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Abstract 

This paper presents the modeling of the main dynamics of a Simultaneous Saccharification and Fermentation (SSF) process using 

lignocellulosic wastes as substrate. SSF experiments were carried out using the yeast Kluyveromyces marxianus as the inoculum and oil 

palm wastes as the substrate, in order to obtain glucose and ethanol concentration data. The experimental data were used for the 

parameter identification and model validation. The resulting model predictsthe dynamic behavior of glucose and ethanol concentrations 

very closely. Performing a sensitivity analysis, parameters which have a higher effect in the modelpredictions are recognized, so the 

model can be re-optimized in particular cases with low computational requirements. The re-optimization strategy improves the model 

capacity to predict the dynamics of the SSF process. 
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Resumen 

En este trabajo se presenta el modelado de las principales dinámicas de un proceso de Sacarificación y Fermentación Simultaneas (SFS) 

utilizando residuos lignocelulósicos como sustrato. Experimentos de SSF llevados a cabo con la levadura Kluyveromyces marxianus 

como inóculo y desechos de palma de aceite como sustrato se realizaron para obtener datos de concentración de glucosa y etanol que 

permitieran identificar parámetros y validar el modelo. El modelo resultante predice el comportamiento general de las concentraciones de 

glucosa y etanol. Gracias a un análisis de sensibilidad, se definen los parámetros que más afectan el modelo, con el fin de flexibilizar el 

modelo para que pueda ser optimizado en casos particulares con pocos requerimientos computacionales. Esta estrategia de 

reoptimización muestra mejorar de manera importante la capacidad del modelo para predecir las dinámicas del proceso SSF. 

 

Palabras clave: Bioetanol; Sacarificación y fermentación simultánea; modelado; kluyveromyces marxianus; Análisis de sensibilidad. 

 

1.  Introduction 

 

The growing concern generated by the imminent 

depletion of fossil fuels has led to the search for alternative 

energy sources to achieve a sustainable society. Ethanol has 

emerged as one of the first sources that can help 

significantly to reduce the consumption of fossil fuels and 

also the emission of gases that promote global warming. 

Currently, the use of corn and sugar cane for ethanol 

production creates a major ethical concern in global food 

security and the rise of food prices[1,2]. That is why in 

recent years, research towards using lignocellulosic wastes 

for ethanol production has increased, in a way that is both 

technically and economically viable. Among the different 

technologies that can be used for that purpose, the 

Simultaneous Saccharification and Fermentation (SSF) 

production process has gained especial attention. 

It is known that the success of the introduction of 

biofuels in each country depends largely on the raw 

materials used for its production. Colombia is one of the 

largest global producers of palm oil [3].This industry 

generates a very large amount of palm residues in the 

extraction process. Those residues have a very high 

potential for being use as a substrate in an SSF process for 

bio-ethanol production as a second generation biofuel [3]. 

The regulation for the use of ethanol as a fuel in 
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Colombia started in 2002, with a primary goal to achieve a 

production capacity of 2.5 million liters per day, in order to 

add 10% ethanol to the gasoline used for transportation. 

However, the main five ethanol plants operating in the 

country, produce only 1.05 million liters per day and the 

contribution of some small plants does not significantly 

increase this amount, which is only enough to supply the 

major cities near the Valle del Cauca, and the capital 

Bogotá. Therefore, it is necessary to evaluate future 

technically and economically feasible strategies that allow 

the ethanol volume of production in the country to be 

increased and stimulates the development of tools suitable 

for scaling up the processes for ethanol production from 

lignocellulosic wastes. Those strategies must be carried out 

specifically using the kind of residues widely available in 

Colombia. There have been few of this kind of studies and 

they have shown that there is a gap in technology and 

knowledge to overcome the challenge when scaling-up. 

Therefore, a deep understanding of the phenomenon taking 

place in the process is still required. For that, the use of 

modeling tools is a promising approach for gaining that 

understanding. 

In recent years, the development of models for 

predicting the dynamic behavior of the most important 

variables in the ethanol production process has been 

intensified, including the SSF processes [4–7]. However, 

studies in this field are still scarce and its application in 

scaling up is restricted. Besides, the models reported so far, 

have not been developed for alternative processes that uses 

microorganisms different from Saccharomyces cerevisiae 

and/or processes involving lignocellulosic residues of 

regional interest. Therefore, it is still necessary to develop a 

phenomenological-based model to properly predict the 

dynamic behavior of the different variables involved in the 

SSF process. In this work, an unstructured mathematical 

model was developed. The parameter identification and 

model validation were also carried out, using the 

experimental data for different SSF processes conducted 

with oil palm waste as the substrate and Kluyveromyces 

marxianus as the fermentative microorganism. Finally, a 

sensitivity analysis is proposed to be used in order to 

improve the parameter identification procedure. 

