top) is initially filtered. Then, features

E3 and Energy are computed and if both thresholds (horizontal red lines) are

crossed (with 5 s difference) a fall is detected.

4.4 Results

In this section, the performance of the proposed methodology to differentiate between falls

and ADL is shown. Sensitivity (SEN) and specificity (SPE) were calculated as specified in

Eq. (3-1), and accuracy (ACC) was calculated using Eq. (3-2).

Table 4-1 shows mean and standard deviation of specificity, sensibility and accuracy achieved

with a 10-fold cross-validation test with MobiFall dataset. The achieved accuracy over

99 % is comparable with results presented in [30, 33], but it was obtained with our less

computationally intensive threshold-based approach.

Table 4-1: Proposed methodology with MobiFall dataset. 10-fold cross validation.

Specificity [%] 99.35 ± 1.37

Sensitivity [%] 98.54 ± 2.48

Accuracy [%] 99.03 ± 1.13
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The accuracy standard deviation in validation was 1.128. The mean values of the thresholds

were T1 = 6.499 and T2 = 0.2375 (arbitrary units), and their variations along the 10-fols were

2.76 % and 2.45 % respectively. These results show stability in the solution with MobiFall

dataset.

Table 4-2 shows mean and standard deviation results of training and validation with SisFall

dataset, in same conditions as for Table 4-1: 10-fold of cross-validation, 3924 files for training

and 432 for validation at each row. For comparison purposes, we also included the results

obtained with the features tested in Chapter 3. The only change made to the algorithm with

respect to the parameters used for MobiFall dataset was that E1 was implemented only over

the horizontal plane (Eq. (4-1) without y component), this because unlike the smartphone

the acquisition device was fixed at the center of the abdomen.

Table 4-2: Proposed methodology evaluated in SisFall dataset compared to the features

analyzed in Chapter 3. Same conditions of tests with MobiFall were guaranteed.

C1 C2 C3 Proposed

Specificity [%] 93.25 ± 1.53 96.83 ± 1.27 92.81 ± 1.21 98.55 ± 0.51

Sensitivity [%] 93.28 ± 2.80 96.66 ± 1.85 92.69 ± 2.56 95.31 ± 1.44

Accuracy [%] 93.27 ± 1.20 96.77 ± 0.726 92.76 ± 1.37 97.27 ± 0.86

Results of Table 4-2 show that despite the larger number of activities (13 in MobiFall vs. 34

in SisFall), the inclusion of elderly people, and the change in the device and its location did

not severely affect the algorithm performance, with accuracy levels over 97 % and standard

deviations lower than 1.4 %. The mean threshold values were T1 = 4.28 and T2 = 0.22047

(arbitrary units), with variations of 2.83 % and 1.68 % respectively. The lower performance

in SisFall compared to MobiFall is expected as this database has almost 3 times more activity

types (each dataset trained with its own data). However, they are still higher than those

presented in the previous chapter.

Compared to the traditional features, the proposed algorithm provides higher accuracy val-

ues, with bias over specificity (desired in fall detection). These results together with those

of MobiFall demonstrate the robustness of the proposed approach, and its robustness among

different types of recorded data.

An additional validation was performed only with elderly people of SisFall dataset. A 99.39 %

of specificity was achieved (only ADL). This means that the algorithm is feasible for imple-

mentation in the objective population.
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4.5 Summary

In this chapter, a methodology for discriminating between falls and ADL was presented. The

methodology is based on a simple to implement real-time pre-processing algorithm, and two

thresholds for classification. Two novel threshold based features were proposed for detecting

falls. The first one (E3) comes from the product of the well known sum vector magnitude

(E1) and signal magnitude area (E2). The second feature comes from the normalization of

the signal magnitude area over five 1s-windows.

The proposed methodology was validated with the self developed SisFall dataset and the

publicly available MobiFall dataset. It achieved similar results obtained by other authors

using SVM (over 99 % with MobiFall and 97 % with SisFall), but with the low energy con-

sumption provided by threshold based algorithms. In addition, the problem of classification

caused by activities of the daily living of high acceleration was addressed and analyzed as a

way to solve the specific problems this type of strategies have.



5 Walk and jog identification

5.1 Introduction

In previous chapters we observed how most failures on fall detection algorithms occur in

few activities, and how most of these activities are periodic with high acceleration, such as

walk and jog. The objective in this chapter is to determine if a subject is walking or jogging

no matter the dataset used, i.e., the way the data was acquired. This knowledge will help

(see Chapter 6) fall detection algorithms to reduce false positives due to high acceleration

periodic activities. Additionally, as an interesting result of this work, the algorithms here

proposed allow the user to determine in real-time the quality of walk or jog in terms of

repeatability, i.e., a subject could maintain a regular movement and could be advised every

time the speed changes.

This chapter begins with a wavelet based algorithm that provides a kurtosis metric. Then,

given that the wavelet coefficient used is similar to the auto-correlation of the signal, a

more efficient auto-correlation algorithm is proposed. Finally, a statistical analysis of the

period of the activity (extracted from the auto-correlation) was performed for determining

the robustness of the period as a measure of walk and jog, and their regularity.

