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Pseudocritical behavior of ferromagnetic pure and random diluted nanoparticles with competing
interactions: Variational and Monte Carlo approaches
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The magnetic properties and pseudocritical behavior of ferromagnetic pure and metallic nanoparticles having
concurrently atomic disorder, dilution, and competing interactions, are studied in the framework of an Ising
model. We have used the free-energy variational principle based on the Bogoliubov inequality and Monte Carlo
simulation. As a case of study for random diluted nanoparticles we have considered the Fe0.5Mn0.1Al0.4 alloy.
It is characterized for exhibiting, under bulk conditions, low-temperature reentrant spin-glass (RSG) behavior.
Besides, experimental and simulation results are available for that alloy. Our results allow to conclude that
the variational model is successful in reproducing features of the particle size dependence of the ordering
temperature for pure and random diluted particles. In this last case, low-temperature magnetization reduction
was consistent with the same type of RSG behavior observed in bulk in accordance with the Almeida-Thouless
line at low fields. A linear dependence of the freezing temperature with the reciprocal of the particle diameter
was also obtained. Computation of the correlation length shift exponent for random diluted nanoparticles yielded
the values ν = 0.926 ± 0.004 via Bogoliubov simulations and ν = 0.71 ± 0.04 via Monte Carlo simulations.
Differences are attributed to the spin pair approximation used in the variational model. From both approaches,
differences in the ν exponent of Fe0.5Mn0.1Al0.4 nanoparticles with respect to that of the pure Ising model agree
with Harris and Fisher arguments.
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I. INTRODUCTION

The magnetic properties of bulk metallic systems having
concurrently atomic disorder, dilution, competing interactions,
and characterized for exhibiting spin-glass (SG) behavior have
been widely studied from different points of view: experiment,
theory, and numerical simulation.1–3 Among the systems with
such characteristics, we can mention, for instance, CuMn,4

FeAu,5 FeAl,6–9 FeNiMn,10,11 and FeMnAl (Refs. 11–15)
alloys. These alloys are interesting due to the richness of
magnetic phases that can be found, such as ferromagnetic,
antiferromagnetic, superparamagnetic, cluster glass, SG, and
reentrant SG (RSG) depending on stoichiometry, microstruc-
ture, degree of dilution, atomic disorder, magnetic field, and
temperature. Typical Ising SG systems such as those based on
FeMnTiO3,16,17 Fe(Cu,Al)Dy,18 LiHoYF,19 FeAl,6,7,9,20 and
FeMnAl (Refs. 11, 12, and 15) are good candidates to study
SG- and RSG-related properties through Ising-based theoreti-
cal models, where good agreement with experimental results
has been achieved. In particular, pure SG and RSG behaviors,
in ternary FeMnAl alloys, arise from several ingredients,
including random atomic distribution of the alloy constituent
elements in the crystalline structure, dilution provided by Al
atoms giving rise to bond randomness, and, finally, competition
among the different exchange integrals involved. On this last
respect, competition is given, essentially, by the difference
in sign and magnitude of the JFe−Fe, JFe−Mn, and JMn−Mn

exchange integrals. For high enough iron contents, a RSG
behavior within the ferromagnetic phase governed by the Fe
matrix can arise.13

Up The to date, works reported on these kind of alloys
deal with magnetic properties under bulk conditions. How-
ever, to the best of our knowledge, and despite of all the
literature related with the so-called surface SG-like behavior
in nanoparticles, no studies on metallic nanoparticles having
concurrently bond competition, magnetic dilution, and atomic
disorder within the entire volume of the nanoparticles have
been reported. This fact has led us to consider the interplay
between these effects and those arising from finite size
when considering nanoparticles having such ingredients. The
purpose of this paper is to characterize from the magnetic
standpoint how the SG behaviors found in systems such as
FeMnAl alloys under bulk conditions become revealed in
nanoparticles where the surface-to-volume ratio becomes in-
creasingly important. Both the free-energy variational method
based on the Bogoliubov inequality and a Metropolis Monte
Carlo simulation in the framework of a nearest-neighbor Ising
model were considered. The former has been already suc-
cessfully employed as energy minimization tool in describing
the magnetic properties of these kinds of systems where
theoretical magnetic phase diagrams are in good agreement
with the experimental ones.11,12,15 The layout of the paper
is as follows. In Sec. II we describe the theoretical model
and we emphasize the importance of a relationship for the
average nearest-neighbor coordination number as a function
of the particle size. In Sec. III we present our numerical
results. This section provides finite-size scaling analysis of
pure ferromagnetic nanoparticles, with an application to Ni
nanostructures, and Fe0.5Mn0.1Al0.4 nanoparticles from both
approaches. Conclusions are finally presented in Sec. IV.
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II. THEORETICAL MODEL