In section 2, a description of the methodology for the 

SSF experiments and the development of the mathematical 

model is presented. In section 3 the results of the model 

optimization and sensitivity analysis are shown, and the role 

of the different parameters is discussed. Also, the results of 

re-identification for the sensitive parameters, and its 

implication in the model performance are presented. Finally 

in the section 4, some conclusions are summarized. 

 

2.  Methodology 

 

2.1.  Pretreatment of the lignocellulosic waste 

 

The oil palm wastes were donated by the CENIPALMA 

investigation center, obtained in an oil extraction factory 

located in Santander, Colombia. The dry wastes were milled 

in the Industrial Biotechnology Laboratory of the 

Universidad Nacional de Colombia, to obtain particles with 

a diameter of 1.5mm or less, and then a pretreatment with 

sulfuric acid was carried out (2%V/V, 20% W/V of solid 

load and 121°C during 80 minutes). The material was then 

dried for 12 hours in an oven at 50°C in the Biotechnology 

Laboratory of the Universidad de Antioquia. After that, an 

alkali pretreatment was performed (121°C, in a solution of 

NaOH 1%V/V, 10% W/V of solid load during 30 minutes). 

Finally the material was washed with distilled water several 

times, dried in an oven at 50°C for 12 hours and stored in a 

fresh place. 

 

2.2.  Yeast strain 

 

The yeast Kluyveromyces marxianus ATCC 36907, a 

thermotolerant yeast, was used in this work. The strain was 

kept at 4°C, in a solid medium containing Glucose 20g/L, 

Peptone 5g/L, yeast extract 3g/L, malt extract 3g/L and 

Agar 20g/L. The pH of the solid medium was adjusted to 

5.0. Every three months a new culture was made. Before 

using the microorganism in the SSF process, and in order to 

reactivate it, a colony was taken from the culture in the solid 

medium and inoculated in a 250ml flask containing 100 ml 

of MGYP growth medium (20g/L glucose, 5g/L peptone, 3 

g/L yeast extract and 3 g/L malt extract) with an initial pH 

of 4.8±0.05. The flask was kept in a shaker at 38°C and 150 

rpm overnight. Finally, a new culture in solid medium was 

made in a Petri dish, and it was incubated for 48h at 38°C. 

 

2.3.  SSF inoculum preparation 

 

A 1L flask, containing 460ml of MGYP growth medium 

(pH of 4.8±0.05) enriched with ammonium sulfate 3g/L, 

magnesium sulfate 1g/L and monobasic potassium 

phosphate 2g/L. It was autoclaved at 121°C, 15 Psi for 20 

min.  Then, a loop of the reactivated yeast in the solid 

medium was added in sterile conditions. The flask was 

incubated in a rotatory shaker at 38°C and 150 rpm 

overnight. When the concentration of the yeast was close to 

1g/L, achieved after 10-12 hours of incubation, at the end of 

the exponential phase, the inoculum was added to the SSF 

reactor. 

 

2.4.  Saccharification Enzyme 

 

In the SSF process, the enzymatic complex Acellerase 

1500®, purchased from Genencor®, was used. The 

measured activity of this enzyme was 80 FPU/mL following 

a modified procedure of the protocol reported by Adney and 

Baker[8]. This activity was stable for more than 8 month 

while keeping the enzyme at 4°C. 

 

2.5.  SSF experiments 

 

A description of the experiments to obtain the data for 

identifying the parameters and validating the model is 

shown in Table 1. Experiments were carried out in a 7 liter  
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Table 1. 

Experimental Design for the Simultaneous Saccharification and 

Fermentation experiments, using oil-palm wastes as the substrate. 

 

Newbrunswick Bioflo 110 bioreactor with 5L of working 

volume. The saccharification enzyme, and 500 ml of the 

inoculums were added to the reactor containing 4.5 L of citrate 

buffer 0.5M, pH 4.8 (previously autoclaved at 121°C, 15 psi, 

20 min), in order to achieve a final concentration of 15 FPU/(g 

of substrate) and 0.1g/L respectively. The medium also 

contained peptone 5g/L, yeast extract 3g/L, malt extract 3g/L, 

ammonium sulfate 3g/L,  magnesium sulfate 2g/L and 

monobasic potassium phosphate 1g/L. the substrate 

(pretreated oil palm waste) was added at different solid loads 

(see Table 1). All the steps above were carried out in sterile 

conditions. The temperature of the process was controlled at 

38°C. The pH and dissolved Oxygen concentration (DO) in 

the reactor were monitored. Different values of the agitation 

velocity were used (150, 300 or 500 rpm) in order to evaluate 

whether it has an important effect in the SSF process, and for 

it to be described in the mathematical model. Table 1 shows 

the experimental arrangements with their role (data used for 

parameter identification vs. used for model validation). In 

order to take into account experimental errors, a triplicate for 

one of the SSF experiments (randomly selected) was carried 

out. The standard deviation in this experiment was considered 

the same as the others. The SSF process was monitored for 72 

h, taking samples periodically and keeping them in a freezer at 

-20°C for less than a week, until they were analyzed. 