5.2 Participants and datasets

The proposed methodology was tested with three datasets: a walk and jog dataset specif-

ically generated for this work (called Sistemic), samples from MobiFall, and a third pri-

vate dataset from Gepar Research Group (Gepar, Universidad de Antioquia, available at

http://sistemic.udea.edu.co/investigacion/datos-caminar-y-trotar/?lang=en).

Sistemic dataset (recorded as part of this work, available at http://sistemic.udea.edu.

co/investigacion/datos-caminar-y-trotar/?lang=en) consisted of ten volunteers (6 men

and 4 women) that recorded five 20 s repetitions of walk and jog. Table 5-1 shows age, height,

and weight details of the participants. The data were acquired with the same device used

with SisFall (Chapter 2). But in this case both accelerometers were configured for ±8 g,

10 bits of ADC (scaling factor of 15.6 mg/LSB). The sampling frequency was 125 Hz ac-

cording to [53].

http://sistemic.udea.edu.co/investigacion/datos-caminar-y-trotar/?lang=en
http://sistemic.udea.edu.co/investigacion/datos-caminar-y-trotar/?lang=en
http://sistemic.udea.edu.co/investigacion/datos-caminar-y-trotar/?lang=en
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The methodology was then validated with the other datasets. Gepar consisted of 2 women

and 10 men that performed five repetitions per activity acquired with an embedded device

[53]. The sample from MobiFall consisted of 4 women and 5 men, with a single record of

5 min walk, and three 30 s jog repetitions. Table 5-1 shows age, height, and weight details

for both datasets.

Table 5-1: Characteristics of the participants separated by dataset.

Dataset Sex Age Height [m] Weight [kg]

Sistemic
Female 21 – 40 1.55 – 1.66 48 – 58

Male 23 – 43 1.64 – 1.80 56 – 73

Gepar – 18 – 56 1.64 – 1.85 56 – 85

MobiFall
Female 26 – 36 1.60 – 1.70 50 – 90

Male 22 – 32 1.69 – 1.89 64 – 102

5.3 Wavelet based detection

Given the periodic but not stable characteristics of walk and jog acquired with accelerometers

(see Fig 5-4 for an example), an exhaustive analysis of wavelet coefficients was performed

in order to determine common characteristics of the signal. Non-overlapping windows of 2 s

length were used to estimate walk and jog in the same way a real-time device would do. The

length of the windows was selected as the (rounded) minimum time required to walk three

consecutive steps. The following algorithm was implemented:

1. Select the vertical or forward axis direction of the acceleration dataset (y or z in the

device shown in Fig. 2-2).

2. Decompose the 2 s window with a six levels mother wavelet Biorthogonal 6.8 ; and

select detail coefficients depending on the sampling frequency of the acceleration signal.

Preliminary tests showed that D3 or D4 are adequate for sampling frequencies below

100 Hz, and D5 or D6 for more than 100 Hz.

3. Compute the kurtosis of the selected detail coefficients. A boundary must be deter-

mined in order to differentiate jog from walk. This boundary can be easily selected for

each specific device (dataset) by placing it between the 25 % quartile of walk, and the

75 % quartile of jog (see Fig. 5-1).

Figure 5-1 shows the kurtosis based metric for the three datasets. Note how in all cases it is

possible to set a threshold between walking and jogging. The three datasets show a similar
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behavior for walking in terms of variability, but significant differences for jogging. A deeper

analysis of the raw data shows how placing the device in the middle of the body provides

a better waveform (see Chapter 2). Gepar dataset was acquired with a device fixed at one

side of the participants, and MobiFall dataset was acquired with a non-fixed smartphone.

Walking is not too affected because of less movement than jogging.
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Figure 5-1: Box-plots of the kurtosis based measures for the three datasets. The horizon-

tal dotted red line shows the selected threshold value for each dataset. The

inter-quartile range for walk is similar among datasets, but the medians differ

obligating to re-calculate the threshold for each dataset.

Table 5-2 shows the accuracy achieved with the three datasets and the thresholds used

(based on Fig. 5-1). The variability of jogging affected the MobiFall dataset reducing its

accuracy to 83 %. For Sistemic dataset, both accelerometers were tested but no differences

were detected. Unfortunately, the implementation of this algorithm may not be feasible in

real-time low-power devices. Then, a novel auto-correlation based strategy is proposed in

the following section.
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5.4 Auto-correlation based detection

A close analysis of the selected wavelet detail coefficient shows that it is similar to the auto-

correlation of the signal, i.e., the same kurtosis-based metric provided with wavelets can be

achieved with a different strategy:

1. Select the forward or vertical acceleration axis, and compute the algorithm for 2 s

windows.

2. Perform a mean filter over short overlapped windows of approx. 0.1 s.

3. Obtain the auto-correlation r(τ) of the selected signal (z-axis for example). An efficient

and not too computationally intensive option is the Wiener-Khinchin theorem, that

computes the auto-correlation in the frequency domain signal, obtained with the FFT:

Z(f) = FFT[z(t)]

S(f) = Z(f)× Z∗(f)

r(τ) = IFFT[S(f)]

where IFFT[·] is the inverse FFT, and Z∗(f) is the complex conjugate of Z(f).

4. Compute the kurtosis of the auto-correlation function r(τ), and find the boundary that

differentiates between jog and walk.