Several features lead us to consider an Ising model:
(i) Magnetic frustration can be better resolved with an Ising
model than, for instance, with continuous spin models;1 (ii) it
is in agreement with the framework we are interested in, which
consists of iron-based nanoparticles with a very high effective
magnetocrystalline anisotropy and where, despite having a
cubic structure, a single easy axis can be experimentally
induced;21–23 (iii) it has been already used in similar systems
and quite good agreement with experimental data (magne-
tometric measurements and hyperfine fields from Mössbauer
spectroscopy) has been achieved;7,11,12,15 and finally (iv) it
allows to keep computational requirements under reasonable
limits. Thus, our model is based on the following N spin Ising
Hamiltonian:

H = −
∑
〈i,j〉

Jijσiσj − h

N∑
i=1

σi. (1)

The first sum runs over nearest neighbors 〈i,j 〉, and σi takes
on the values ±1 or 0 depending on whether the ith site is
occupied by a magnetic atom (Fe,Mn) or an aluminum one,
respectively. The exchange integral Jij obeys the following
probability distribution function accounting for disorder and
the different couplings involved:12

P (Jij ) = p2δ(Jij − JFe−Fe) + 2pxδ(Jij − JFe−Mn) (2)

+ x2δ(Jij − JMn−Mn) + (q2 + 2xq + 2pq)δ(Jij ),

where p, x, and q, with p + x + q = 1, are the fractional
concentrations of Fe, Mn, and Al atoms, respectively. The
terms p2, 2px, and x2 are the probabilities of having nearest-
neighbor Fe-Fe, Fe-Mn, and Mn-Mn bonds, respectively, in-
teracting through the corresponding exchange integrals JFe−Fe,
JFe−Mn, and JMn−Mn. Here, JFe−Fe, hereafter simply referred to
as J , was set to 12.846 meV only for pure iron nanoparticles
with body-centered cubic (bcc) structures, and was set to
16.872 meV for Fe0.5Mn0.1Al0.4 nanoparticles having the
same structure. These values reproduce the Curie temperatures
of the corresponding systems under bulk conditions, and
the difference among them is attributed to the presence
of both Mn and Al atoms, and to the difference on the
lattice parameters of Fe and Fe0.5Mn0.1Al0.4.14 Additionally,
for the alloy, the remaining exchange integrals were set
to JFe−Mn = −αJ and JMn−Mn = −λJ with α = 0.005 and
λ = 0.03.12 They correspond to the so-called competitive
parameters. In this work, such values are kept fixed regardless
the size of the nanoparticles to be considered. The last
coefficient q2 + 2xq + 2pq stands for diluted bonds, with
Jij = 0, corresponding to nearest-neighbor Al-Al, Al-Mn, and
Al-Fe pairs. Finally, the second term in Eq. (1) is the Zeeman
contribution dealing with the coupling of the spins with a
uniform external applied magnetic field h.