 

2.6.  Analytical techniques 

 

Samples of 5ml were taken periodically during the 72h 

of the SSF experiments. After centrifugation (6000rpm, 10 

min, 4°C) and filtering the supernatant with a cellulose filter 

of 0.2 µm, the sample was analyzed by duplicate in an 

HPLC. The analysis for glucose and ethanol were carried 

out in a Supelcol-gel® Column at flux conditions of 1.2 

ml/min and 80°C, with sulfuric acid 5mM as the mobile 

phase. The yeast concentration was not measured. 

 

2.7.  Mathematical model  

 

Mass balances were performed for the SSF system, 

applying principles of conservation, considering the desired 

model resolution for making the adequate assumptions in  

 
Figure 1.Proposed mechanism of ethanol production from lignocellulosic 

wastes in the SSF process. 

 

order to describe the main process dynamics. The dynamic 

equations that provide valuable information are chosen and 

combine with the constitutive equations that complement 

the first principles model. Fig. 1 shows the proposed 

mechanism of ethanol production from lignocellulosic 

wastes in the SSF process.  

The equations for the proposed model in this work and 

the respective assumptions are presented. During the SSF 

process it is necessary for the enzyme to diffuse into the 

solid phase to react with the substrate, hence a distinction 

can be made between 2 types of enzymes. The first is the 

free enzyme in the bulk of the liquid (Elb). The ability of 

this enzyme to react changes for two reasons, because its 

diffusion to the solid phase and because its inactivation due 

to unknown phenomena. Eq.(1) describes this dynamic 

behavior. 

The second is the enzyme that has accessed the vicinity 

of the solid particles (Eli) whose concentration depends on 

the mass transfer of the enzyme from the bulk liquid and the 

formation of complexes with the fractions of the 

lignocellulosic material. This is expressed by Eq.(2) 

 
𝒅𝑬𝒍𝒃

𝒅𝒕
= −𝑲𝒂𝒑(𝑬𝒍𝒃 − 𝑬𝒍𝒊) − 𝑲𝒆𝒅𝑬𝒍𝒃  (1) 

 
𝒅𝑬𝒍𝒊

𝒅𝒕
= 𝑲𝒂𝒑(𝑬𝒍𝒃 − 𝑬𝒍𝒊) − (

𝒅𝑬𝒍𝒊𝑪𝒂

𝒅𝒕
+

𝒅𝑬𝒍𝒊𝑪𝒄

𝒅𝒕
+

𝒅𝑬𝒍𝒊𝑳

𝒅𝒕
)(2) 

 

Cellulose is considered to be composed of two fractions, 

one easily-hydrolysable amorphous cellulose and the other, 

a fraction of crystalline cellulose that is highly organized 

and whose hydrolysis takes place more slowly. The change 

in the concentration of these fractions over time, and of the 

complexes that they form with the enzymes is presented in 

Eqs.(3)-(6). It is considered that there is a decrease of 

Experiment 

 

Conditions Data usedfor: 

Agitation 

(rpm) 

Solid 

load 
(%w/v) 

Identification Validation 

SSFa 300 6  X 

SSFb 150 8 X  

SSFc1 300 8 X  

SSFc2 300 8 X  

SSFc3 300 8  X 

SSFd1 500 8 X  

SSFd2 500 8 X  

SSFe 300 10  X 
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amorphous or crystalline cellulose (equations 3 and 4 

respectively) when the enzyme diffused to the solid phase is 

adsorbed on a part of the cellulose fraction of the material. 

This fraction is represented by α for the amorphous 

cellulose (Ca) and β for crystalline cellulose (Cc). It is also 

assumed that these fractions are kept at the same proportion 

throughout the process. Furthermore, the cellulose for each 

fraction, will reappear again when the respective enzyme-

cellulose complex is dissociated. 

 
𝒅𝑪𝒂

𝒅𝒕
= −𝒂𝒑𝜶𝑲𝒆𝒄𝟏[𝑬𝒍𝒊][𝑪𝒂] + 𝑲𝒆𝒄−𝟏[𝑬𝒍𝒊𝑪𝒂] (3) 

 
𝒅𝑪𝒄

𝒅𝒕
= −𝒂𝒑𝜷𝑲𝒆𝒄𝟐[𝑬𝒍𝒊][𝑪𝒄] + 𝑲𝒆𝒄−𝟐[𝑬𝒍𝒊𝑪𝒄] (4) 

 

The complexes between cellulose fractions and the 

enzyme that has accessed the substrate are formed and 

dissociate as explained in the preceding paragraph, but these 

complexes also disappear when the saccharification reaction 

occurs. This reaction is inhibited by the presence of 

cellobiose and ethanol[9]. Accordingly, expressions for the 

change over time of the amorphous cellulose enzyme 

complex (EliCa) and crystalline cellulose enzyme complex 

(EliCc) are given in Eq.(5) and Eq.(6) respectively. 