Fig. 5-2 shows how a 1 s window of walk raw data from Sistemic dataset is processed in order

to obtain the kurtosis value. Fig. 5-2 (top) shows the 3-axis raw data of a walk activity,

there is not evident periodicity of the signal in any of the three axis (x: blue, y: green, z:

red). The y axis signal is selected for filtering with a mean filter, then it is normalized and

average removed in order to obtain the result of Fig. 5-2 (middle), a period can be now

observed but still local maxima and minima avoid a robust kurtosis estimation. Fig. 5-2

(bottom) shows the auto-correlation of the mean filtered signal, the resultant signal is clear

and allows obtaining not also a stable kurtosis, but also the period of the walk with a simple

zero crossing algorithm.

The same accuracy analysis of the wavelet algorithm was performed for the auto-correlation

based algorithm. Again the accuracy was determined by a kurtosis threshold. The results are

shown in Table 5-2. This algorithm provided better results for Gepar and MobiFall, but re-

duced its accuracy for the Sistemic dataset. The overall improvement over the wavelet based

algorithm can be explained with the robustness provided by the frequency domain analysis

for calculating the auto-correlation, compared to the use of a single wavelet coefficient.
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Figure 5-2: Example of the preprocessing stage for a 1 s window of walk. (Top) Raw data in

the three axis with amplitude measured in bits, there is not an evident periodicity

of the signal. (Middle) Normalized y-axis mean filtered data, a periodic but not

clean activity is observed. (Bottom) Auto-correlation of the filtered signal, the

period may be easily computed from the zero crossing and the kurtosis gives

stable values.

Table 5-2: Accuracy achieved and threshold used for both algorithms validated with the

three datasets.

Algorithm dataset Accuracy Threshold

Wavelet

Sistemic 99 % 2

Gepar 95 % 2.8

MobiFall 83 % 5.4

Auto-correlation

Sistemic 95 % 2.9

Gepar 100 % 9

MobiFall 89 % 4.8

5.5 Statistical analysis of walk and jog

The auto-correlation performed above also provides the period of the original signal by ap-

plying a zero-crossing algorithm. Based on the periodicity of the signal, a statistical analysis

of walk and jog was performed in order to analyze how the kurtosis provides a quality metric,
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and how robust the threshold used is.

A factorial experimental design for type of activity and number of subjects in Sistemic dataset

was performed in order to determine if there is a significant difference among subjects and

activities. Subject 5 did not walk in the same way for all repetitions and was removed for

this analysis. The resultant model was described by:

yijk = µ+ τi + βj + (τβ)ij + εijk

where yijk is the acceleration of activity i = 1, 2 (1 walk, 2 jog), for subject j = 1, . . . , 9 and

repetition k = 1, . . . , 5. µ is the global mean, τi is the effect of the i-th activity, βj is the

effect of the j-th subject, (τβ)ij is the multiplicative effect (interaction) between activities

and subjects, and εijk is the random error component (assumed Gaussian). The model was

used to test the following hypothesis:

• H0 = τ1 = τ2 = 0: There are not significant differences between walk and jog.

• H ′0 = β1 = β2 = · · · = β9 = 0: There are not significant differences between the 9

subjects of the experiment.

• H ′′0 = (τβ)1,1 = (τβ)1,2 = · · · = (τβ)2,9 = 0: There is not significant multiplicative

effect between activities and subjects.

Table 5-3 shows the summary of the data computed with Statgraphics R© software package.

Note that the minimum walk value and the maximum jog value do not overlap, i.e., those

activities can be accurately differentiated solely using their period.

Table 5-3: Summary of the statistical analysis performed for Sistemic data.

Activity Min 1st Q Median Mean 3rd Q Max

Walk 0.46 0.50 0.55 0.55 0.58 0.71

Jog 0.32 0.36 0.37 0.37 0.38 0.41

A power transformation was performed in order to guarantee the two way variance assump-

tions: normality and constant variance. The residuals had white noise behavior, revealing

independence among individuals and good model specification. Table 5-4 shows the anal-

ysis of variance. The p-values of zero indicate that there are significant differences among

activities, among subjects, and that there exists multiplicative effect, i.e., H0 is rejected in

all cases.
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Table 5-4: Analysis of variance for Sistemic dataset.

Source Sum Sq. Df. Mean Sq. F-ratio P-value

A: Activity 427.21 1 427.21 40553 0.0000

B: Subject 12.73 8 1.59 151.06 0.0000

AB 21.42 8 2.68 254.19 0.0000

Residuals 8.29 787 0.01

Total 469.26 804

Fig. 5-3 (left) shows the confidence intervals for walk and jog. It is clear that using a bound-

ary is adequate for this task. Finally, Fig. 5-3 (right) shows the variance component plot for

variability among subjects and activities. As expected the mean between subjects presented

low variability compared to the mean between activities. These figures were computed with

the data transformed back.
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Figure 5-3: (Left) Confidence intervals for walk and jog; significant differences are observed.

(Right) Mean of each subject per activity referenced to the global means (hori-

zontal lines); note how walking varies more than jogging.

5.6 Estimating the quality of the activity

Given the statistical analysis results, it is expected that variations in a single activity should

be accounted by the proposed methodology. Fig 5-4 shows a failed 20s-jog repetition, where

the participant stopped and started again, with the consequent lost of quality in the jogging.

