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Abstract 

Due to its scalability and flexibility, Network-on-Chip (NoC) is a growing and promising communication paradigm for Multiprocessor 

System-on-Chip (MPSoC) design. As the manufacturing process scales down to the deep submicron domain and the complexity of the 

system increases, fault-tolerant design strategies are gaining increased relevance. This paper exhibits the use of a Population-Based 

Incremental Learning (PBIL) algorithm aimed at finding the best mapping solutions at design time, as well as to finding the optimal 

remapping solution, in presence of single-node failures on the NoC. The optimization objectives in both cases are the application 

completion time and the network's peak bandwidth. A deterministic XY routing algorithm was used in order to simulate the traffic 

conditions in the network which has a 2D mesh topology. Obtained results are promising. The proposed algorithm exhibits a better 

performance, when compared with other reported approaches, as the problem size increases. 
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Resumen 

Las redes en circuito integrado (NoC) representan un importante paradigma de uso creciente para los sistemas multiprocesador en 

circuito integrado (MPSoC), debido a su flexibilidad y escalabilidad. Las estrategias de tolerancia a fallos han venido adquiriendo 

importancia, a medida que los procesos de manufactura incursionan en dimensiones por debajo del micrómetro y la complejidad de los 

diseños aumenta. Este artículo describe un algoritmo de aprendizaje incremental basado en población (PBIL), orientado a optimizar el 

proceso de mapeo en tiempo de diseño, así como a encontrar soluciones de mapeo óptimas en tiempo de ejecución, para hacer frente a 

fallos de único nodo en la red. En ambos casos, los objetivos de optimización corresponden al tiempo de ejecución de las aplicaciones y 

al ancho de banda pico que aparece en la red. Las simulaciones se basaron en un algoritmo de ruteo XY determinístico, operando sobre 

una topología de malla 2D para la NoC. Los resultados obtenidos son prometedores. El algoritmo propuesto exhibe un desempeño 

superior a otras técnicas reportadas cuando el tamaño del problema aumenta. 

 

Palabras clave: Mapeo de tareas, Sistemas integrados multiprocesador (MPSoC), Redes en circuito integrado (NoC), Aprendizaje 

incremental basado en población (PBIL). 

 

1.  Introduction 

 

MPSoC systems are a feasible alternative for 

implementing a complexity-growing and variable set of 

applications. NoC-based MPSoCs have appeared as a way 

to easily scale the size of the system, and to deal with 

application performance requirements, application 

variability and constraints, such as real time [1]. In such 

systems, it is necessary to establish an optimal way to map 

the executable tasks of an application onto the available 

resources for its implementation. Static mapping is 

performed at design time, before executing the application.  

 

In [2], an Integer Linear Programming (ILP) approach is 

proposed for static mapping aimed to optimize energy in a 

NoC-based MPSoC. The algorithm considers both the 

processing and communication energy as optimization 

objectives. A simulated annealing heuristic is added to the 

optimization process, which suffers from large execution 

times. Similarly, reference [3] reports a custom algorithm 

for static mapping of tasks on a NoC platform. The 

algorithm optimizes the computation and communication 

energy, with a slight degradation of system's performance. 

The work reported in [4] proposes a technique for 

mapping tasks onto a set of heterogeneous Processing 

Elements (PEs) operating at multiple voltage levels in a 
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NoC platform. Such work is based on a Mixed Integer 

Linear Programming (MILP) formulation for the static 

mapping problem, and it aims to optimize the overall energy 

consumption of the system, under performance constraints. 

The only objective considered for optimization is energy, 

and there are some complex problems (for instance, those 

related with low voltage setups) for which a feasible 

solution may not be found. 

On the other hand, Dynamic mapping is also often 

referred to as remapping and is used in two defined 

contexts. First, the workload of the system may change due 

to several reasons [5], so a remapping procedure may adjust 

the system to the new workload and traffic conditions 

according to the figures of merit to be optimized. In second 

place, as a consequence of current systems complexity, 

there is a growing set of malfunctions and failures that 

cannot be detected or avoided by using current design 

methodologies [6]. Fault tolerance may be achieved by 

using dynamic mapping, which distributes the current 

workload of the system and avoids the use of faulty 

resources. 

Some of the reported dynamic mapping approaches are 

restricted to homogeneous networks [5, 7, 8], meaning that 

all the processing elements are identical. Some other 

reported works are limited to the mapping of single tasks 

onto each processor of the system [9]. In [10], a multi task 

dynamic mapping approach is proposed for heterogeneous 

networks, i.e., processing elements in the system are of 

different kinds. The mapping algorithm uses heuristics 

aimed at reducing the traffic overhead, by means of 

assessing the adjacent available resources and measuring of 

the proximity of the communicating tasks. 

