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Hybrid Biobjective Evolutionary Algorithms for the Design of a Hospital Waste 

Management Network 

 

Abstract 

 

Colombian environmental authorities are exploring new alternatives for 

improving the disposal of hospital waste generated in the Department of Boyacá 

(Colombia). To design this hospital waste management network we propose a 

biobjective obnoxious facility location problem (BOOFLP) that deals with the 

existing tradeoff between a low-cost operating network and the negative effect on 

the population living near the waste management facilities. To solve the BOOFLP 

we propose a hybrid approach that combines a multiobjective evolutionary 

algorithm (NSGA II) with a mixed-integer program. The algorithms are compared 

against the Noninferior Set Estimation (NISE) method and tested on data from 

Boyacá’s hospital waste management network and publicly available instances.  

Keywords: facility location, hybrid genetic algorithms, multiobjective 

evolutionary algorithms, NSGA II, multiobjective optimization 

 

Introduction 

 

The Colombian Department of Boyacá generates 5 tons of hospital waste per day, about 90% 

of which is disposed in open landfills. Because such disposal poses a public health hazard, 

Colombian government authorities are exploring new alternatives for properly disposing of 

Boyacá’s hospital waste, including a planned deactivation plant with excess capacity to be 

located in Bogotá. Boyacá comprises 123 towns generating an average of 40 kg/day of 

hospital waste per town. As this amount is small, the hospital waste from several towns will 

have to be collected in small vehicles and consolidated in properly designed cross-docking 

centers (CDCs). Once in the CDCs, waste will be brought to Bogotá’s deactivation plant 

using larger vehicles. Both the vehicles and the CDCs must meet the specifications and 

regulations of the Colombian Health and Environment Ministries. Figure 1 depicts the 

operation of Boyacá’s hospital waste management network within this design.   

 

INSERT  FIGURE 1 

 

The design of Boyacá’s hospital waste management network can be modeled as a facility 

location problem (FLP); that is, the selection of a set of sites for facilities location that satisfy 

customer demands for a given good or service. Such facility location decisions are taken both 

by private firms in the (re)design of distribution and service networks and by government 

agencies for the deployment of public infrastructure. Public applications of location problems 

include the location of jails (Marianov and Fresard, 2005), landfills (Eiselt, 2007), disaster 

recovery centers (Dekle et al., 2005), and perinatal facilities (Galvão et al., 2002). For recent 

surveys on facility location, the reader is referred to Hale and Moberg (2002), Revelle and 

Eiselt (2005), and ReVelle et al. (2008). 

 

The FLP literature frequently addresses a family of problems known as FLP with push-pull 

objectives, in which the push objective captures the behavior of people who want obnoxious 

facilities located as far away as possible (the so-called NIMBY, or not in my backyard, 

effect). In contrast, the pull objective captures the benefits derived from the nearness of users 

to facilities (e.g., shorter times for customer service and lower transportation costs).  Krarup, 

et al. (2002) emphasized that most common facility location models fall into the pull 
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objective class; however, the push objective class of location problems, which has received 

less attention, is surveyed by Erkut and Neuman (1989).   

 

Because FLPs with push-pull objectives frequently arise in relation to hazardous material 

(hazmat) transportation (List et al., 1991; Current and Ratick, 1995; Erkut et al., 2007), some 

authors have considered combining location and routing decisions for better design of 

hazardous waste management systems (Revelle et al., 1991; Giannikos, 1998; Cappanera et 

al., 2003). However, it is as yet unclear how to mix location (strategic) and routing 

(operational) decisions in a single facility location model (Daskin et al., 2005). Therefore, as 

an alternative, other authors have used a two-phase approach that solves the location 

(strategic) problem first and the operational routing problem second. This is called by Nagy 

and Salhi (2006) a sequential method, and was applied successfully, for instance, by Erkut et 

al. (2000) to the redesign of a service network. 

  

The strategic nature of location decisions calls for consideration of multiple, often conflictive, 

objectives; for example, designing a distribution network must take into account the tradeoff 

between cost and service (Nozick and Turnquist, 2001). The various methods by which 

multiobjective location problems have been solved include the constraint method (Nozcik, 

2001), complete enumeration (Erkut and Neumann, 1992), specialized exact methods 

(Fernandez and Puerto, 2003), multiobjective evolutionary algorithms (Villegas et al., 2006), 

and the aggregated weighting method (Nozick and Turnquist, 2001; Zhou et al., 2003; Shen 

and Daskin, 2005).  For a review of the models, solution methods, and applications of 

multiobjective facility location problems, see Current et al. (1990) and the more recent survey 

of Nickel et al. (2004). 

 

Some researchers, especially those interested in locating undesirable facilities, have proposed 

multiobjective models (Owen and Daskin, 1998). For example, Erkut and Neumann (1992) 

developed a multiobjective mixed-integer program to study the tradeoffs between cost, 

opposition, and equity when locating undesirable facilities to serve a region. These authors 

identified the efficient set by means of an enumeration algorithm on small instances with up 

to 30 population centers. Subsequently, Zhang and Melachrinoudis (2001) solved the problem 

of locating a single point (obnoxious facility) on a general network using two objectives—the 

maximization of the minimal weighted distance from the point to the vertices (maximin) and 

the maximization of the sum of weighted distances between the point and the vertices 

(maxisum). In doing so, they investigated the properties of the biobjective optimization 

problem in both the decision and objective space to reduce the candidate solution set. Later, 

Hamacher et al. (2002) presented a multiobjective network location model for locating a 

single (semi)obnoxious facility (with push-pull objectives) whose solution algorithm was 

based on concepts from a multiobjective median network location problem. Their method 

works for piecewise linear objective functions and solves instances of realistic size. More 

recently, Rakas et al. (2004) proposed and applied a methodology for finding the optimal 

number of landfill facilities, identifying the best locations, and allocating population to these 

facilities. Their methodology allows consideration of uncertain waste amounts using fuzzy 

mathematical programming. Another line of research deals with multiobjective continuous 

location problems (Nickel et al., 2005; Puerto and Fernandez, 1999; Hamacher and Nickel, 

1996); however, continuous location models are out of the scope of this paper, since we 

model Boyacá’s hospital waste management network using discrete location. 
 