Following the ideas proposed by Ferreira et al.,24 in the spin
pair approximation, the system is considered as formed by n1

single spins (S) and n2 linked pairs (P) of spins with a total
number of spins N = n1 + 2n2. Additionally, it is assumed
that the magnetization can be obtained either from single spins

or from spins belonging to a pair. Thus, the trial Hamiltonian
can be written as

H0 = −γs

∑
i∈S

σi −
∑
j,k∈P

[Jikσjσk + γp(σj + σk)], (3)

where γs and γp are variational parameters, which can be
interpreted as molecular fields to be determined from energy
minimization conditions. Here, the first sum runs over single
spins and the second one runs over pairs. Both Hamiltonians,
Eqs. (1) and (3), can be related through the variational approach
based on the Bogoliubov inequality:

[F ] � [F0] + [〈H − H0〉0] ≡ [�] , (4)

where F is the Helmholtz free energy defined by H, F0

is the free energy defined by H0; 〈. . .〉0 refers to the
thermal average in the ensemble defined by H0, whereas [. . .]
represents a configurational average in which atomic disorder
is considered. According to the way as the system has been
figured out, we have

F0 = −kBT ln Z0 = −kBT ln
(
ZN−2n2

s Zn2
p

)
, (5)

where

Zs = 2 cosh(βγs), (6)

Zp = 2eβJij cosh(2βγp) + 2e−βJij , (7)

are the trial partition functions for single and pair spins,
respectively. The configurational average of any observable
A is obtained from

[A] =
∫

{Jij }
AP (Jij )dJij . (8)

Calculation of the quantities [F0], [〈H − H0〉0], and [�],
following the same procedure as it has been described in
Refs. 12 and 24, leads to the following expression for energy
minimization:

∂ [�]

∂m
= −2(n′ − n2)(p2 − 2pxα − λx2)Jm

−Nh + (N − 2n2) γs + 2n2γp = 0, (9)

where n′ is the number of nearest neighbors, which depends on
the crystalline structure, the type of boundary conditions, and
the system size. Concerning the nanoparticles, we consider free
boundary conditions. Since [�] diminishes as n2 increases, we
take n2 as large as physically possible, i.e., n′ = n2. Thus, the
number of linked pairs is maximized. Hence we obtain the
following relationship between the variational parameters or
molecular fields γs and γp:

γs = (2γpn′/N) − h

(2n′/N ) − 1
. (10)

Our system is a spherical nanoparticle composed of N atoms
arranged in a bcc structure with a core coordination number
z = 8 and interatomic spacing a, which in the case of pure iron
is ∼2.86 Å whereas for Fe0.5Mn0.1Al0.4 it is ∼2.96 Å.14 On the
basis of such a representation and in order to get an expression
for the maximum number of pairs divided by the total number
of atoms, i.e., n′/N , or, analogously an effective coordination
number zeff = 2n′/N , we have simulated particles with bcc
structure and different diameters D, in units of the lattice
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FIG. 1. Size dependence of the effective [Eq. (11)] and the
average [Eq. (17)] coordination number for nanoparticles having a
bcc structure. Particle diameter D is given in units of the lattice
parameter a.

parameter a, and have counted the number of nearest-neighbor
pairs. Figure 1 shows the size dependence of zeff from which
the following relationship is fulfilled for D � 3.4:

zeff = 2n′

N
= z − b

D
, (11)

where z = 8 and the best fit yields b = 10.13 ± 0.04 for a
bcc lattice. In the case of a face-centered cubic (fcc) lattice,
the following values must be used, z = 12 and b = 12.65 ±
0.06. In principle, zeff can be interpreted as an effective
coordination number for nanoparticles of diameter D whose
core coordination number is z.

Thus, the relationship between the molecular fields γs and
γp can be rewritten as

γs = γpzeff − h

zeff − 1
. (12)

Magnetization can be computed either from single spins or
from spins linked to a pair, and it must be the same:

m = 1

β

∂ ln Zs

∂γs

= 1

2β

∂ ln Zp

∂γp

. (13)

After calculating the derivatives and performing the configura-
tional averages using the bond probability distribution function
given by Eq. (2), we obtain the following transcendental
equation for the magnetization:

m = tanh(βγs) = sinh(2βγp)

[
p2

cosh(2βγp) + e−2βJ

+ 2px

cosh(2βγp) + e2αβJ
+ x2

cosh(2βγp) + e2λβJ

+ q2 + 2pq + 2qx

cosh(2βγp) + 1

]
. (14)