 
𝒅𝑬𝒍𝒊𝑪𝒂

𝒅𝒕
= −𝑲𝒆𝒄−𝟏[𝑬𝒍𝒊𝑪𝒂] + 𝒂𝒑𝜶𝑲𝒆𝒄𝟏[𝑬𝒍𝒊][𝑪𝒂] −

𝑲𝒄𝒂[𝑬𝒍𝒊𝑪𝒂]

𝟏+
𝑩

𝑲𝟏𝒃
+
𝑬𝒕𝑶𝑯

𝑲𝒆

    (5) 

 
𝒅𝑬𝒍𝒊𝑪𝒄

𝒅𝒕
= −𝑲𝒆𝒄−𝟐[𝑬𝒍𝒊𝑪𝒄] + 𝒂𝒑𝜷𝑲𝒆𝒄𝟐[𝑬𝒍𝒊][𝑪𝒄] −

𝑲𝒄𝒄[𝑬𝒍𝒊𝑪𝒄]

𝟏+
𝑩

𝑲𝟏𝒃
+
𝑬𝒕𝑶𝑯

𝑲𝒆

    (6) 

 

The interaction of the enzyme with lignin is expressed in 

Eq.(7)and Eq.(8). The formation of the enzyme-Lignin 

complex (EliL) occurs by reversible adsorption of the 

enzyme on a portion of the lignin fraction (γ) of the 

material. 

 
𝒅𝑬𝒍𝒊𝑳

𝒅𝒕
= 𝒂𝒑𝜸𝑲𝒆𝒍𝟏[𝑬𝒍𝒊][𝑳] − 𝑲𝒆𝒍−𝟏[𝑬𝒍𝒊𝑳]  (7) 

 
𝒅𝑳

𝒅𝒕
= −𝒂𝒑𝜸𝑲𝒆𝒍𝟏[𝑬𝒍𝒊][𝑳] + 𝑲𝒆𝒍−𝟏[𝑬𝒍𝒊𝑳]  (8) 

 
It is considered that the area of the substrate particles 

decreases with time due to the hydrolysis of cellulose. 

Assuming spherical particles of area ap (Eq. 9) it can 

express the decrease of the radius of the particles according 

to Eq.(10), which takes into account the hydrolysis of 

cellulose, the density of the material of the particles (ρp) 

and the number of particles in the reactor (Np). 

 

 

𝒂𝒑 = 𝑵𝒑(𝟒𝝅𝒓𝒑
𝟐)   (9) 

 

𝒅𝒓𝒑

𝒅𝒕
= −

(
𝑲𝒄𝒄[𝑬𝒍𝒊𝑪𝒄]+𝑲𝒄𝒂[𝑬𝒍𝒊𝑪𝒂]

𝟏+
𝑩

𝑲𝟏𝒃+
𝑬𝒕𝑶𝑯
𝑲𝒆

)𝑽

𝑵𝒑𝝆𝒑(𝟒𝝅𝒓𝒑
𝟐)

  (10) 

 

The saccharification process, specifically the hydrolysis 

of the fractions of cellulose, leads to the production of 

cellobiose (B), as expressed by Eq.(11). This equation takes 

into account the inhibition effects of the hydrolysis of 

cellulose in the presence of cellobiose and ethanol. 

 
𝒅𝑩

𝒅𝒕
=

𝑲𝒄𝒄[𝑬𝒍𝒊𝑪𝒄]+𝑲𝒄𝒂[𝑬𝒍𝒊𝑪𝒂]

𝟏+
𝑩

𝑲𝟏𝒃
+
𝑬𝒕𝑶𝑯

𝑲𝒆

− 𝒓𝒈𝒑  (11) 

 

On the other hand, there is a phenomenon of hydrolysis 

of cellobiose that leads to glucose production (Eq. 12). This 

hydrolysis is inhibited by the product, i.e. by the presence of 

glucose in the medium[6,9]. Glucose is consumed by the 

yeast for growth and maintenance (Eq. 13). The dynamics 

of glucose is then given by Equation 14. 

 

𝒓𝒈𝒑 =
𝑲𝒃𝒈𝑩𝑬𝒍𝒃

𝑲𝒔𝒈𝒑+[𝑩]+
[𝑮]

𝑲𝟏𝒈

   (12) 

 

𝒓𝒈𝒄 =
𝝁𝑿

𝒀𝒙𝒔
+𝒎𝒔𝑿   (13) 

 
𝒅𝑮

𝒅𝒕
= 𝒓𝒈𝒑 − 𝒓𝒈𝒄   (14) 

 

Finally, the yeast growth and ethanol production are 

described by Eq.(15) and Eq.(16) respectively, whereas the 

expressions for the specific growth rate (assumed to be 

Monod kinetics with a correction for inhibition by 

ethanol)[4,10]and the specific rate of ethanol production are 

defined in Eq.(17) and Eq.(18) respectively. 