The specific problem of Boyacá’s hospital waste management network design has already 

been addressed by Rodriguez (2005), who used a monoobjective capacitated p-median 
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problem, with cost as the only objective. As previously mentioned, because the amount of 

hospital waste produced in each town in Boyacá is small, the collection will be attended using 

less-than-truckload (LTL) trips; that is, routes departing from (and arriving at) a CDC will 

collect waste from several towns. Therefore, Rodriguez also proposed a location-routing 

sequential method to design operational routes for the CDCs. However, her model fails to 

take into account the undesirable effects of the CDCs on nearby residents. To fill this gap, this 

work proposes a biobjective obnoxious facility location problem (BOOFLP), which considers 

the push-pull effect of population exposure and transportation cost. To solve the BOOFLP, 

we propose two new multiobjective evolutionary algorithms that are specially designed to 

approximate the nondominated set of network configurations. 

 

The article is organized as follows. Section 1 explains the formulation of the biobjective 

facility location problem, and Section 2 describes the proposed multiobjective evolutionary 

algorithms. Section 3 then summarizes the computational results for the Boyacá case study 

and the performance of our method in other public instances from the literature, together with 

a comparison against the Noninferior Set Estimation (NISE) method. Section 4 concludes the 

paper and outlines the model’s pragmatic value.  

 

 

1. Problem formulation  

 

Let J = {1,...,j,...,n} be the set of towns in Boyacá and dj the amount of hospital waste 

generated by town j. Let I = {1,...,i,...,m} be the set of candidate sites for locating CDCs; and 

si and pi the CDC capacity and population at site i. Let K be the number of CDCs that will be 

located in the hospital waste management network. Let cij be the cost of traveling between 

town j and the CDC located at site i. Let yi be the binary decision variable that indicates 

whether the candidate site i is chosen for locating a CDC; and xij the binary decision variable 

that indicates whether the (entire) amount of waste generated by town j is collected by CDC i. 

The biobjective obnoxious facility location problem (BOOFLP) is then formulated as follows: 

 

min  
 


Ii Jj

ijij xcz1           (1) 

min  



Ii

ii ypz2           (2) 
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Ii

i 


          (3) 

J  jx
Ii

ij 


,1          (4) 

Iiysxd ii

Jj

ijj 


,         (5) 

Ii}{yi  ,1,0          (6) 

JjIi}{xij  ,,1,0         (7) 

 

The objective function (1) represents the approximated cost of moving hospital waste from 

the towns to the CDCs, while the second objective (2) represents the total population affected 

by the CDCs. Constraint (3) indicates the number of CDCs to be opened, constraints (4) 

guarantee that every customer is assigned to only one facility, constraints (5) enforce the CDC 
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capacities, and constraints (6) and (7) establish the binary nature of the decisions. To assure 

an even distribution of waste between CDCs, the capacity of every CDC is given by 

 

 Ii
K

d

s
Jj

j

i 




,          (8) 

 

Enforcing an even distribution may pose some difficulties to the solution of the BOOFLP.  

From a pragmatic point of view, seeking for an even balance may cause the undesirable 

assignment of a waste generator to a distant CDC. Moreover, it is always possible to avoid 

such an assignment by negotiating directly with a CDC upon a small deviation from its 

nominal capacity. On the other hand, from a computational perspective, very tight constraints 

may cause numerical instability or convergence problems in a branch and bound framework. 

For these reasons, it is realistic and convenient to treat the CDCs capacities as soft constraints. 

 

Finally, because of the conflictive nature of the objectives (cost vs. population exposure), 

there may be no single optimal solution to the BOOFLP. Rather, the search aim is a set of 

solutions in which one objective could not be improved without worsening the other. In the 

multiobjective optimization literature (Ehrgott, 2000), such a set is termed the efficient (or 

Pareto optimal) set, whose image in the objective space is called the nondominated set (or 

efficient frontier) and denoted by PF . The approximation of the latter is denoted by 𝑃𝐹̂.  

 

2. MOEAs for the BOOFLP 

 

Evolutionary algorithms are bio-inspired stochastic search procedures used to solve complex 

optimization problems by evolving a population of solutions in which the fitter are more 

likely to survive. These algorithms improve the solution population using selection, 

recombination, and perturbation mechanisms (such as local search and mutation). This family 

of metaheuristics includes genetic algorithms (Goldberg, 1989), memetic algorithms 

(Moscato and Cotta, 2003), and scatter search (Glover, 1998).  

 

Of these, one of the most frequently used metaheuristics for approximating the nondominated 

set of multiobjective optimization problems (Jones et al. 2002) are the genetic algorithms also 

known as multiobjective evolutionary algorithms (MOEAs). As Coello (2001) emphasized, 

MOEAs (with posterior articulation of preferences) can find an approximation of the Pareto 

optimal front in a single run (see Coello et al., 2002, for a useful review of multiobjective 

evolutionary algorithms).   