Roots of this equation were obtained by using the Find-
Root tool of MATHEMATICA. It must be stressed that such
magnetization, according to the bond distribution function in
Eq. (2), corresponds to an average magnetization per bond,
whereas for the pure case (p = 1) becomes a magnetization
per site. The presence of crossed terms involving the atomic
concentrations of the constituent elements p, x, and q in
Eq. (14) reflects the average over all possible nearest-neighbors
pairs as well as the random atomic distribution feature.
Zero field magnetic susceptibility was obtained according to
χ = (∂m/∂h)0, yielding

χ =
(

∂m

∂h

)
0

= {(1 − zeff)
[
β sech2(βγs)]

−1

+ zeff

2β

[
tanh(βγs) coth(2βγp)

− sinh2(2βγp)

(
p2

(cosh(2βγp) + e−2βJ )2

+ 2px

[cosh(2βγp) + e2αβJ ]2
+ x2

[cosh(2βγp) + e2λβJ ]2

+ q2 + 2pq + 2qx

[cosh(2βγp) + 1]2

)]−1}−1

. (15)

The calculation of the ordering temperature Tc from Eq. (14),
for which we impose m = 0, is performed by taking the limits
γp →0 and γs →0. This yields the following expression for
the magnetic phase diagram:

zeff

2(zeff − 1)
= p2

1 + e−2βcJ
+ 2px

1 + e2αβcJ

+ x2

1 + e2λβcJ
+ q2 + 2pq + 2qx

2
. (16)

Here, βc = (kBTc)−1. We want to stress that such an ordering
temperature is indeed a pseudocritical temperature as far as
we are dealing with nanoparticles and susceptibility has a
maximum and finite value at Tc.

III. RESULTS AND DISCUSSION

A. Coordination number

From the particle size dependence of zeff plotted in Fig. 1,
particles with diameter D = 10 (∼3 nm) already exhibit
an effective coordination number of ∼7, which corresponds
roughly to 88% of that of the bulk. Above D = 10, the
effective coordination number resembles that of the system
under bulk conditions. Below that value, the coordination
number decreases rapidly and, therefore, strong modifications
on the magnetic properties are expected to occur in this range,
i.e., below ∼3 nm. In order to gain a deeper insight on the
interpretation of zeff , we have computed the coordination
number per particle zi by counting the number of nearest
neighbors surrounding the atom at the ith position, i.e.,
within the first coordination shell, and an average coordination
number was computed according to

〈z〉 = 1

N

N∑
i=1

nizi, (17)

184432-3
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FIG. 2. (Color online) Particle with diameter D = 10 having
1067 atoms, bcc structure, and an average coordination number
〈z〉 = 6.96. Surface atoms with four, five, six, and seven nearest
neighbors are colored green(black), blue(light gray), red(dark gray),
and yellow(white), respectively.

where ni is the number of atoms having coordination number
zi (see Fig. 2). Hence, by comparing the results derived from
Eqs. (11) and (17) in Fig. 1, we conclude that what we
have called an effective coordination number can indeed be
considered as an average coordination number, i.e., zeff = 〈z〉.
For diameters below ∼3.4a the average coordination number is
characterized by jumps for which the discrete character of the
system becomes more evident. A typical particle with D = 10
is illustrated in Fig. 2, where surface atoms with different
coordinations are depicted with different colors. Our results are
in agreement with those reported in metal Pt nanoparticles with
different diameters where coordination numbers for the first
through fifth coordination shells were obtained by extended
x-ray absorption fine structure (EXAFS) spectroscopy.25

B. Pure nanoparticles

The particular case of pure ferromagnetic nanoparticles is
easily obtained by setting p = 1, q = 0, and x = 0 in Eq. (16):

kBTc(D) = 2J

ln [zeff/ (zeff − 2)]
, (18)

which gives the particle size dependence of the ordering
temperature for nanoparticles with core coordination z,
diameter D, and a nearest-neighbor exchange integral J .
These results are not exclusively applicable to pure α-Fe
nanoparticles and they can be, in principle, employed for other
pure ferromagnetic nanoparticles such as Ni or Co. We can
also relate this ordering temperature with that of the system
under bulk conditions12 in order to obtain a reduced ordering
temperature,