Although the kurtosis can be used as quality measure, for visualization purposes the follow-

ing quality measure was computed: Q(T ) = Kmin/K(T ). with K(T ) the kurtosis of the 2 s
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Figure 5-4: Sistemic y-axis signal where the participant stopped jogging (top), and the qual-

ity measure detected the abnormal activity (bottom). Every 2 s the algorithm

gives a measurement that besides the obvious stop in 6–12 s, also provides in-

formation about the regularity of the jog activity.

window, and Kmin the minimum kurtosis measured for the participant, which is the more

stable jogging detected. A value of 1 means that the activity is regular and for values close

to 0 there is loss of periodicity. Note that several other quality measures can be implemented

in the same way this measure was selected.

Finally, the same measure can be used in fall detection algorithms based on peak accel-

erations, in order to avoid false positives. A possible improvement could be to vary the

threshold depending on the activity, given that it is expected to have higher accelerations

when jogging.

5.7 Summary

In this chapter, a novel methodology for detecting and characterizing walk and jog based

on non-peak acceleration features was proposed. This methodology is based on the kur-

tosis of wavelet coefficients, or with the auto-correlation of the acceleration signal. Both

alternatives were validated with publicly available datasets (one developed as part of this

thesis) and presented feasible results (over 83 % of accuracy and up to 100 %). The auto-

correlation signal also provided a simple way to obtain the period of the activity with simple

zero-crossing detection. One of the datasets was recorded with a smartphone in a pocket,

i.e., the methodology is able to be implemented in different embedded systems.
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As a secondary result, the period of the activity was used to perform a statistical analysis of

walk and jog. This analysis demonstrated that walk and jog are significantly different, i.e.,

a threshold algorithm is robust; and that the participants are significantly different to each

other, but not enough to overlap among activities allowing obtaining quality measures. In

the following chapter, detection of periodic activities will be used to reduce false positives

in elderly fall detection.



6 Kalman-filter-based fall detection

6.1 Introduction

Results of previous chapters show that a threshold based classification correctly separates

most falls and ADL; and that most failures focus in periodic activities that can be indepen-

dently detected. In this final chapter we make use of a Kalman-filter that provides an input

to the feature extraction stage and a clean signal for a periodicity detector. The proposed

approach combines bias variations of the signal and acceleration peaks. This increases the

robustness of the feature extraction and allows simpler classifiers (Threshold-based instead

of more elaborated ones). Fig. 6-1 shows a flow chart of the proposed methodology.
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Figure 6-1: Proposed methodology. The key feature of this approach is to detect indi-

vidual (periodic) activities before taking a decision.

The proposed methodology consists of four stages: Preprocessing, feature extraction, classi-

fication, and periodic activity detection. For each time sample k, the raw data Y is initially
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low-pass filtered. Then, it splits in bias removal and Kalman filtering, that feed both fea-

tures (J1 and J2 respectively, see Eqs. (6-7) and (6-8)). The threshold-based classification

is performed over an indirect feature: J3 = J1 · (J2)2. If the resultant value crosses the

threshold, the periodicity of the signal (extracted from the Kalman filter and a zero-crossing

algorithm) is analyzed in order to determine if it is a false fall alert, or if indeed the alarm

should be turned on. This methodology is explained in the following section.

6.2 Methods

6.2.1 Preprocessing and periodicity detection

The same 4-th order IIR Butterworth low-pass filter with a cut-off frequency of 5 Hz used in

Chapter 3 removes instant peaks, as shown in Fig. 6-2a. This filter is selected because: (i)

It can be implemented in hardware; (ii) It does not require large computations in software;

and (iii) Increasing the order or the cut-off frequency does not improve the accuracy, i.e.,

the sampling frequency remains low. The filtered data is then bias removed with a simple

differentiation of consecutive samples, as it is needed to compute one feature (J1). SisFall

dataset was initially acquired at 200 Hz, however, the proposed methodology only requires

25 Hz to feed the filter. Then, all results presented in this chapter correspond to the proper

downsampled signals.
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Figure 6-2: Example of preprocessing. (Top) Raw acceleration data of jogging, tripping

and finally falling (activity F05). (Middle) Filtered data. Note how the peak is

smaller in amplitude and the signal is smoothed. (Bottom) A simple discrete

differentiation is enough to remove the bias.
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The second feature (J2) is computed over the bias level, which is obtained with a Kalman

filter. A Kalman filter [44] is an optimal quadratic estimator able to recover hidden states of

a state-space model. We use the Kalman filter with two purposes: to recover the bias level

variation, and to find the periodicity of the signal.

Let define the filtered acceleration data as ~a[k] = [ax, ay, az]
T ∈ <3×1 for time instant k.

This data feeds the following autonomous state-space model:

~x[k] = A~x[k − 1] + η

~y[k] = C~x[k] + ε
(6-1)

where the first three states of ~x ∈ <4×1 are used for classification and the fourth state is

the basis of the periodicity detector (see Fig. 6-3). As this Kalman filter is exclusively used

for filtering (and not for feature extraction or classification), the state transition A ∈ <4×4

and output C ∈ <4×4 matrices are identity matrices. Finally, the output is defined as

~y = [ax, ay, az, ay− bay ]T ∈ <4×1, where the first three terms are the low-pass filtered acceler-

ation data in the three axis, and the fourth output is the acceleration on vertical axis minus

its current bias bay , updated together with the feature.