 

One simple but powerful MOEA is the NSGA II (Deb et al., 2002), whose selection 

mechanism classifies the population into layers or fronts, the first composed of the 

nondominated solutions in the population; the second front, are the solutions that become 

nondominated by not considering the solutions belonging to the first front. This procedure 

continues until every solution has been classified into a front. The NSGA II preserves 

population diversity by means of a crowding measure based on the average edge of the cuboid 

enclosing a solution.  

 

2.1.MOEA logic 

 

For this design, we chose the NSGA II (Deb et al., 2002) over other MOEAs because of its 

proven success in other biobjective capacitated (and uncapacitated) location problems 
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(Villegas et al., 2006; Medaglia et al., 2006) and its ability to find good approximations of 

nonconvex Pareto fronts (Deb et al., 2002). Except for its second objective, the BOOFLP 

given by (1)–(7) has the structure of a capacitated p-median problem. Thus, this work borrows 

the solution encoding used before by Alp et al. (2002) and Bozkaya et al. (2001) and some 

genetic operator ideas for the uncapacitated p-median problem (Alp et al., 2002).  

 

2.2.Solution encoding 

 

Because the solutions are encoded using a list of size K that represents the selected CDCs, the 

encoding automatically meets constraint (3). For example, in a problem with 20 potential 

CDC sites in which K=4, the chromosome {4,11,8,7} represents the solution in which sites 

4,7,8 and 11 are selected for CDC location.  

 

2.3.Fitness function  

 

Since the solution encoding only takes into account the location decisions (i.e., y variables), 

this work presents two heuristics for the assignment of waste generators to CDCs (i.e., x 

variables).   

 

Greedy assignment heuristic (GAH) 

 

The GAH assigns waste generators to nearby CDCs by taking into account their capacity. In 

Rodriguez (2005), enforcing constraints (5) generated balanced CDCs but left some waste 

generators far away from their assigned CDCs, which ultimately made the solution 

impractical. Therefore, we relax these constraints and use the capacity violation as a measure 

of the deviation from an even allocation of hospital waste generators to CDCs in the network.   

 

For each waste generator, the maximum distance threshold (j) is the maximum allowed 

distance between generator j and its assigned CDC. Mathematically, j is defined as follows: 

 

Jjccc ij
Ii

ij
Ii

ij
Ii

j 


),minmax(min          (9) 

where   is a distance threshold between 0 and 1. It should be noted that when =0, capacity 

constraints can be grossly violated if the nearest open CDC is chosen for each generator. In 

this case, the BOOFLP is basically treated as an uncapacitated problem. On the other hand, 

when =1, it is possible to achieve an even distribution of waste among the open CDCs. In 

this latter case, a town could be assigned to the farthest open CDC. 

 

For the evaluation of a given chromosome, the heuristic tries to assign town j to CDC i
*
; that 

is, the nearest open CDC with enough remaining capacity to serve its entire demand that lies 

within the maximum distance threshold. Mathematically, i
*
 is defined as follows: 

 

 
Jjci

jiji cyIi

ij 


,minarg
,1

*
         (10) 

It is noteworthy that by doing so, GAH solves the x variables. If no such CDC exists, the 

capacity constraint (5) of the nearest open CDC is ignored and the generator j is assigned to it. 

 

 

Mixed integer programming (MIP) assignment heuristic 
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This work proposes a second procedure based on mixed-integer programming (MIP) for the 

assignment of waste generators to CDCs (i.e., x variables). In this procedure, 

  IyIiI i  1'  is the set of CDCs opened (i.e., fixed y variables by the solution 

encoding). Let ie  be a decision variable with the capacity violated at CDC 'Ii , cmax is the 

largest cost in the network 
  








 


ij
JjIiji

cc
'.,

max max , and  is the penalty for exceeding the 

aggregated CDC capacities. The proposed MIP can then be represented as follows: 

 

min  
 


'' max Ii i

i

Ii Jj

ijij

s

e

c

xc
          (11) 

 

subject to, 

 

J  jx
Ii

ij 


,1
'

         (12) 

 

', I  isxde
Jj

iijji  


        (13) 

',0 Iiei            (14) 

JjIi}{xij  ,',1,0         (15) 

 

It should be noted that this model, like the GAH, handles CDC capacities as soft constraints; 

however, the objective function (11) minimizes cost and penalizes capacity violations. 

Additionally, constraints (12) guarantee that every customer is assigned to only one CDC; 

constraints (13) and (14) define the capacity violation variable for every CDC opened and its 

non-negativity, respectively; and constraints  (15) define the binary nature of the assignment 

decisions. 

 

Fitness function evaluation 

 

The proposed NSGA II-based MOEA uses two objectives: population exposure and penalized 

cost. The number of residents affected by CDC operations can be calculated by summing the 

populations of the towns in which the CDCs are located (see (2)). However, to penalize cost 

by capacity violation, we use the type of procedure suggested by Chu and Beasley (1997): 

 

 )1(' 11  zz           (16) 

where  measures the capacity violation as follows: 

 
 
















Jj

j

Ii

ii

Jj

ijj dysxd,0max        (17) 

It should be noted that 10   . Thus, conveniently, if no capacity violation exists, =0 and 

the cost is not penalized.  

 

This mechanism of evaluation allows for an exploration of the solution space such that the 

evolutionary algorithms are able to find both supported and non-supported solutions for the 

BOOFLP. This is due, to a large extent, to the fact that the exploration of the objectives is 

done independently following a two-phase approach. The solution encoding explicitly deals 
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with the population exposure objective (first phase), while the cost objective is handled 

(independently) by the assignment of towns to opened CDCs (second phase). 