The work reported in [11], presents a set of simple 

heuristics for dynamic mapping in NoC-based MPSoCs. 

Due to its simplicity, these algorithms may run very fast and 

deal with changing conditions in the network's workload. 

However, link occupation is the only objective being 

considered in the optimization process. Besides, the 

mapping algorithms described are not designed for 

achieving optimal solutions, as derived from the reported 

results. 

A multitask dynamic mapping approach is proposed in 

[12]. The work is aimed at providing fault tolerance in a 

heterogeneous network. The optimization algorithm is based 

on ILP, and performs a multiobjective space search, in order 

to minimize both the execution time and the communication 

cost. The main issue with ILP is that optimization becomes 

highly complex as the problem's size increases. The work 

reported in [13] proposes an algorithm for mapping and 

scheduling in MpSoC systems. The algorithm is able to map 

executable applications both to bus-based and to NoC-based 

architectures. The exploration of the solution space is 

performed by means of a simulated annealing algorithm, 

which starts from a given solution (usually a random 

solution), and improves it gradually until reaching an 
 

 
Table 1. Survey of the revised mapping solutions. 

 

Reference 
Target 

Architecture 
Mapping Nature Optimization Algorithm 

Common domain 

semantic 

Optimization 

Objective 

[15] Heterogeneous Static 
Successive Relaxation or 

Genetic Algorithms 
Metric Space Network traffic 

[16] Homogeneous Hybrid Custom Dataflow graph Throughput 

[17, 18] Homogeneous Hybrid 
Simulated Annealing and 

custom  
Task Graph Energy 

[19] Heterogeneous Hybrid ILP Task Graph Energy and Exec. Time 

[20] Heterogeneous Hybrid Distributed Stochastic Task Graph Communication energy 

[21] Homogeneous Static  ILP Task Graph Temperature 

[22] Homogeneous Dynamic Custom Task Graph Hop Count 

[10, 23] Heterogeneous Dynamic Custom Task Graph Multiobjective 

[12] Heterogeneous Dynamic ILP Task Graph Multiobjective 

[24] Heterogeneous Static Artificial Bee Colony Task Graph Power 

[5, 25] Homogeneous Dynamic Custom Task Graph Energy 

[26] Heterogeneous Static Fuzzy and Custom Task Graph 
Energy and message 

latency 

[2] Heterogeneous Static 
ILP and simulated 

annealing 
Task Graph Energy 

[27] Heterogeneous Static Ant Colony 
Task and core 

graphs 
Energy and temperature 

[28] Homogeneous Static Simulated Annealing Task Graph Energy 

[3] Heterogeneous Static Custom Task Graph Energy 

[29] Homogeneous Hybrid 
Multiobjective 

Evolutionary 
Task Graph Latency and Power 

[30] Homogeneous Static Quadratic Programming Task Graph Energy 
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optimal. Working with a single solution, instead of a 

population of solutions, may carry problems related to local-

optimal solutions, as stated in [14]. 

Table 1 summarizes most of the relevant related works 

concerning mapping of tasks into NoC-based systems. The 

mapping may be either static, dynamic, or hybrid, meaning 

that part of the mapping labor is performed in design time, 

and the remaining work takes place in runtime. 

The common domain semantics refers to an intermediate 

representation, which combines features of both the high 

level specification of the application, and figures of merit 

related to the implementation platform [31]. As depicted in 

Table 1, task graphs are the most common approach as 

intermediate representation. Particularly, annotated task 

graphs (ATGs) allow the tasks structure (represented as 

dependences in the graph) and the figures of merit to 

optimize (supplied in the form of annotations) to be 

represented.  

Some formal optimization methods, such as ILP, appear 

often in Table 1. Heuristics are also very common 

approaches for performing the optimization of the mapping 

problem. Such optimization may be devoted to a single 

objective, such as throughput, energy, traffic, temperature, 

and so on. Some of the mapping strategies are devoted to 

several objectives at once, i.e., they are multiobjective. 