This state-space model is affected by Gaussian measurement noise ε = N (0, R), and Gaus-

sian state uncertainty η = N (0, Q). The objective of the Kalman filter is to minimize the

variance of the states P ∈ <4×4, considering them as random variables with a Gaussian

distribution: ~x = N (x, P ).

The Kalman filter consists of five equations divided in two stages. The prediction stage of

the Kalman filter predicts the current value of the states and their variance solely based on

their previous values:

~x[k]− = A~x[k − 1] (6-2)

P [k]− = AP [k − 1]AT +Q (6-3)

both ~x[k]− and P [k]− are intermediate values that must be corrected based on the current

data values:

G[k] = CP [k](CP [k]−CT +R)−1 (6-4)

~x[k] = ~x[k]− +G[k](~y[k]− C~x[k]−) (6-5)

P [k] = (I4 −G[k]TC)P [k]− (6-6)

where I4 ∈ <4×4 is an identity matrix.

We only have two parameters to control the Kalman filter: the variance matrices Q and R.

There are not rules to determine their values, but specifically for this problem they are not
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difficult to define. Both are usually diagonal (no interaction among states), large values of

Q and R tend to the original data: ~x ≈ ~y, and they are also complementary, i.e., reducing

any of them flats the states. As shown in Fig. 6-3 (Second and Third panels), the first three

states are flat, and the fourth one seeks for periodic (sinusoidal shape) waveforms.
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Figure 6-3: Kalman filtering.(Top panel) Reference filtered acceleration data (Activity

F05). (Second panel) First three states of the Kalman filter. It is clear that

the filter recovers the variations in bias level of the signal. (Third panel) The

forth state of the Kalman filter recovers a quasi sinusoidal signal during the first

6 s. Its objective is to remove bias to allow posterior zero crossing detection.

(Bottom) Periodicity detector. The first 6 s the subject is jogging with a period

of 10 time samples (twice zero crossing); when the subject falls it stops detecting

periodicity.

Fig 6-3 (Bottom) shows how state x4 tends to a zero-bias sinusoidal shape when the person

walks or jogs. This allows implementing a simple zero-crossing periodicity detector. Note

how the periodicity is lost when the person trips and falls. The periodicity detector focuses

on the three seconds after a possible fall event. If during these 3 s window the periodicity is

guaranteed we may expect that it was not a fall. The size of the window is selected as the

minimum one to guarantee that the person continues slowly walking.
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6.2.2 Feature extraction and classification

The feature extraction consists of a non-linear feature composed of two widely used ones, the

sum vector magnitude and the standard deviation magnitude. The static sum vector mag-

nitude is computed as the root-mean-square (RMS) of the static acceleration with previous

bias removal:

J1[k] = RMS(ã[k]) (6-7)

where in practice the bias is rejected with a simple differentiation: ã[k] = ~a[k]− ~a[k − 1].

The standard deviation magnitude is dynamic and is computed at each time step k over a

1 s sliding window: x̃[k] = [~x[k −N ], . . . , ~x[k]] ∈ <3×N , with N = 25 the size of the window

(for a frequency sample of 25 Hz). This second feature is computed as follows:

J2[k] = RMS(std(x̃[k])) (6-8)

where std(·) is the standard deviation operator. The size of the sliding window is the same

selected in Chapter 3.

The same sliding window can be used to determine the current bias value: bay [k] = mean(x̃[k]).

Fig. 6-4 shows both features with the jog-trip-fall example. The maximum values during

jogging are half way of the fall in J1, but they get clearly distant in J2.

Finally, the classification stage is performed over an indirect feature:

J3[k] = max(J̃1[k]) ·max(J̃2[k])2 (6-9)

With J̃i[k] ∈ <N×1 a sliding window with the last N values of the corresponding feature.

This window is necessary as the Kalman filter takes some time to achieve the maximum,

i.e., not always both metrics present a maximum at the same time. The objective of this

product of features is to amplify the values of those activities where both features agree, and

to minimize those where both features disagree. The square of J2 gives it priority over J1 as

it is more accurate (note that both are greater than one as they are in bits).

The classification consists of a single threshold over J3[k] computed at each time step k. The

value of the threshold is defined after a training process.
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Figure 6-4: Feature extraction. (Top) Reference filtered data (The subject is running,

trips and falls). (Middle) Feature J1 detects the fall as a large difference between

its peak and jogging peaks. (Bottom) Feature J2 has a similar shape but with

a larger percentual difference.

6.2.3 Parameter selection

• Kalman filter initialization: The states can be initialized with zero and P [0] = Q,

i.e., selecting uninformative priors. However, for faster convergence x2[0] and bay [0]

can be initialized with −1 g (approx. -258 in bytes for the device configuration used

with SisFall), which is the initial condition of the accelerometer in our device. Q and R

can be computed with a simple heuristic process: For the first three states, initialize Q

and R with identity matrices and reduce their standard deviation in scales of 10 until

the accuracy stops increasing. For the fourth state, reduce Q and R until x4 shows a

sinusoidal shape in periodic signals (walk and jog). The final values used in this work

were:

Q = 0.0012 × I4 R =


0.052 0 0 0

0 0.052 0 0

0 0 0.052 0

0 0 0 0.012

 (6-10)

Note that all computations in both Matlab and the embedded device are performed in

bits and not in gravities.