 

2.4.Genetic operators 

 

The proposed crossover operator is based on Alp et al. (2002), in which P
1
 and P

2
 are two 

parents and C
1
 and C

2
 are their children after crossover. The underlying purpose of the 

operator is to retain the CDCs common to both parents and randomly exchange some of the 

unshared CDCs between parents. For the sake of clarity, we treat the chromosomes as sets. 

L
1
=P

1
\P

2
 (L

2
=P

2
\P

1
) represents the set of open CDCs in parent 1 (in parent 2), but not in 

parent 2 (not in parent 1). The C
1
 (C

2
) set for the children is created by randomly selecting u 

CDCs from L
2
 (L

1
) to replace u CDCs from P

1
(P

2
) that are not in 21 PP  . The parameter u is 

drawn from a discrete uniform distribution over the interval 211 LLu  . To illustrate, we 

consider a problem with 20 candidate sites where K= 4. Letting the two parents be P
1
={5, 15, 

14, 13} and P
2
={3, 15, 13, 9}, with L

1
={5,14} and L

2
={3,9}, if u randomly takes the value of 

1, the parents exchange one CDC (i.e., 5 for  P
1
 and 3 for P

2
), resulting in C

1
={3,15,14,13} 

and C
2
={5,15,13,9} for the children. 

 

For the mutation operator, if a chromosome mutates (which happens with a small probability) 

one of the selected sites for locating a CDC is chosen randomly and replaced with one site not 

present in the current chromosome. 

 

3. Computational testing 

 

This section shows the computational results obtained with the proposed multiobjective 

evolutionary algorithms based on NSGA II and NISE. Henceforth, because of the use of the 

greedy and MIP assignment heuristics in the GAs, we refer to these algorithms as GA-GAH 

and GA-MIP, respectively. Unless specified, all the experiments reported in this section were 

performed on a Dell Precision workstation with an Intel Core2 CPU 6700 at 2.66GHz, 4.096 

GB of RAM, running under Windows Vista Business.  To solve the MIP assignment 

procedure, we used the Xpress-MP Optimizer Version 18.00.01 from Dash Optimization. 

 

3.1.Implementation 

 

GA-GAH and GA-MIP were coded on MO-JGA (Medaglia, Gutiérrez and Villegas, 2006), a 

publicly available Java-based object-oriented framework for solving multiobjective 

optimization problems using evolutionary algorithms
1
. MO-JGA allows the user to focus on 

the application’s logic by reusing a set of built-in components. Implementing GA-GAH and 

GA-MIP required only that the framework be extended by coding the chromosome’s 

genotype (PFLPGenotype); the fitness function evaluators FitnessMOOFLP and 

FitnessMIPAssignment for the GAH and MIP assignment heuristics, respectively; and the 

crossover (PFLPExchangeCrossover) and mutation (IndividualPFLPMutation) operators. 

The logic embedded in NSGA II had already been implemented in the middle tier (see Figure 

2) built by extending the Java Genetic Framework (JGA) developed by Medaglia and 

Gutiérrez (2006). The NSGAII implementation included in MO-JGA differs from that of Deb 

et al. (2002) algorithm in the selection of parents for the mating pool. MO-JGA’s version uses 

simple random selection rather than the binary tournament proposed in the original paper.  

 

                                                           
1
 Available at http://copa.uniandes.edu.co/soft-evol-jga.html  
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INSERT FIGURE 2 

 

 

3.2.Performance metrics 

 

Size of the Space Covered (SSC) metric 

 

A single run of GA-GAH or GA-MIP provides an approximation of the nondominated set. To 

measure how good this approximation is, we use the size of the space covered metric (SSC) 

(Zitzler and Thiele, 1998), which estimates the quality of the approximate nondominated set 

by measuring the size of the space enclosed by the set and a reference point. An 

approximation with a larger space is considered better.  

 

To obtain a dimensionless SSC metric ranging from 0 to 1, the criteria of the nondominated 

set are normalized to fall between 0 and 1. First, the cost in Colombian peso, (COP$), is 

normalized as follows: 

 

   pzzpz 111            (18) 

where  pz1
 and  pz1

 are the original and normalized costs for the p-th solution of the 

nondominated set, and 1z  is a lower bound for the cost in any configuration with four CDCs.  

The value of 1z  has already been obtained by solving a p-median problem. Second, 

population exposure, measured in inhabitants, is normalized as follows:  

 

   pzzpz 222            (19) 

where  pz2
 and  pz2

 are the original and normalized populations for the p-th solution of 

the nondominated set, and 2z  is a lower bound for the exposed population. The value of 2z  

has already been obtained by adding up the population of the four smaller towns in Boyacá. 

Finally, although algorithmically, capacity violation is treated more as a soft constraint than 

an explicit objective, this aspect must still be considered when designing the hospital waste 

management network. Therefore, we include balance as a third objective in the calculation of 

the SSC metric, even though it has not been explicitly sought by the NSGA II selection 

procedure. The normalized balance expression is then as follows: 

 

   ppz 13           (20) 

where  p  and  pz3  are the capacity violation (see 17) and normalized balance for the p-th 

solution of the nondominated set, respectively. 

  

In sum, all criteria are normalized to compute a dimensionless SSC ranging from 0 to 1. The 

theoretical value of 1 is achieved only if the ideal solution is part of the unveiled 

nondominated set (i.e., an ideal network with the lowest cost solution, minimum population 

exposure, and perfect balance without any capacity violation). On the other hand, in the 

absence of a solution, the value of SSC takes the value of 0. In this latter case, there is no 

space covered by the nondominated set.  