This paper describes an approach for static and dynamic 

mapping based on a PBIL optimization algorithm. The 

dynamic approach is aimed at providing fault tolerance in a 

single-node failure scenario. A heterogeneous NoC, based on a 

2D mesh interconnection network, is used as a case study. Two 

objectives were taken into account for the optimization 

process: Completion time of the application, and peak 

bandwidth  of the interconnection resources within the 

network. Bandwidth is related to the implementation costs of 

the system, since interconnection resources must be appraised 

at design time and placed into the system chip. For the sake of 

assessing the second objective, an XY routing algorithm was 

used in simulations. The remainder of this paper is organized as 

follows. Section 2 describes the static and dynamic mapping 

problems, as well as the experimental setup used to test the 

proposed approach. Section 3 describes the PBIL optimization 

algorithm and the customizations performed on it in order to 

deal with the dynamic and static mapping problems. Section 4 

shows the simulation results. Concluding remarks and future 

work appear in Section 5. 

 

2.  Static And Dynamic Mapping  

 

As mentioned before, static mapping is performed at 

design time and is aimed at choosing the optimal 

combination of available resources in a NoC, in order to 

implement an application, composed of a set of executable 

tasks. An annotated task graph (ATG) is often used as a 

middle-level representation of the application which is 

going to be implemented. 

Fig. 1 shows a 12-task ATG for an MPEG-2 decoder [32]. 

In such graph, vertices are associated with executable tasks 

(labeled from t1 to t12), and edges represent data 
 

 

 
Figure 1. A 12-task ATG for an MPEG2 decoder. 

 

dependences among the tasks of the system (labeled from e1 

to e14). Annotations provide information about figures of 

merit such as performance, power, bandwidth, and some 

others. Such annotations allow exploring several 

implementation choices in the optimization process, and 

were omitted in Fig. 1 for space reasons. 

A 3 × 3 2D mesh was used as the target architecture. 

Fig. 2 shows such a mesh, composed of RISC and DSP 

processors. In such figure, there are nine nodes or tile 

spaces (labeled from n1 to n9) representing the processing 

elements, and twelve communication links between the 

different nodes (labeled from L1 to L12). 

A deterministic XY routing algorithm was used to 

simulate the traffic conditions in the network. The PBIL 

optimization was performed for two conflicting objectives: 

First, the completion time of the application, which is equal 

to the maximum time stamp associated with the execution 

of tasks in the whole system. The second optimization 

objective was the peak bandwidth of the target NoC. This 

figure of merit may be calculated as the maximum value of 

bandwidth requirements for the links in the network, once 

the mapping has been performed. 

 

 
Figure 2. Target Architecture. 
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Given the input task graph and the target architecture, 

the static mapping problem may be defined as finding the 

best task distribution, for the sake of optimizing both 

completion time and peak bandwidth in the system 

implementation. 

On the other hand, dynamic mapping must deal with a 

subset of the system tasks and resources . Since dynamic 

mapping must deal only with exceptional situations, such as 

node failures or changing traffic conditions, the primer 

mapping solution (which was performed at design time) is 

still valid for most of the executable tasks on the system. 

Only a subset of the system tasks must be mapped at 

runtime to some other executable resources. Let’s suppose 

that one of the nodes in Fig. 2 suffers a failure whilst the 

system is executing a given application. In order to provide 

some degree of fault tolerance, tasks that were running in a 

faulty node, may be redistributed to the remaining ones. In 

the proposed approach, dynamic mapping is performed to 

accomplish this aim. The main difference with respect to the 

static approach is that dynamic mapping must be performed 

at runtime. Besides, the number of tasks and resources that 

must be taken into account in the dynamic approach  will be 

lower than that for static scenarios. 

 

3.  PBIL–Based Task Mapping 

 

PBIL algorithms are stochastic search methods, which 

obtain directional information from the best solutions 

previously found in the solution space. Such algorithms 

have been used in design automation for embedded systems 

with promising results [33, 34]. PBIL techniques are a 

special case of a larger group of optimization approaches 

based on population. The main feature of the PBIL-based 

algorithms is an array of probabilities, which converge 

progressively to an optimal solution. The values in such an 

array must be updated iteratively. In the final stages of the 

optimization process, some entries of the PBIL array have 

greater probabilities, pointing to an optimal solution of the 

problem at hand. 

Let's suppose a mapping problem (it may be either static 

or dynamic) with a set of N tasks and M available resources. 

The PBIL probability matrix for such a problem may take 

the form of the array shown in Fig. 3. In this figure, P(i,j) 

represents the probability of task j to be implemented on the 

resource i. Fig. 4 shows a basic version of the adaptive 

PBIL algorithm, which is intended to update the 

probabilities of the PBIL array iteratively, until an optimal 

solution becomes more probable than the remaining ones. 