 
𝒅𝑿

𝒅𝒕
= 𝝁𝑿 − 𝑲𝒅𝑿   (15) 

 
𝒅𝑬𝒕𝑶𝑯

𝒅𝒕
= 𝒒𝒑𝑿    (16) 

 

𝝁 = (
𝝁𝐦𝐚𝐱𝑮

𝑲𝒔+𝑮
) (𝟏 −

𝑬𝒕𝑶𝑯

𝑲𝒊𝑬𝒕𝑶𝑯
)  (17) 

 

𝒒𝒑 =
𝝁

𝒀𝒙𝒑
    (18) 

 

The proposed model consists of 13 ordinary differential 

equations, five algebraic equations and a total of 22 

parameters. Finally, the effect of agitation was not included 

in the model, as the experimental results at different stirring 

velocities showed no significant difference. 
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2.8.  Parameter identification 

 

Using data from five different experimental setups 

(Table 1) the parameter identification was performed in the 

software Matlab, using the MIPT algorithm described by 

Ochoa et al. [11]. For the identification procedure, an 

objective function was defined (Eq. 19), consisting of the 

summation of the absolute average error of the experimental 

values of ethanol and glucose from the chosen SSF 

experiments. The calculation of the absolute average error 

for each set of data was performed according to Eq.(20), 

where AAE is the absolute value of the average error, n is 

the number of experimental data points, Exp indicates the 

experimental value and Pre the value predicted by the 

model. Expmax is the maximum value of the experimental 

data that are being used for the calculation of the AAE, and 

in turn the Expmin is the minimum value of the same data. 

The optimization problem to solve during the parameter 

identification is given by Eq.(21), where x is the vector of 

parameters to be identified, lb (lower bounds) is the vector 

of minimum acceptable values of the parameters, ub (upper 

bounds) is the vector of maximum acceptable values for the 

parameters and fobj is the objective function to be 

minimized (Eq. 19).  

For the sensitivity analysis, the approach of sensitivity 

index described by Ochoa et al. [12] was followed in order 

to evaluate how the model results are affected with the 

variation of each parameter. The procedure of parameter 

identification and sensitivity analysis is presented in Fig. 2. 

 

𝑭𝒐𝒃𝒋 = 𝑨𝑨𝑬𝑮𝒍𝒖𝒄𝒐𝒔𝒂 + 𝑨𝑨𝑬𝑬𝒕𝒂𝒏𝒐𝒍 (19) 

 

𝑨𝑨𝑬 =
∑ |

𝑬𝒙𝒑𝒊−𝑷𝒓𝒆𝒊
𝑬𝒙𝒑𝒎𝒂𝒙−𝑬𝒙𝒑𝐦𝐢𝐧

|𝒏
𝒊=𝟏

𝒏
  (20) 

 

ubxlb

x

..

min

tos

Fobj

   

(21) 

 

The initial values for the set of parameters were taken 

from values reported in the literature by several authors (see 

Table 2). The identification of Parameters for the proposed 

model (Eqs. 1-18) was made by solving the optimization 

problem proposed in Eq.(21) and the experimental data as 

shown in Table 1. The sensitivity index with respect to the 

identified set of parameters was calculated as described in 

Eq.(22). Where Sik is the sensitivity index for the kth 

parameter and Pok is the optimized value of the Kth 

Parameter. Sensitive parameters were defined as those 

whose sensitivity index was higher than an established 

tolerance. This tolerance was chosen in a way that it would 

be at least one order of magnitude of difference between the 

sensitivity index of the parameters considered sensitive and 

those considered non-sensitive. When first principles based 

models are developed for describing the dynamic behavior 

of complex processes (like the case study addressed in this 

paper), usually the number of parameters is high and there 

are not enough experimental data available for reliable 

parameter identification. Usually, the number of 

experimental runs is limited to a couple of experiments, 

where different experimental conditions are analyzed 

(according to the design of experiments carried out). 

However, not all the possible conditions can be tested due to 

economic concerns. On the other hand, it is important to 

notice that if, the developed model is a first principles based 

model, and not an empirical one, the model uses some 

constitutive equations which have empirical bases. That is 

precisely why some parameters of the model must be re-

identified when the model is tested using new experimental 

conditions. However, not all the parameters must be re-

identified, and that is why the main objective of this paper is 

to propose a methodology for finding the best set of 

parameters under different experimental conditions, using 

lower computational time (which means, reducing the 

number of parameters that must be re-identified). 

Specifically, in this work the use of a re-optimization 

routine separately for each dataset is presented and 

analyzed, recalculating only the parameters classified as 

sensitive and keeping constant the set of non-sensitive 

parameters.  