 

Relative and absolute quality 

 

As in Medaglia et al. (2007), to compare the quality of the nondominated front obtained with 

the proposed evolutionary algorithm against that obtained with an alternative method, we 
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report the fraction of solutions provided by each algorithm in the aggregated front obtained by 

combining the solutions of both algorithms. In the remaining part of this document, we call 

this fraction absolute quality. In addition, we report how many of the nondominated solutions 

generated by each algorithm, were truly nondominated (i.e., they appear in the aggregated 

front). We call this fraction relative quality. For more information on the latter and other 

metrics in multiobjective optimization, the reader is referred to Jaszkiewicz (2004). 

 

Convex hull of the approximated efficient frontier 

 

In the case of non convex solution spaces, the Pareto optimal set may contain two types of 

solutions: supported and non-supported. Supported solutions are optimal for a weighted 

objective function with non negative weights; and can be found using methods that use such 

an aggregated function.  On the contrary, non-supported solutions cannot be found using an 

aggregated function, because there is no combination of weights for which the solutions are 

optimal. Since the BOOFLP is a biobjective combinatorial optimization problem, its efficient 

frontier may contain non-supported efficient solutions.  

 

To estimate the potential number of non-supported solutions found by the proposed 

algorithms, we count the points that are not in the boundary of the convex hull of the 

approximate efficient frontier. These points could be efficient non-supported solutions. We 

denote this metric by |int(𝑃𝐹)̂ |.  
 

3.3.Parameter tuning 

 

To tune the algorithms’ common parameters, we experiment with a set of 144 runs on the 

GA-GAH to explore the impact on quality (SSC metric) and time (in ms) of different levels of 

P, population size (P=20,50,100); N, maximum number of generations (N=20,50,100,200); 

pc, crossover rate (pc=0.5,0.7,0.9); and pm, mutation rate (pm=0.01,0.02,0.05,0.10). The 

parameter   for GA-GAH is set at 0.5, its central value. The results, given in Figure 3, show 

the compromise in terms of quality and time among the parameters. Specifically, Figure 3(a) 

shows the SSC for every combination of parameters, while Figure 3(b) shows the 

corresponding computing times. Based on these results, in which white zones are preferable, 

we fix pc=0.7, pm=0.05, P=50, and N=100 as the parameter combination that will give good 

results with acceptable computing times. This experiment was conducted on a Dell Optiplex 

GX280 with 1GB of RAM and an Intel Pentium IV processor running at 3GHz under 

Windows XP Professional.  

 

INSERT FIGURE 3 

 

The results for a second experiment to tune the GA-MIP’s penalty parameter  (see Figure 4) 

show how affects the quality (deviation from the optimal cost assignment) and the CPU 

time of the MIP (11)– (15) embedded in the assignment heuristic. Because the MIP is solved 

repeatedly in GA-MIP, it is especially important to save computing time by tuning 

correctly. A careful appraisal of Figure 4 suggests that there is no gain in settingat a 

value greater than 100: in fact, values around 100 enable assignments with perfect balance (no 

capacity violations).  

 

INSERT FIGURE 4 
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Nonetheless, even though GA-MIP is good at achieving balanced configurations with little 

sacrifice in cost (see Figure 4), this attainment comes at a high computational price. 

Therefore, to reduce computing time, we run a further GA-MIP experiment to gage the 

sensitivity of SSC to changes in the penalty (for values below 100). After fixing P=10, 

N=10, pc=0.7, and pm=0.05, we conduct ten independent runs for =1, 2, 5, 10, and 100. This 

third experiment, summarized in Table 1, reveals that for values of >2, GA-MIP takes 

significantly more time with no improvement to the SSC metric. 

 

INSERT TABLE 1 
 

To increase processing speed, GA-MIP implements a map structure that stores the results of 

the MIP assignment heuristic for every chromosome evaluated. Specifically, before running 

the MIP assignment procedure naively, GA-MIP checks whether the MIP has been run 

before; if so, it retrieves the value of the objective function from the map instead of running 

the expensive MIP again. This enhancement saves about 30% of computing time compared to 

a GA-MIP without such a map.  

 

 

3.4.NISE 

 

As an alternative method, we implemented the Noninferior Set Estimation (NISE) method 

(Cohon et al., 1979; Cohon, 2003) for biobjective optimization, which has been applied 

recently to explore tradeoffs in a supply chain design problem (Shen and Daskin, 2005). NISE 

was designed to generate quickly a good approximation of the efficient frontier based on 

supported nondominated solutions. The method solves a sequence of optimization problems 

using a weighted objective function. The method begins by optimizing each objective 

individually, thus obtaining the two supported solutions (z1 and z2) on the extremes of the 

efficient frontier as shown in Figure 5 (a). The height of the triangle formed by the extreme 

points and the ideal, denoted by 𝜓1,2, is an upper bound to the distance of the line connecting 

z1 and z2 and a potential unexplored efficient point. In each intermediate step (see Figure 5 

(b)), based on the geometric upper bound denoted by 𝜓𝑛,𝑛+1, the method finds an unexplored 

segment, which could lead to a new supported solution  on that boundary of the frontier. The 

unexplored segment, formed by two adjacent supported solutions, is used to compute the 

weights for the aggregate objective function. By choosing in every step the largest geometric 

bound, the method guarantees an even approximation of the efficient frontier, even if the 

method is stopped prematurely without exploring all segments of the frontier. To stop the 

method, the bound 𝜓𝑛,𝑛+1 is compared against 𝑇 = 𝛾 ∙ 𝜓1,2, where 𝛾 is a parameter chosen by 

the user (0 ≤ 𝛾 ≤ 1). Small values of  𝛾 achieve a very good approximation of the efficient 

frontier because the algorithm stops when all 𝜓𝑛,𝑛+1 are no larger than T.  