This algorithm starts with the PBIL probability array, 

namely P, with dimensions M × N, as shown in Fig. 3. All 

the probabilities in the array are initialized to 1/M, which is 

the value that ensures maximum population diversity, in 

such a way that all potential solutions to the mapping 

problem are being considered at the beginning of the 

optimization process. 

The routine Create_Population generates a new 

population (namely Pop), starting from probabilities in the 

PBIL array. Rows (resources) in the array with the highest 
 

 
Figure 3. PBIL Probability Matrix. 

 

values of probability are meant to appear more frequently in 

the population’s individuals. The Evaluate_Population 

routine assesses the population’s individuals just created. 

Fitness values allow choosing the best solution for the 

mapping problem. The Choose_Best routine is used to 

accomplish this goal. The learning rate or LR is a way to 

control the convergence speed of the PBIL algorithm. 

Higher values of LR will lead to fast convergences, although 

the quality of the solutions might not be satisfactory. If LR 

is reduced, quality will improve at the expenses of longer 

convergence time. In our adaptive approach, the LR 

parameter must be adjusted in order to allow both 

exploration and exploitation of the PBIL search space. The 

entropy (E) of the probability array is calculated and used as 

an estimation of the population’s diversity. In Fig. 4, the 

routine Learning_Rule represents the way in which the LR 

parameter is tuned as a function of the P array’s entropy. 

Once the LR parameter is calculated, the P array must be 

updated in order to adjust the probabilities, according to the 

best solutions found in the population. Function 

Update_Array performs this. 

 

 
Figure 4. Basic Adaptive PBIL approach. 
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The value of the E parameter in Fig. 4 is calculated as the 

systemic entropy of the PBIL array, just as is done in 

information theory. Equation (1) depicts the calculations 

performed inside the Entropy routine, for the entropy 

calculation. 

 

 

(1) 

 

According to Equation (1), entropy values range from 0 

to 1. E = 1 means that there is maximum population’s 

diversity (this only happens when all values on the PBIL 

matrix are equal to 1/M). When E = 0, it means that the 

PBIL matrix points to a unique and completely defined 

solution. Entropy decreases as the probability array tends to 

concentrate on single entries of each column of the P array 

(i.e., when an optimal solution becomes more probable). For 

the sake of speeding up the convergence of the PBIL 

algorithm, the termination condition in Fig. 4 is a 

comparison between the Entropy value and a given 

tolerance. By using this strategy, it is not necessary to wait 

until the Entropy value becomes equal to zero, which may 

be very restrictive and time consuming. 

The way in which the LR parameter is changed as a 

function of entropy is often referred to as the learning rule. 

Equation (2) describes a sigmoid learning rule, which was used 

inside the Learning_Rule routine. In the equation, LRMIN and 

LRMAX are the minimum and maximum values, respectively, 

for the learning rule parameter (LR), whilst Δ is an empirical 

value which usually ranges from 4 to 6. The idea is to keep the 

LR parameter low at the beginning of the algorithm, when there 

is a high population’s diversity and the values of E are close to 

one. When entropy’s value decreases, i.e., when the population 

approaches to a given optimal, LR parameter is increased to 

speed up the convergence process. 

 

 
(2) 

 

For each task of the mapping problem or, equivalently, 

for each column in the PBIL array, the function 

Update_Array must increase the probability of the choice 

which resulted in the best solution. Since each single 

column in the PBIL matrix represents a conjoint probability 

event, the probabilities sum along a column must be equal 

to one. Therefore, when a given probability in the array is 

increased, the remaining ones in that column must be 

decreased accordingly. Equation (3) shows the probability’s 

updating formulae, which are based on the Hebbian learning 

rule [35]. In Equation (3), it is supposed that for a given 

attribute j, the best solution obtained is the choice k. 

Suffixes Old and New in Equation (3) are meant to denote 

the old and new versions of each probability, respectively. 

 

 

(3) 

The PBIL approach described so far may be easily 

adapted to perform dynamic mapping. In the event of a 

single node failure, the number of columns in the 

probability array in Fig. 3 (N) would be equal to the 

number of tasks that the faulty node was executing. The 

number of rows may be kept the same. Then, all the 

probabilities associated with the faulty node (a single 

row in the array) must be set to zero. In such a case, the 

initialization stage of the array in Fig. 4, must set all the 

probabilities to (M − 1) −1. 

The situation is not so different in the event of failures 

involving several nodes at once. The rows associated with 

the faulty resources must be equal to zero and the 

initialization stage, at the beginning of the optimization 

process, must take into account only the available resources 

for task implementation. In an improved version of the 

PBIL algorithm, the probability array must take the exact 

dimensions according with the specific dynamic mapping 

problem: N must be equal to the number of tasks to be 

remapped and M must be equal to the amount of available 

resources. This is the approach adopted for the remaining of 

this paper. 