 

𝑺𝒊
𝑲 = ∫ |𝑭𝒐𝒃𝒋(𝑷

𝑲) − 𝑭𝒐𝒃𝒋(𝑷𝒐
𝑲)|𝒅𝑷

𝑷𝒐
𝑲+𝟎.𝟏𝑷𝒑

𝑲

𝑷𝒐
𝑲−𝟎.𝟏𝑷𝒐

𝑲  (22) 

 

2.9.  Model validation 

 

The validation of the model was performed by 

comparing the dynamic behavior of the main variables 

predicted by the model against experimental data obtained 

for these variables. Also we calculated the objective 

function (measurement of the error) to check the model 

performance. Table 1 shows the experimental set-ups used 

for validation. 

 

 
Figure 2.Parameter identification procedure. 

 

Initial set of parameters

Optimization with the  MIPT using all the identification data 

sets in a simultaneous way

Sensitivity  Index  (SI)  calculation for each parameter

Evaluate for 

each parameter:  

SI < Tol? 

Yes

No

Non-sensitive

parameter: 

Keep it
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Sensitive parameter: Re-optimize for each data set separately

Set of optimal parameters  for the data set i
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3.  Results and discussion 

 

In Fig. 3 the dynamic behavior of glucose and ethanol can 

be observed. Experimentally, at the beginning of the process 

(the first 5 hours) a very fast increase of the glucose 

concentration takes place due to the high hydrolysis rate. 

However, after glucose starts to be available, a high glucose 

consumption rate is reached. This effect causes a decrease in 

the total glucose concentration. Such a decrease is motivated 

by the cellular growth.  Although the glucose concentration 

goes to low values rapidly, a continuous production of ethanol 

is observed until reaching 6g/L approximately. This evidences 

the fact that the hydrolysis reaction occurs during the whole 

process and not just at the beginning. 

Identifying a first set of parameters using simultaneously 

all the data sets (ssfb, ssfc1, ssfc2, ssfd1 and ssfd2 in 

Table1), the objective function value decreased from 10.72 

to 2.23, which indicates an improvement in the model 

performance due to the optimization process. A sensitivity 

analysis was performed to analyze which parameters mostly 

affected the model results, when their values vary. Table 2 

shows the sensitivity index of each parameter calculated as 

explained in the methodology section. It was observed that 

11 of the 22 parameters affect significantly the model 

results. Firstly it is important to realize that the parameters 

related to the metabolic capabilities of the yeast, specifically 

μmax, YXS, YXP and Ks are the parameters to which the 

model is most sensitive. 

This result indicates that the use of a different 

microorganism in the SSF process can strongly affect the 

results, and in turn justifies the current interest of many 

researchers for testing various microorganisms with 

different capabilities to get better results in the SSF 

processes [13,14]. Something similar may be said about the 

parameter 'Ms', which indicates the glucose consumption 

for maintenance, which may vary among different 

microorganisms and conditions. In contrast we found that 

the parameter Kd of cell death, does not significantly affect 

the model results. Furthermore, the optimized value found 

for this parameter is very low(close to zero), which might 

suggest that the effect of cell death proposed in the model 

could be neglected, at least for a time up to 72 hours of 

cultivation.  

However, it is possible for Kd to become an important 

parameter in processes that take a longer time to be 

completed. Furthermore, it is observed that the parameters, 

Kcc and Kca, which are related to the hydrolysis of 

cellulose fractions for producing cellobiose, significantly 

affect the model, as the parameter Ke, which is related to the 

inhibition of cellobiose production due to presence of the 

ethanol. According to this result, the hydrolysis of cellulose 

and the consequent production of cellobiose have a 

significant influence on the results of the SSF processes 

performed with lignocellulosic materials. This suggest the 

importance of using cellulases, which are able to maintain a 

good catalytic activity and at the same time are less 

sensitive to inhibition, when aiming to optimize the results 

of an SSF process. 

Table 2. 

Results of the first optimization and the sensitivity analysis 
Parameter Initialvalu

e* 
Identifi
edvalue 

Sensitivit
yindex 

Sen
sitiv

e 

Non-
sensitive 

Kd(h-1) 0.0020 0.0006 0.00007  X 

KietOH(g/l) 50.000[4] 12.750

0 

0.00769 X  

K1g (g/l) 3.1500[14] 0.9630 0.00009  X 

K(m-2h-1) 0.0050 0.0055 0.00560 X  

Kel1(m2*l/fp
u*h) 

0.0092[4] 0.0069 0.00006  X 

Kel_1(h-1) 7.2000[5] 6.8818 0.00006  X 

Yxp(g/g) 0.2500[15] 0.2913 0.16672 X  

umax(h-1) 0.4010[5] 0.2807 0.06998 X  

Yxs(g/g) 0.4850[5] 0.1750 0.11411 X  

Ks(g/l) 2.1840[5] 1.1842 0.02912 X  

Kec1(m2*l/fp
u*h) 

0.0368[5] 0.0275 0.00422 X  

Kec_1(h-1) 0.0092[14] 0.0016 0.00014  X 

Kec2(m2*l/fp

u*h) 