Tc(D)

Tc(∞)
= J (D) ln [z/(z − 2)]

J (∞) ln [zeff/(zeff − 2)]
, (19)

where we have assumed that the exchange integral [J = J (D)]
in the nanoparticle can be different from that under bulk
conditions [J (∞)]. In a first order of approximation, and by
assuming the same exchange integral value, which could be
reasonable for high enough particle sizes, we have

Tc(D)

Tc(∞)
≈ zeff

z
, (20)

FIG. 3. Particle size dependence of the reduced ordering tem-
perature for pure ferromagnetic nanoparticles with z = 8 and 12,
according to Eqs. (19) and (20). D is given in a units.

if we assume that no structural transition occurs as a con-
sequence of size reduction. Otherwise, different core coordi-
nation numbers should be considered and the model is still
applicable. Figure 3 shows the reduced ordering temperature
for different diameters according to our model. A comparison
between Eq. (19) for bcc (z = 8) and fcc (z = 12) lattice
structures and the approximate expression given by Eq. (20) is
included.

As it is observed, Tc decreases as the particle becomes
smaller due basically to the decrease in the magnetic bond
density. Therefore, the energy cost to carry out the transition
is lower, and thus the ordering temperature is also smaller.
As D increases Tc tends to its bulk value. Other models have
been already proposed to understand the mechanisms lying
on the effect of the breaking of exchange bonds upon the
Tc(D) function for nanoparticles. On this respect, the following
expression has been proposed:26

Tc(D)

Tc(∞)
= 1 − 3�L

2D
, (21)

where �L is the thickness of a surface layer, and it has been
considered as a parameter to characterize the deficiency in the
number of exchange bonds for atoms at the surface region
of a nanoparticle. However, this model cannot reproduce
successfully experimental data of magnetite nanoparticles of
different sizes with a constant �L, and hence it has been
suggested that �L should vary with the particle size, but such
a dependence has not been yet established.26 Another model,
based on the energy-equilibrium criterion between the spin-
spin exchange interactions and the thermal vibration energy
of atoms at the transition temperature and a size-dependent
Debye temperature function, was developed in order to obtain
both Tc(D) and TN (D) of ferromagnetic and antiferromagnetic
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FIG. 4. Semilog plots of the dependence of the ordering temper-
ature on diameter for Ni nanostructures. Comparison between our
model predictions (black solid line) without adjustable parameters
according to Eq. (19), available experimental results for Ni nanoparti-
cles (circles, Refs. 27 and 29), Ni nanorods (squares, Refs. 27 and 32),
and the theoretical models described in the text with �L = 0.8084
nm [dashed line, Eq. (21), Refs. 26 and 27], and D0 = 1.4952 nm,
α = 1.811 [dotted line, Eq. (22), Ref. 27]. The gray line stands for
our model using Eq. (23) with α = 0.6.

nanocrystals. Such model yielded the following expression for
nanoparticles:27

Tc(D)

Tc(∞)
= exp [−(α − 1)/(D/D0 − 1)] , (22)

where α is a measure of the root-mean-square (rms) thermal
average amplitude of surface atom vibration relative to the
core and D0 denotes a critical size at which all atoms of
the nanocrystal are located on its surface. Differently, our
model contains just one adjustable parameter (J ). Concerning
a comparison with experimental results, we want to stress that,
in general, it is rather difficult to obtain a diameter dependence
of the ordering temperature due to several factors such as shape
inhomogeneities, size distribution, and, in some cases as Fe
nanoparticles, surface oxidation.28 Despite of that, our results
are, qualitatively, in good agreement with some others reported
for nanostructures.27,29–31 In order to evaluate the reliability
of our model, we have carried out a comparison with some
experimental data available for Ni nanostructures.29,32 To do
this, we have employed Eq. (19) with z = 12 corresponding
to a fcc lattice according to the crystalline structure of Ni,
Tc(∞) = 631 K, a lattice parameter a = 3.52 Å, and we have
also assumed that J = J (∞). Results are shown in Fig. 4,
where we have also included the results from the models cited
above.