 

4.  Experimental Results 

 

The PBIL optimization algorithms, both for static and 

dynamic mapping, were written and tested in Matlab 

(R2011a), for an MPEG-2 decoder like the one represented 

in Fig. 1, with 12, 24 and 36 tasks. The NoC target 

architecture was that shown in Fig. 2. The traffic conditions 

in the network were simulated using a deterministic XY 

algorithm. The profiling information (annotations of the 

taskgraph) regarding execution time and bandwidth was 

extracted from [36]. 

The routine Evaluate Population in Fig. 4, as described in 

previous section, assesses each solution in the population 

and gives it a fitness value. A weight vector was used to 

deal with the multiobjective issue in the optimization 

process. Each entry of the vector is associated with a given 

objective of the problem (such as completion time, energy 

consumption or bandwidth). The relative value of each entry 

with respect to the remaining ones, represent the probability 

of its associated objective to be optimized at each PBIL 

algorithm’s iteration. By changing the relative values of the 

weight vector, it is possible to construct a Pareto curve, as 

shown in Fig. 5. Pareto curves show several trade-offs 

among the objectives to be optimized, because they define 

the set of solutions in which a given objective cannot be 

improved, without degrading some other objective. 

In order to profile our PBIL approach, static mapping may 

be considered as the worst-case scenario (i.e., the one which 

takes more convergence time). In static mapping, all tasks 

must be mapped, and all the resources are available for 

potential implementations. Alternatively, dynamic mapping 

must deal with a subset of the system’s tasks and a subset of 

the available resources. Convergence times for several 
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Figure 5. Pareto curves for PBIL optimization 

 

instances of the PBIL static mapping optimization are 

shown in Fig. 6. In this figure, the continuous line 

represents a quadratic fit performed on the data. Data from 

an ILP optimization [12], performed over the same static 

mapping problem, was included in the figure for 

comparison purposes. 

As shown in Fig. 6, the ILP approach exhibits a better 

performance than PBIL for small problems. However, if the 

number of tasks increases, optimization using the ILP 

algorithm becomes prohibitive. As reported in [12], the 

mean ILP convergence time for a 36-tasks optimization is 

around 1700 seconds. PBIL convergence time is around one 

order of magnitude lower than this value. 

 

 
Figure 6. Convergence times for several mapping instances. 

 

The PBIL algorithm for dynamic mapping starts from a 

previous mapping schema, obtained from the static 

optimization. The reference to the faulty node is also 

 
Figure 7. Evolution of the optimization objectives. 

 

necessary, for identifying the system tasks that must be 

remapped. By using such information, it is possible to 

define the dimensions of the PBIL probability array, and the 

optimization algorithm may take the form depicted in Fig. 4. 

For dynamic mapping, only single node failure scenarios 

were considered in the simulations. However, multiple-node 

failures may be easily considered with the proposed 

methodology: If a failure event affects two nodes 

simultaneously, two rows of the matrix in Fig. 3 must be set 

to zero. The remaining values of such a matrix should be set 

to 1/(M − 2). The PBIL algorithm may then perform the 

optimization process as described before. In a more general 

fashion, if a failure affects an amount of F nodes, the matrix 

in Fig. 3 must be initialized in such a way that F rows, in 

correspondence with the faulty resources, must be set to 

zero. The remaining values of the matrix must be set to 

1/(M − F), for the sake of guaranteeing maximum 

population diversity. 

Fig. 7 depicts the evolution of the two optimization 

objectives (Completion Time and Bandwidth) as a function 

of the number of algorithm iterations. In this case, the size 

of the problem, or equivalently, the number of tasks to be 

mapped was equal to 36 and the weight vector was tuned to 

provide 60 % of probability to the Completion Time 

objective to be optimized, whilst the Bandwidth had a 

probability of 40 %. 

 

5.  Conclusions 

 

A multiobjective PBIL optimization approach has been 

described and tested for static and dynamic mapping of 

tasks to an MPSoC based on NoC. The objectives 

considered in the optimization process were the completion 

time of the executable application and peak bandwidth. For 

our simulations, a 2D mesh architecture and a deterministic 

routing schema were adopted. The PBIL optimization 

algorithm seems to have a better performance than some 

other reported approaches, such as ILP, when the problem 

size increases. This is a major advantage, since the size of 

MPSoC systems has been increasing as well as the 

complexity of the applications involved. 
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