0.0106[5] 0.0056 0.00010  X 

Kec_2(h-1) 0.0027[14] 0.0015 0.00001  X 

Ke(g/l) 50.3500[4] 60.203
5 

0.00276 X  

Ked(h-1) 0.0020 0.0013 0.00003  X 

Kca(h-1) 0.0057[14] 0.0029 0.05061 X  

Kcc(h-1) 0.0017[14] 0.0001 0.00255 X  

Ms(h-1) 0.0064 0.0072 0.00682 X  

Kbg(h-1) 0.2000 0.1390 0.00012  X 

K1b(g/l) 0.0860 0.0973 0.00005  X 

Ksgp(g/l) 0.1229 0.1255 0.00003  X 

Fobj** 10.72 2.2263 - - - 

*Initial value of the parameters. Those referenced were taken from the 
literature. The others were based on previous knowledge. 

 

In general it was found that the parameters related to the 

formation of the cellulose-enzyme complex, do not strongly 

affect the model. The only one of these parameters that 

affects the model results was Kec1. This indicates that in the 

saccharification of lignocellulosic materials, the hydrolytic 

capacity of the cellulases can be more important than its 

ability to bind themselves to the substrate; however, no 

information was found in the literature to support this fact. 

On the other hand, the KietOH parameter significantly 

affects model results. This confirms what was stated before 

concerning the importance of the microorganism’s 

capabilities, specifically in this case, the ability to resist 

high ethanol concentrations. 

Finally, it was found that the mass transfer coefficient 

(K) significantly affects the model, indicating that when 

carrying out an SSF process, the access of the enzymes to 

the lignocellulosic material is an important fact that must be 

taken into account. 

Since the use of different stirring velocities does not 

significantly affect the SSF process, such accessibility must 

be improved by other methods such as decreasing the size 

of the substrate particles or changing the properties of the 

medium, by for example, adding surfactants to the 

bioreactor. Some studies have already shown that by doing 

so, it is possible to improve the results of the SSF 

process[17,18]. 

After the sensitivity analysis, the re-identification of the 

sensitive parameters was carried out for each data set 
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individually (ssfa,ssfc3,ssfe) and the objective function 

value decreased considerably (see Table 3), which indicates 

the improvement of the model performance due to the 

coupling of the sensitivity analysis and the re-optimization 

process. 

Fig. 3 shows the results for the model fit when 

performing the re-optimization using each experimental set 

separately, for identifying just the 11 parameters considered 

as sensitive. 

In general an improvement is observed in the fit of the 

data of glucose and ethanol. This improvement, when 

comparing the fit of the model before and after 

optimization, leads to a better prediction of the trends for 

each case in particular and a reduction in the value of the 

objective function of 8%, 19% and 10% for the validation 

data of SSFa, SSFc3 and SSFe respectively (Table 3). 

Nevertheless, for the data of the SSFe experiment (Fig. 3c), 

where the prediction of the values and the trends of the 

variable are still close to the experimental data, the variation 

in the production of glucose in the first hours of the process 

is underestimated. 

It is important to notice that the change in the value of 

almost all the parameters is not even of one order of 

magnitude after re-optimization. Most of the parameters that 

had the biggest change are kinetic parameters related to the 

reactions for producing the cellobiose and for the formation 

of the complexes enzyme-cellullose. This fact shows that 

those parameters are affected by the initial solid load. 

According to these results, it might be possible to state that 

the reaction kinetics in the mentioned reactions are of a 

superior order, and not of order one as assumed in the 

development of the model. 

Other variables for which experimental data were not 

taken had a realistic behavior when simulations were 

performed, giving more confidence in the model 

performance (data not shown). 

 
Table 3. 

Reidentified parameters for each experiment. 

Parameter Value in 

firstidenti

fication 

Valuefor

SSFa 

Valuefo

rSSFc3 

ValueforSSFe 

KietOH(g/l) 12.7500 10.0400 3.5850 6.7200 

K(m-2h-1) 0.0055 0.0017 0.0059 0.0053 

Yxp(g/g) 0.2913 0.2687 0.2965 0.2867 

Umax(h-1) 0.2807 0.3439 0.4763 0.2096 

Yxs(g/g) 0.1750 0.1826 0.1390 0.2773 

Ks(g/l) 1.1842 1.5019 1.7730 1.9186 

Kec1(m2*l/fpu*h) 0.0275 0.0048 0.0258 0.0412 

Ke(g/l) 60.2035 13.5039 23.5940 53.2854 

Kca(h-1) 0.0029 0.0006 0.0039 0.0019 

Kcc(h-1) 0.0001 0.0016 0.0006 0.0003 

Ms(h-1) 0.0072 0.0011 0.0004 0.0075 

Fobj in 

optimization 

- 0.258 0.473 1.959 

Fobj in 

re-optimization 

- 0.237 0.384 1.767 

 

 