• Threshold: The same 10-fold cross-validation presented in Chapter 3 was performed

here in order to obtain the optimal value of the threshold.
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6.3 Results

6.3.1 Fall detection

We initially tested the performance of the proposed algorithm without detecting periodic

activities. Table 6-1 shows the validation results with SisFall dataset over a 10-fold cross-

validation (451 files each). All subjects and activities available in the dataset were included

in the cross validation. The low detection accuracy obtained with J1 (around 86 %) would

raise questions about its usefulness. However, note how J3 is significantly higher than J2
(99.3 % vs. 96.5 %), i.e., even J1 is not a good metric, combined with J2 it improves the

individual accuracy values.

Table 6-1: Test on SisFall dataset without periodicity detector.

J1 J2 J3
Accuracy [%] 86.14 ±1.36 96.50 ±0.84 99.33 ±0.28

Threshold 110.88 ±3.23 22.88 ±0.027 42628 ±511.59

Fig. 6-5 shows an activity-by-activity analysis for the three metrics. The horizontal red line

is the threshold for the best accuracy value, and the vertical red line divides ADL and falls.

Comparing J1 (Fig. 6.5(a)) and J2 (Fig. 6.5(b)) we observe that J1 largely fails in periodic

ADL (D03, D04, D06, D18, and D19) but J2 does not, and J2 goes closer to the threshold in

activities where J1 does not (D16 for example). This separation was the basis to create J3,

it combines their results with a product but giving priority to J2 (computed with square),

given that it is more accurate. The small box in Fig. 6.5(c) shows how all activities are

more separated from the threshold; and importantly, there are less outsiders in Falls (false

negatives).

This initial result significantly improves those obtained with previous approaches tested in

Chapter 3 (none of them achieved more than 96 %). In this case we included subject SE06

(an elderly that performed falls) in the cross validation, which means that this methodology

is able to be used in the objective population.
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Figure 6-5: Individual activity analysis of the proposed algorithm tested with SisFall. The

horizontal red line corresponds to the optimal threshold value, and the vertical

one separates ADL and falls. (a) J1 has large errors on periodic activities, while

(b) J2 fails in those that change the body angle. (c) They provide J3 with a

better discriminant capability (the small box at the left shows a vertical zoom).
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6.3.2 Fall detection with periodicity detector

We then performed the same analysis but including the periodicity detector. The main

purpose of this detector is to take J1 to zero if a periodic activity is observed after a possible

fall (false positive). Table 6-2 shows the validation results after a 10-fold cross-validation.

Compared to the previous analysis, J1 has a significant improvement (94.32 %). J2 remains

the same as the periodicity detector does not affect it. Even one would expect a significant

improvement in J3, this is not the case (however it is higher, with 99.4 % of accuracy) given

that most of the outsiders were not located in the periodic activities (e.g., jump). However,

Fig. 6.6(b) shows how the possibility of errors is lower given the larger distance from the

threshold.

Table 6-2: Test on SisFall dataset with periodicity detector.

J1 J2 J3
Accuracy [%] 94.32 ±0.86 96.43 ±0.81 99.4 ±0.36

Threshold 103.03 ±0.02 22.914 ±0.11 42230 ±985.01

Fig. 6-6 shows the same individual activity analysis of Fig. 6-5 but with the periodicity

detector in J1. Feature J2 was not included as it is not affected by the detector. Fig. 6.6(a)

shows how activities D01 to D04 were turned to zero, as the detector confirmed that the

subject was walking or jogging. Even there is a single outsider, Fig. 6.6(b) shows that it

was cleared in J3. In this case, J3 shows more distance from the threshold than the previous

test. This indicates that even the cross-validation did not show a significant improvement on

accuracy, the inclusion of the periodicity detector increases the robustness of the algorithm to

non-simulated unexpected situations (hits, for example). Importantly, none fall was turned

to zero in Fig. 6.6(b), indicating that the periodicity detector was turned off in all periodic

activities that finished in a fall.

The periodicity detector was active in 606 files (13.5 %). In SisFall dataset each activity

has a limited number of repetitions. However, it is expected that a walk will last more than

one minute, i.e., the posibility of failure is higher with activities that the subject performs

regularly (such as walking).



6.4 On-line validation 49

                                  

0

200

400

600

800

D
01

D
02

D
03

D
04

D
05

D
06

D
07

D
08

D
09

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

F0
1

F0
2

F0
3

F0
4

F0
5

F0
6

F0
7

F0
8

F0
9

F1
0

F1
1

F1
2

F1
3

F1
4

F1
5

J 1
ADL FALLS

(a) J1 with periodicity detector

                                  
0

0.5

1

1.5

2

x 10
6

D
01

D
02

D
03

D
04

D
05

D
06

D
07

D
08

D
09

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

F0
1

F0
2

F0
3

F0
4

F0
5

F0
6

F0
7

F0
8

F0
9

F1
0

F1
1

F1
2

F1
3

F1
4

F1
5

J 3

                                  

ADL

FALLS

(b) J3 with periodicity detector

Figure 6-6: Individual activity analysis of the proposed algorithm including the periodicity

detector. The horizontal red line corresponds to the optimal threshold value,

and the vertical red line separates ADL and falls. (a) J1 was turned to zero

in all periodic ADL. (b) This allowed J3 to increase the distance between most

ADL and Falls.