 

INSERT FIGURE 5 

 

To find an approximate efficient frontier for the BOOFLP with NISE, we solve the following 

problem repeatedly: 

 

min  2211 zwzw            (21) 

 

subject to, 

(3), (4), (6) and (7) 
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The objective function (21) represents the compromise between the cost objective 𝑧1, defined 

in (1), weighted by 𝑤1; and the population exposure, defined in (2), weighted by 𝑤2. The 

constraints (22) include the term  𝑒𝑖 which accounts for the violation of the soft capacity 

constraint of the i-th CDC. Constraints (23) impose a bound on the maximum allowable 

aggregated capacity violation for the CDCs (𝜌). Finally, the relations (24) define the capacity 

violation variables, one for each CDC.  

 

3.5.Boyacá’s hospital waste management network design 

 

The data used in this section are taken from Rodriguez’s (2005) description of Boyacá’s 

hospital waste management network, in which 120 hospital waste generators are connected 

through Boyacá’s road network. The population at every potential CDC and the daily hospital 

waste generated by each town are known. The distances between towns were calculated by 

applying Dijkstra’s algorithm to the road network. These distance data were then used as 

proxy for transportation cost. According to Rodríguez (2005), it is advisable from an 

economic and operational perspective to set up a hospital waste management network with 

four CDCs. 

 

Table 2 compares the performance of GA-GAH and GA-MIP on Boyacá’s hospital waste 

management network by outlining the average and maximum SSC calculated with the final 

population of 10 independent executions of the algorithms. For GA-GAH, the parameter is 

set at five different levels. The column labeled “All” reports the SSC metric on the frontier 

obtained by merging all the final GA-GAH populations.  From these results, it is clear that the 

hybrid GA-MIP outperforms the GA-GAH in terms of SSC. The size of the dominated space 

obtained with all the GA-GAH runs is just as large as the average dominated space obtained 

with GA-MIP. Thus, even though the GA-MIP is slower than the GA-GAH, it seems a 

reasonable price to pay for better configurations of the hospital waste network, especially 

considering the strategic nature and long-term effects of these decisions. 

 

INSERT TABLE 2 
 

Figure 6 shows a projection of the approximate efficient frontier obtained with GA-GAH and 

GA-MIP. It is worth mentioning that the seemingly dominated solutions obtain better balance 

on the (soft) capacity constraints. Moreover, GA-MIP solutions are generally cheaper and 

affect fewer of the population. Figure 6 also illustrates the existing tradeoff between 

population exposure and transportation cost. If cost is taken as the sole objective, the lowest 

cost solution (black triangle) will impact twice the population affected by a solution that is 

only 9.89% more expensive. Likewise, another solution that is 16.8% more expensive will 

affect only a quarter of the population of the lowest cost solution. Therefore, these are prices 

that society may be willing to pay in order to avoid the location of obnoxious CDCs.  

 

INSERT FIGURE 6 
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It is important to note that, unlike the single objective uncapacitated solution (black triangle in 

Figure 6) found by Rodriguez (2005), the GA-MIP balances the assignment of hospital waste 

to CDCs, a balance that is even better illustrated in the approximate efficient frontier shown in 

Figure 7. Moreover, all the solutions found by GA-MIP with =2 are no more than 6% off 

from the ideal (completely even) assignment. The values for the cost, population exposure, 

and the capacity constraint violation for every solution shown in Figure 7 is given in Table 3. 

Among the best of these is solution 1, which affects very few of the nearby residents (4,377) 

and has only a 0.3% capacity violation; and solution 41, that compared to the lowest-cost 

completely-balanced solution obtained with the capacitated FLP, is only 4.7% more 

expensive, achieves a reasonable balance (2.1% of capacity violation), and affects just half of 

the exposed population. 

 

INSERT FIGURE 7 

   

INSERT TABLE 3 
 

Finally, Figure 8 compares two hospital waste management network configurations for 

Boyacá. The colored dots are waste generators (towns), while the dots bounded by boxes are 

the sited CDCs.  Figure 8(a) shows the lowest cost solution obtained by Rodríguez (2005) 

using the uncapacitated facility location problem. It is worth noting that this solution, which 

optimizes transportation costs, tries to locate CDCs at the centroid of their service area. Figure 

8(b) shows the solution with the least population exposure (Solution 1 in Table 3), which is a 

configuration at the efficient frontier obtained by a GA-MIP with =2. However, this solution 

tries to locate CDCs in off-center small towns, which leads to larger transportation costs. 

 

INSERT FIGURE 8 

 

3.6.GA-MIP vs. NISE 

 

We tested the robustness of GA-MIP with a larger set of benchmark problems adapted from 

the literature. For this experiment, GA-MIP was selected over GA-GAH because of its better 

results in terms of the size of the space covered metric (SSC). The selected test problems have 

similar size to that of Boyacá’s and it is possible to resemble the structure of the BOOFLP 

using their data.  The first set is comprised of instances proposed by Alp et al. (2002) for the 

uncapacitated p-median problem with data from the Province of Alberta (Canada). Problems 

from this set are labeled in this section with the prefix Alberta. The second set of capacitated 

p-median instances, proposed by Lorena and Senne (2003), is composed of real data collected 

using a Geographical Information System for the city of São José dos Campos (Brazil). 