As observed, the agreement is rather good despite the
simplicity of our model and without considering any adjustable
free parameter. Discrepancies can be attributed to the fact
that, first, we have considered a simple nearest-neighbor
Ising model. Second, experimental data correspond to Ni
nanostructures that are not spherical at all, whereas our model

has been developed for spherical nanoparticles. Third, for
real nanostructures, the average lattice parameter is certainly
different from the bulk, mainly for very small particles of
some few nanometers of diameter and, therefore, the exchange
integral should undergo changes. Such changes can also be
induced by other facts such as volume magnetostriction of
Ni. Regarding a particle size dependence of an effective
nearest-neighbor exchange coupling, it is interesting to notice
that better agreement with experimental data can be achieved
by proposing a simple dependence of the form

J (D) = J (∞)eα/D (23)

in Eq. (19). This proposal is based on the experimental fact
that the lattice parameter of metallic nanoparticles contracts
with decreasing particle size in such a way that the lattice
parameter contraction (�a/a) is an inverse function of the
diameter of nanoparticles.25,33–36 Such a lattice contraction is
attributed to a reduction of surface bond length as a response to
surface stress. Contraction factors may vary with material and
crystal orientation. It has been observed experimentally that
the lattice parameter contracts by 2.4% in 5-nm Ni particles.37

On the other hand, fcc Ni is considered as a strong ferromagnet
characterized by a less pronounced Ruderman-Kittel-Kasuya-
Yoshida (RKKY) behavior, exponentially damped, and a
faster decay of the exchange integral with the interatomic
distance. More concretely, Ni remains ferromagnetic up to
the fifth nearest neighbors, and within this range of distance
the exchange integral is essentially a decreasing exponential
function of interatomic spacing.38,39

Concerning finite-size scaling (FSS) properties, Fig. 5
shows a log-log plot of the reduced temperature [Tc(∞) −
Tc(D)]/Tc(∞) versus particle diameter D, illustrating that the
data obtained from Eq. (20) follow the FSS relation40–44

Tc(∞) − Tc(D)

Tc(∞)
= aD−1/ν, (24)

from which our best estimate for the shift exponent associated
to the correlation length is ν = 1.0001 ± 0.0001 for both
bcc and fcc lattices. The observed exponent is slightly lower
than the one reported experimentally for Ni nanostructures
(ν = 1.064),32 and very similar to that of a two-dimensional
(2D) Ising model (ν = 1) but much greater than the observed
in the three-dimensional (3D) Ising model (ν = 0.6289)45 and
mean-field theory (ν = 0.5). Discrepancies are attributed to the
so-called spin pair approximation in the variational approach,
where the trial partition function is computed by dividing the
system only in blocks of one and two spins. This ends up
in a reduction of the degree of correlation and consequently
in a change of the exponent value. Certainly, a more precise
estimative of the partition function, and consequently of the
magnetization and Tc can be achieved by considering the
system as formed by higher-order blocks (four, six, eight spins,
etc.).24 Even though such a calculation is tractable, it turns out
to be heavy and very time consuming. This fact constitutes the
main limitation of the variational model.

Regarding thermal properties, Fig. 6 shows the temperature
dependence of the magnetization per site and the magnetic
susceptibility for pure iron (x = 0, q = 0 and p = 1) nanopar-
ticles and for some selected diameters. Results for bulk iron are
also included for comparison. A well-behaved thermal driven
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FIG. 5. Log-log plot of the size dependence of the reduced
ordering temperature for pure nanoparticles having core coordination
numbers z = 8 (bcc) (black solid line) and z = 12 (fcc) (dashed line).
The gray lines correspond to the log-log fitting process using FSS
theory [Eq. (24)].

ferromagnetic to paramagnetic phase transition is observed
as well as the shift of the critical temperature to low values
as the system size decreases. The location of the maximum
susceptibility coincides with that derived from Eq. (18) and no
divergences or singularities are observed.