6.4 On-line validation

We implemented the Kalman filter proposed above on the same device used to acquire Sis-

Fall (see Chapter 2 for details). We implemented it with the same parameters and sample

frequency (25 Hz) defined above. The threshold for J3 was set at 40,000. All calculations

performed in the device were compared to results computed in Matlab. We obtained no

significant differences.

Two validation tests were performed with the algorithm implemented on the device, in order

to verify the off-line results presented in Table 6-2:

• Individual activities: Six young adults (subjects SA03, SA04, SA05, SA06, SA09,
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SA21) and one elderly person (subject SE06) performed three trials of all activities

(except D17, getting in and out of a car, due to logistic issues). We verified on-line if

the alarm was turned on (with a led light incorporated to the device). Additionally,

all raw data and the device computations were recorded in text files.

• Full-day: Three elderly adults (they were not part of SisFall) carried the device for

full days. They used the device permanently except during night sleep and shower (as

the device is not water-proof). The files were cut in segments to avoid computational

overloads (one hour of recording implied a text file of around 10 MB).

6.4.1 Individual activities

The volunteers performed a total of 18 ADL and 15 falls in the same way SisFall dataset was

acquired (around 99 total trials per subject). They presented a total of 4 false positives and

1 false negatives. Subject SE06 did not show errors. All false positives were in D13 and D14

(bed related ones). Following Fig. 6.6(b), it is clear that these activities are commonly close

to the threshold. A deeper analysis of this problem (which is not reflected in the following

test) demonstrated that when a person moves on the bed, it is usual to separate the hip

from the mattress and let it fall in the new position. The pad used for this experiment is

harder than a mattress increasing the false positive probability. The overal results coincided

with the expected statistics.

6.4.2 Full-day (pilot) tests

We invited three elderly people that were not part of SisFall acquisition (in order to avoid

biases). Table 6-3 shows their age, weight and height. We asked them to behave normally

while carrying the device during at least two days, and we checked the integrity of the devices

every couple of hours.

Table 6-3: Sex, age, height and weight of the participants in full-day activities.

Code Sex Age Height [m] Weight [kg]

SM01 Female 60 1.56 54

SM02 Female 68 1.46 56

SM03 Male 79 1.62 68

In the following, we present a summary of the activities they performed and the overall

behavior of the system:

• SM01: She assisted to a Tae-Bo for adults class (INDER Medelĺın), and stayed at

home cooking, cleaning and resting. She did not present false positives.
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• SM02: She stayed most of the time cooking at home, cleaning and sit on the dinning

room. She usually supports her belly against the kitchen or the table, it caused some

false positives (4) of the system. She went out of her home two times, unfortunately

both times the device got hits and lost the SD card, loosing all data. This is worrying

as after an interview we concluded that she strongly hit the device in both cases

pressumably againts furniture. We presumed that her low height together with the

shape of her belly (rounded) incremented the risk of direct hits to the device.

• SM03: He did some trips to a business in the downtown and to the church. The rest

of the time he stayed at home in bed or the dinning room. He did not have false

positives in any activity. His trip to the downtown included stairs, two train trips and

two bus trips. This trip is presented in Fig. 6-7, note that despite the wide amount of

activities, the levels of feature J3 were not close to the threshold (40,000).
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Figure 6-7: Trip to the downtown of SM03. (Top panel) Raw acceleration data, 2 hours

and 45 minutes of recording. (Second panel) First three states of the Kalman

filter. (Third panel) feature J3. It was always below the threshold (set at 40,000).

6.5 Summary

In this chapter we proposed a fall detection methodology, based on the conclusions obtained

from previous chapters:
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1. It uses the low-pass filter proposed in Chapter 3.

2. We selected two complementary features from Chapter 3, and we combined them in

similar way as we already did in Chapter 4.

3. We included a periodic activity detector similar to those of Chapter 5, but with lower

computational requirements.

4. We continued with a simple and non-computationally intensive threshold-based clas-

sification.

The basis of this methodology is a novel Kalman filter. The Kalman filter is not computa-

tionally intensive as it is Markovian, and it demonstrated to be stable with acceleration data.

The proposed methodology was tested with SisFall dataset, we then validated it on-line after

implementing it on the embedded device, and we finally performed real-life tests with three

elderly people who used the device in their common life.

The most significant technical improvement of this approach is the way that a combined

non-linear feature (J3) provided higher accuracy (99.4 %) than the individual ones (94.3 %

and 96.4 %). We obtained this feature after analyzing individually several features with each

activity (finally keeping J1 and J2). J1 comes from feature C1 (but with 3 axis) in Chapter 3,

and J2 is the same feature C2 but computed after the Kalman filtering stage. This pair was

selected as they were highly complementary (each fails in different activities than the other

one).