Instances from this set are labeled SJC. To convert Alberta’s instances into the BOOFLP 

format, we used the weight-of-node as demand 𝑑𝑗 and population 𝑝𝑖; and calculated 𝑠𝑖 as 

shown in equation (8). For SJC’s instances, we use the demand, represented by the number of 

houses (apartments) at each block, as a proxy for population 𝑝𝑖. Henceforth, these test 

problems are labeled name-nodes-K, where name stands for the problem set; nodes is the 

number of candidate facilities or customers (i.e., |𝐼| = |𝐽|); and K is the total number of 

facilities to be opened.  

 

Table 4 summarizes the results for GA-MIP. For each instance, ten independent runs were 

executed. Then, the final populations of each run were aggregated to construct the 

approximate efficient frontier 𝑃𝐹̂ . The parameters for GA-MIP were set according to those 

found in Section 3.3, that is, pc=0.7, pm=0.05, P=50, N=100, and 𝛼 = 2. To speed up the 



14 

convergence on instance Alberta-316-10, we tried a variant of GA-MIP powered by GAH. 

First, the algorithm evaluates the chromosome with the GAH, and provided the result is 

promising, it evaluates the MIP with 𝛼 = 2.  This is supported by a positive correlation 

between the cost assignment of GAH and MIP on a random sample of chromosomes. 

 

 

INSERT Table 4 

 

Table 5 shows the summary results for NISE. To make GA-MIP’s frontiers comparable to 

those obtained with NISE, we use as input for the latter the maximum capacity violation in 

the frontier  𝑃𝐹̂  (for GA-MIP) as the value for 𝜌 in constraint (23). The values for 𝛾 were set 

as follows: for Boyacá-120-4 and SJC-100-10, 𝛾=0%; for SJC-200-15, 𝛾=0.01%; and for 

Alberta-316-5 and Alberta-316-10, 𝛾=0.5%. Because of the high computational burden on 

Alberta-316-5 and Alberta-316-10, we ran these experiments on a PowerEdge SC1430 with 

two Intel(R) Xeon(R) CPU 5120 processors running at 1.86GHz with 4 GB of RAM. To 

illustrate how difficult is to solve the underlying MIPs, for Alberta-316-5 the minimum cost 

nondominated solution for NISE took 1405.5 seconds (about 23 minutes).  

 

 

INSERT TABLE 5 

 

Solution times, shown in the second column of Table 4 and Table 5, vary widely depending 

on the instance. For GA-MIP, it ranges from 6 to 77 minutes; while for NISE, time ranges 

from 2.1 to 132 minutes. NISE and GA-MIP show similar solution times for SJC-100-10, but 

Boyacá-120-4 and SJC-200-15 seem slightly easier for NISE. However, for the larger Alberta 

instances, NISE do not scale as well as GA-MIP. For instance, GA-MIP found an acceptable 

approximation of the frontier in only 25% of the time it took NISE (on a better machine) for 

Alberta-316-5; likewise, there is a 42% time reduction on Alberta-316-10 when using GA-

MIP over NISE. Nevertheless, Alberta-316-10 seems most difficult than any other problem 

for both methods. Finally, note that these times are completely reasonable for strategic 

location problems like the BOOFLP, and particularly for Boyacá’s hospital waste 

management network design.  

 

In terms of the quality of the efficient frontiers, the metrics shown in columns 3 to 6 of Table 

4 and Table 5 include capacity balance as a third objective in addition to cost and population 

exposure. The relative quality measure shows that an important fraction of the solutions 

generated by GA-MIP (88.5% in average) remain nondominated in the aggregated efficient 

frontier. This is due mainly because GA-MIP solutions have better balance than those of 

NISE. Also, in terms of quantity (column 5), GA-MIP provides in average 65.5% of the 

solutions of the aggregated efficient frontier. This is a good result since GA-MIP provides the 

decision maker with a rich set of solutions and wider range of options than NISE.  

 

In terms of the size of the space covered (SSC), the frontiers generated by both methods in 

Boyacá-120-4 and SJC-100-10, dominate spaces of similar sizes; while in SJC-200-15, the 

GA-MIP covers a smaller space than NISE. These results are better illustrated in Figure 9 and 

Figure 10, where the size of the bubble is proportional to the capacity violation.  Figure 9 

shows that while in SJC-100-10 GA-MIP is able to find widespread solutions along the 

efficient frontier, for SJC-200-15 the GA-MIP fails to find low-cost solutions (see Figure 10).     
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INSERT FIGURE 9 
 

INSERT FIGURE 10 
 

 

The last column of Table 4 shows the number of solutions in the efficient frontier found by 

GA-MIP that could be non-supported. For all instances more than half of the solutions found 

by GA-MIP lie in the interior of the convex hull of the frontier. This result shows how GA-

MIP also finds non-supported solutions, which is an advantage of GA-MIP over NISE. 

 

 

4. Conclusions  

 

This formulation of a biobjective obnoxious facility location problem was motivated by the 

design of a hospital waste management network for Boyacá (Colombia). This work proposes 

two multiobjective evolutionary algorithms capable of showing the tradeoff between 

transportation cost and exposed population. The first algorithm uses a fast greedy fitness 

assignment heuristic (GA-GAH), while the second uses a fitness assignment approach based 

on mixed-integer programming (GA-MIP). Experiments on data from Boyacá’s hospital 

waste management network show that the hybrid GA-MIP obtains better solutions than the 

GA-GAH in terms of the SSC metric. However, these solutions come at the price of slightly 

greater, albeit reasonable, computational time.  

 

Even though the proposed evolutionary algorithms were designed for the case of Boyacá’s 

network, we tested the robustness of GA-MIP on a larger set of benchmark problems adapted 

from the literature. GA-MIP was compared against the Noninferior Set Estimation (NISE) 

method, a biobjective optimization approach able to find supported nondominated solutions. 