C. FeMnAl nanoparticles

In the case of FeMnAl nanoparticles, we have chosen the
stoichiometry Fe0.5Mn0.1Al0.4, which, under bulk conditions,
has been studied by using Mössbauer spectroscopy and

FIG. 6. Temperature dependence of the magnetization per site
and magnetic susceptibility for α-Fe nanoparticles and bulk iron.
Susceptibility has a finite value at Tc. This feature in the figure has
been cut for better visibility.

FIG. 7. Log-log plot of the size dependence of the reduced
ordering temperature for Fe0.5Mn0.1Al0.4 nanoparticles having core
coordination numbers z = 8 (bcc) (circles) using Eq. (16). Solid line
corresponds to the log-log fitting process for z = 8 using FSS theory
[Eq. (24)].

magnetometric techniques14 as well as from theory12 and
Monte Carlo simulation.13 As it is known, the bulk alloy
has a Tc close to room temperature (≈300 K) in addition
to the occurrence of a RSG behavior in the low-temperature
regime. The pseudocritical line Tc(D) is given by Eq. (16), and
the corresponding log-log plot is shown in Fig. 7. Data have
been fitted using FSS theory [Eq. (24)]. Our best estimate for
the correlation length shift exponent is ν = 0.926 ± 0.004.
This exponent is still quite similar to that of a 2D Ising
model, but slightly different from our previous exponent
for the pure case. This feature is consistent with the Harris
criterion46–48 for which a different set of critical exponents
may be expected for diluted and random systems having a
distribution of competitive exchange integrals. In our case,
dilution is provided by Al atoms and randomness is provided
by the random distribution of the atomic elements in the alloy
within the crystalline structure and over the entire volume
of the nanoparticles. The exponent is also greater than the
one computed via Monte Carlo simulation (ν = 0.79 ± 0.03)
of Fe0.5Mn0.1Al0.4 alloys under bulk conditions.13 In Fig. 8,
we show the temperature dependence of magnetization per
bond and magnetic susceptibility as obtained from Eqs. (14)
and (15), respectively. As it is observed, our model predicts a
magnetization reduction in the low-temperature regime, below
∼70 K, in agreement with zero field cooling measurements
for the bulk case.12 According to our model, such a reduction,
which has been attributed to a RSG phenomenology within
the ferromagnetic matrix, is still observed for nanoparticles.
Moreover, the onset of the reentrant phase is supported by the
low-temperature peaks of the magnetic susceptibility. Results
reveal also the expected shift to lower-temperature values of
Tc(D) as the particle size decreases, in agreement with the
pseudocritical line obtained from Eq. (16).
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FIG. 8. (Color online) Temperature dependence of magnetization
per bond and magnetic susceptibility for Fe0.5Mn0.1Al0.4 nanoparti-
cles and for some selected particle sizes. Data corresponding to the
bulk case are also included for comparison.

It is well established that Ising SG transitions should follow
the so-called Almeida-Thouless (AT) line49 from which is
expected a field dependence of the peak temperature (Tp),
obtained from the maximum of the magnetization, of the form

h ∝ (1 − Tp/Tf )3/2. (25)

The extrapolation of the AT line at h = 0 gives the freezing SG
transition temperature Tf . Agreement of the data with the AT
line is usually considered as evidence of the occurrence of a SG
phase, although not concluding.50 Thus, in order to evaluate
the properties of the RSG phase, we have solved Eq. (14)
for different low-field values in Eq. (12) from which Tp was
extracted with an uncertainty of ±1 K. Results are summarized
in Fig. 9, where we plot h2/3 vs Tp. Two remarkable features are
observed in this figure. First, our data are in accordance with
the AT line as one expects for a SG transition, at least at low-
field values. The large plateau observed in the magnetization at

FIG. 9. (Color online) Low-field AT line. The freezing temper-
ature goes down as the particle size diminishes. The Tf value for
bulk at ∼62.5 K is relatively close to that reported experimentally at
∼78 K from ac susceptibility measurements for Fe0.5Mn0.1Al0.4 bulk
alloys (Ref. 14). The inset shows that a Tf vs 1/D linear dependence
is followed.