This methodology allowed reducing the frequency sample to just 25 Hz (as results of Chap-

ter 3 suggested). The battery allowed more than 17 hours of continuous acquisition in the

full-day tests (without saving data to a SD, it is expected to get longer). This final vali-

dation demonstrated that the proposed methodology can be used in real-life with objective

population. However, even it behaved well with on-line simulated falls and real-life use, only

real falls that may occur at any moment will show its real accuracy.
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7.1 General conclusions and main contributions

SisFall dataset In Chapter 2, we presented the new SisFall dataset acquired as part of this

work. This responded to the need of a fall detection dataset with a large number of activ-

ities determined after a literature review and our own survey; well documented acquisition

conditions (we recorded videos of each activity); and data from an embedded device fixed

to the body (other datasets publicly available were recorded with smartphones). SisFall

dataset consisted of 34 activities (falls and ADL) performed by 38 participants (15 of them

had more than 60 years old). We made all files publicly available for the scientific community.

The dataset includes an elderly person (subject SE06) that performed ADL and falls. Even

this person is a Judo expert (cannot be considered as representative of the elderly popula-

tion), and that only one subject is not enough for most purposes, the acquired falls are wide

more close to real-life conditions than what we could find available in the literature.

The dataset was tested in Chapter 3 with the most widely used features to detect falls. With

this work, we demonstrated that a simple 4-th order Butterworth filter with a cut frequency

of 5 Hz is enough to detect falls without loosing information. Additionally, we found that

dynamic features based on statistical moments are the most accurate to classify among falls

and ADL. However, we also found that training algorithms with young people is insufficient

to obtain acceptable accuracy with the objective population.

Energy based fall detection In Chapter 4 we presented an energy-based fall detection

algorithm. With this work, we used a static feature extraction characteristic (sum vector

magnitude) together with an energy-based feature. This algorithm was tested in data from

a Smartphone and an embedded device, with acceptable results. Moreover, our most impor-

tant finding was that the combination of different features provides higher discrimination

capabilities than the individual ones. This result led to a second conclusion, a threshold

based classifier is enough to achieve accuracy levels of up to 99 %. The importance of

this final finding relays in the low complexity (and consequently energy consumption) that

threshold-based classifiers require.
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Analysis of individual activities In Chapters 3 and 4 we found that most errors in the

threshold based algorithms were focused in some individual activities, such as periodic ADL

with high energy, namely walk, jog, or going up or down stairs. Consequently, in Chapter 5

we developed a novel methodology for detecting and characterizing walk and jog based on

non-peak-based acceleration features. We demonstrated that with the Kurtosis of wavelet

coefficients it was possible to obtain a measure to correctly identify these activities. How-

ever, we found that it was more stable to obtain the period of the acceleration signal using

its auto-correlation.

Our methodology worked correctly with a fixed device (SisFall) and a smartphone (Mobifall).

A posterior statistical analysis demonstrated that the period provides statistical significant

differences among walk and jog. This methodology proved to be sensitive enough to provide

a “quality of the activity” measure. We were able to determine on-line the regularity of the

activity when the subject walked or jogged. This result could be useful for sports, allowing

the person to maintain a regular jog rithm for long periods of time.

Kalman-filter-based fall detection In Chapter 6 we took advantage of the main improve-

ments obtained during this work: Simple frequency filtering, a non-linear feature based on

commonly used ones, theshold-based classification, and a periodicity detector to avoid false

positives. With that, we generated a novel fall detection algorithm centered on a Kalman

filter stage.

We selected the Kalman filter because its low computational cost and robustness, it provided

an orientation level to a variance feature and at the same time a sinusoidal signal when the

subject performed a periodic activity. This last result highly reduces the computational cost

to obtain the period of the signal, as it avoids to compute Wavelets or auto-correlation.

The new non-linear feature used for this work was obtained in an intuitive way, and together

with a theshold based classifier it achieved 99.4 % of accuracy with SisFall dataset. We then

implemented this methodology in the embedded device and tested with full-day tests with

objective population (two female and one male, all over 60 years all). We asked them to

do what they use to, including traveling in train and bus, making exercise and cooking or

cleaning. With a sampling frequency of 25 Hz (lower than most works in the literature), we

obtained more than 17 continuous hours of acquisition (we recorded on-line, increasing the

consumption) and the devices behaved as expected, just with a couple of false positives due

to hits of the device during cooking. This final point is out of the scope of this work, and a

good starting point for a future work.
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7.2 Future work

Acquisition of real falls In Chapter 3 we demonstrated that setting an algorithm with

young adults does not perform well with falls of elderly people. Even the falls were tested

with a Judo expert who tried to minimize the impact, we would expect the same behavior of

an elderly person trying to avoid the fall. So, even the methodology proposed in Chapter 6

seemed to solve this issue (the validation test with this subject presented 100 % of accuracy),

it is necessary to increase the number of falls with elderly people to have a representative

sample. However, with the impossibility of performing simulated falls with elderly people

(the risk of accident is too high), with an average of one fall per year, it is unrealistic to

expect acquiring confident data of real falls. Then, this remains as an open issue that must

be solved in the near future.

Detection of hits on the device With the full-day tests performed in Chapter 6, we found

that the position of the device (in the front) makes it propense to hits with some people.

Our specific scenario was a 1.46 m height person that use to lean against the kitchen when

cooking, hitting the device without noticing it. We acknowledge that with more intensive

tests other situations may arise. A work focused on this kind of hit would help determining

its differences with falls and avoiding false positives.

Sports and other uses of individual activity detection The “quality of activity” detector

developed in Chapter 5 explores a growing research area: detecting individual activities for a

wide variety of porpuses. They include sports performance, tracking people in closed spaces,

rehabilitation, gait detection, among others.
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