Figure 3.Model fit for the validation data: A) Ethanol and Glucose for the 
SSFc3 data, B) Ethanol and Glucose for the SSFa data, C) Ethanol and 

Glucose for the SSFe data. For the three Figures, the nomenclature is: 

Experimental Glucose (*), Experimental Ethanol (o), Ethanol (---) and 
Glucose (- - -) predicted by the model with the parameters found using all 

the identification data simultaneously (see Table 2, column 3) and Ethanol 

(  ) and Glucose (-.-.-) predicted by the model with the parameters found 
using re-optimization (see Table 3, columns 3-5) 

Data points represent the mean value from at least three 

separate experiments (the minimum standard deviation for ethanol was 
between 0.09 and the maximum was 0.99. For glucose the minimum 

standard deviation was 0.001 and the maximum was 0.8) Error bars are 

omitted for reasons of clarity 

 

4.  Conclusions  

 

Regarding the results of the fermentation process, it can 

be concluded that the rapid production of glucose during the 

first moments of the process, decreased drastically possibly 

due to the formation of ethanol. Likewise it is noted that 

even though the hydrolysis could be affected by the 

presence of ethanol, it is maintained throughout the process 

time, which is an important result for the development of 

this type of process. 
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A new unstructured, first principles based model for 

predicting the main dynamics in the ethanol production 

process from lignocellulosic wastes using the Simultaneous 

Saccharification and Fermentation technology was 

developed. The proposed model contains some new features 

such as: a) an approach for describing the enzymatic action 

on a lignocellulosic substrate, considering it to consist of 

spherical particles whose radius decreases as the 

saccharification takes place, b) the formation of different 

enzyme-substrate complexes, c) Mass transfer issues. 

From a sensitivity analysis, it was found that from the 22 

parameters present in the model, only 11 parameters appear 

to have a significant effect on the model behavior, most of 

them associated with characteristics related to the yeast 

used, while others were found to be associated with 

enzyme’s properties and the mass transfer in the system. 

The re-identification of these 11 parameters, allows one to 

reduce the value of the objective function. This fact 

suggests that such a procedure for sensitivity analysis can 

improve the parameter identification process, resulting in a 

greater flexibility when implementing the model. 
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Notation 

Notation Units Definition 

Ca g/l Amorphous cellulose concentration 

Eaca g/l Complex adsorbed enzyme-Amorphous cellulose 

concentration 

Cc g/l Crystalline cellulose concentration 

Eacc g/l Complex adsorbed enzyme-Crystalline cellulose 

concentration 

L g/l Lignin concentration 

EaL g/l Complex adsorbed enzyme-lignin concentration 

El FPU/l Free enzyme concentration 

Ea FPU/l Adsorbed enzyme concentration 

B g/l Cellobiose concentration 

G g/l Glucose concentration 

X g/l Yeast concentration 

EtOH g/l Ethanol concentration 

rp m Particle radius 

ap m2 Particle area 

Np - Number of particles 

V l Reactor volume 

ρp g/m3 Particle density 

Kd h-1 Cell death constant 

KietOH g/l Growth Inhibition constant by ethanol 

Kel1 m2l/fpu
*h 

Rate constant of adsorbed enzyme-lignin 
complex formation  

Kel_1 h-1 Rate constant of adsorbed enzyme-lignin 

complex separation.  

Yxp g/g Cell biomass yield by ethanol 

µmax h-1 Maximum Specific rate of cell growth  

Yxs g/g Cell biomass yield by glucose 

Ks g/l Saturation constant for growth using glucose as 

substrate 

Kec1 m2l/fpu

*h 

Rate constant of adsorbed enzyme-amorphous 

cellulose complex formation 

Kec_1 h-1 Rate constant of adsorbed enzyme- amorphous 

cellulose complex separation. 

Kec2 m2l/fpu

*h 

Rate constant of adsorbed enzyme-Crystalline 

cellulose complex formation 

Kec_2 h-1 Rate constant of adsorbed enzyme-Crystalline 
cellulose complex separation. 

Ke g/l Inhibition constant of cellobiose production by 

ethanol 

Ked h-1 Inactivation rate of the free enzyme 

Kca h-1 Reaction rate constant for cellobiose formation 
using amorphous cellulose 

Kcc h-1 Reaction rate constant for cellobiose formation 

using crystalline cellulose 

Ms h-1 Glucose consumption for maintenance constant. 

Ksgp g/l Saturation constant for glucose production using 
cellobiose as substrate 

K1g g/l Inhibition constant of the free enzyme by glucose 

Kbg g/fpu*

h 

Rate constant for glucose production using 

cellobiose as substrate 

K1b g/l Inhibition constant of  cellobiose production by 
cellobiose 

K 1/m2*h Mass transfer coeficient 

 
Notationfor figures 
 
EtOHModel  Ethanol predicted y the model 
GModel  Glucose predicted by the model 
‘O’EtOHexp  Experimental ethanol 
‘*’Gexp  Experimental Glucose 
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