In terms of speed, GA-MIP and NISE obtained comparable results, but the proposed 

evolutionary algorithm scaled better than NISE on large instances. GA-MIP was able to find 

efficient frontiers of similar quality for most instances, but it failed to find low-cost solutions 

in certain cases, thus, affecting the size of the space covered metric. A unique advantage of 

GA-MIP is its ability to find non-supported solutions, contrary to NISE, which by design only 

finds supported solutions. 

 

This obnoxious facility location problem is of public concern, and has been shown to be a 

valuable tool for political discussion. Specifically, it allows public decision makers to analyze 

several alternative solutions with different compromises between criteria. Because of current 

legislation, this approach might be useful for designing other hospital waste management 

networks for other Colombian departments.  
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Tables 

 

 

  

 1 2 5 10 100 

SSC (avg.)  0.313 0.334 0.327 0.344 0.309 

Avg. time (s)  8.2 12.0 22.0 34.1 254.4 

Table 1. Sensitivity of SSC to changes in 
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 GA-GAH  GA-MIP 

      All =1 =2 

Average SSC (%)      -  

Maximum SSC (%)        
Average time (s)      -  

Table 2. SSC for the GA-GAH and GA-MIP in Boyacá’s hospital waste management network design 

 

 

 

  



21 

 
 

Solution Cost(COP$) 
Population 

(inhabitants) 

Capacity 

violation(%) 
Solution Cost (COP$) 

Population 

(inhabitants) 

Capacity 

violation(%) 

1   8,351,308             4,737    0.3 22   5,221,875             9,256    1.6 

2   7,524,252             5,111    1.7 23   5,207,996             9,780    2.3 

3   7,065,272             5,408    3.3 24   5,151,488             9,949    2.9 

4   6,610,810             5,324    5.8 25   5,067,361           10,100    1.0 

5   6,464,680             5,729    0.7 26   5,044,307           10,474    1.0 

6   6,149,095             6,778    0.9 27   5,021,994           10,133    2.3 

7   6,128,210             6,860    1.0 28   5,001,500             9,765    3.7 

8   5,999,550             5,839    3.4 29   4,980,880           10,562    1.0 

9   5,697,271             7,656    0.7 30   4,978,624           11,860    1.6 

10   5,589,548             8,048    0.7 31   4,927,185           10,970    1.9 

11   5,580,027             6,962    0.8 32   4,912,114           22,845    0.8 

12   5,554,095             6,670    2.5 33   4,899,266           12,077    0.9 

13   5,501,817             9,391    0.7 34   4,863,200           14,690    1.0 

14   5,497,822             9,462    0.4 35   4,777,126           12,762    2.1 

15   5,394,093             9,783    0.7 36   4,767,409           14,818    1.1 

16   5,384,500             8,697    0.8 37   4,756,794           16,183    1.0 

17   5,357,087             7,444    1.0 38   4,753,476           14,060    2.1 

18   5,314,110             8,171    0.9 39   4,704,455           17,816    1.0 

19   5,309,013             7,953    1.6 40   4,700,762           19,114    2.1 

20   5,262,847             8,011    1.0 41   4,684,090           21,638    2.1 

21     5,238,152   8,853 0.9 Best   4,684,090   4,737 0.3 

Table 3. Solutions for the approximate efficient frontier obtained using a GA-MIP with  =2 
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Problem Time (s) |𝑷𝑭̂| Relative 

Quality 

Absolute 

Quality 

SSC |𝒊𝒏𝒕(𝑷𝑭̂)| 

Boyacá-120-4 480 41 97.6% 76.9% 0.79 34 

SJC-100-10 2035 43 97.7% 73.7% 0.62 17 

SJC-200-15 3904 32 65.6% 44.7% 0.36 16 

Alberta-316-5 1184 41 90.2% 77.1% 0.49 25 

Alberta-316-10
 

4595  23 91.3% 55.3% 0.30 21 
Table 4. Summary results for GA-MIP
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Problem Time (s) |𝑷𝑭̂| Relative 

Quality 

Absolute 

Quality 

SSC 

Boyacá-120-4 127 26 100.0% 23.1% 0.81 

SJC-100-10 2616 15 100.0% 26.3% 0.74 

SJC-200-15 1694 28 100.0% 55.3% 0.81 

Alberta-316-5 4760 11 100.0% 22.9% 0.62 

Alberta-316-10 7934 17 100.0% 31.5% 0.45 
Table 5. Summary results for NISE
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Figures 

 

 

 
Figure 1: Boyacá’s proposed hospital waste management network 
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Figure 2: Implementation of the GA-GAH and GA-MIP on MO-JGA 
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a) SSC 

 
a) Time (ms) 

Figure 3: Tuning the common parameters for the GA-GAH and GA-MIP 
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Figure 4: Tuning the penalty parameter  of the GA-MIP 
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a) Computing the maximum error (upper bound) b) Computing the upper bound between two 

adjacent points in the frontier 
 

Figure 5: NISE 
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Figure 6: Projected approximate efficient frontier for Boyacá’s hospital waste management network 
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Figure 7: Three-dimensional approximate efficient frontier obtained using a GA-MIP with  =2 
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a) Lowest cost solution (Rodríguez, 2005) 

 
b) GA-MIP efficient solution # 1 

Figure 8: Different design alternatives for Boyacá’s hospital waste management network 
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Figure 9 Approximate efficient frontier found by GA-MIP and NISE in problem SJC-100-10 
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Figure 10 Approximate efficient frontier found by GA-MIP and NISE in problem SJC-200-15 

 

 