around Tp has been already observed to occur experimentally
from a superconducting quantum interference device (SQUID)
and ac susceptibility measurements.14 Additionally, for large
field values, a deviation from the AT line was observed. These
results are in agreement with those reported by Young et al.51

and references therein, where the difficulty of having an AT
line for short-range Ising SGs at large fields was evident.
In fact, the existence of a SG ordering in a magnetic field
is still an open question.52 Second, the freezing temperature
is clearly size dependent, i.e., it diminishes as the particle
size decreases. This fact implies that the SG region in the
magnetic phase diagram becomes smaller for nanoparticles
exhibiting SG behavior within their entire volume and not
as a consequence of a merely surface effect as it has been
proposed in nanoparticles exhibiting the so-called surface SG-
like behavior. These results suggest that SG behavior observed
in bulk systems is reduced when finite-size effects become
important, which could be attributed to a reduction in the total
number of frustrated spins as the particle size becomes smaller.
Moreover, in the framework of the mean-field approximation,
and taking into account that the low-temperature transition
occurs within the ordered Fe ferromagnetic matrix, the particle
size dependence of the freezing temperature can be understood
by writing Tf = zeffxJMn−Mn + zeffpJFe−Mn. This means that
Tf (D) should become proportional to zeff , or at least to 1/D,
according to Eq. (11). The inset in Fig. 9 reveals that such a
trend is fulfilled.

In order to interpret how such a low-temperature magneti-
zation reduction takes place, we have performed a single-spin
flip Metropolis Monte Carlo simulation41,53 of Fe0.5Mn0.1Al0.4

nanoparticles in the framework of a nearest-neighbor Ising
model. We have used free boundary conditions, a maximum of
1 × 105 Monte Carlo steps per spin (MCS), and discarded the
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VELÁSQUEZ, MAZO-ZULUAGA, RESTREPO, AND IGLESIAS PHYSICAL REVIEW B 83, 184432 (2011)

FIG. 10. Iron and manganese contributions to the total magnetiza-
tion per site for Fe0.5Mn0.1Al0.4 nanoparticles with diameter D = 10.
The inset shows a zoom of the low-temperature behavior.

first 6 × 104 MCS for equilibration. Configurational averages
over five different random atomic realizations were performed.
We have also employed the same set of competitive parameters
used in the variational approach and numerical values of
JFe−Fe (Ref. 54) reproducing the critical temperatures under
bulk conditions. An example of the simulation results for a
particle size D = 10 is shown in Fig. 10. In addition to the
total magnetization per site, the corresponding Fe and Mn con-
tributions are shown separately. Both approaches, variational
and simulational, predict a low-temperature magnetization
reduction. Monte Carlo results allow to conclude that such
a reduction arises from Mn moments for which an increase
in the absolute value of the corresponding magnetization
contribution was observed. These moments tend to align
antiparallel with respect to the total magnetization direction
ruled by the iron matrix according to the negative values
of JFe−Mn and JMn−Mn. Moreover, such moments are not
compensated and some of them are frustrated.

One of the difficulties of the variational approach is that
the magnetization obtained in the random diluted case is a
magnetization per effective bond and not per atomic site.
This fact gives rise to different values of the maximum
magnetization (see Fig. 8) in contrast to the observed via
Monte Carlo simulation, where the maximum value of the
overall magnetization is close to 0.5, in accordance with
the Fe atomic concentration, which is practically the same,
independent of the particle size. Finally, regarding the behavior
along the Tc line, we have determined the correlation length
shift exponent from the maxima of the logarithmic derivative
of the magnetization in the vicinity of Tc by assuming the
following ansatz:45(

∂ ln m

∂T −1

)
max

= aD1/ν . (26)

The log-log plot of the size dependence of the maximum values
of these derivatives is shown in Fig. 11 from which our best

FIG. 11. Log-log plot of the particle diameter dependence of the
maxima values of the logarithmic derivatives of the magnetization to
determine the ν exponent.

estimate for the exponent was ν = 0.71 ± 0.04, very different
from that found from the variational approach. Once more,
the difference is attributed to the spin pair approximation
used in the variational approach. Our value by the Monte
Carlo simulation is, however, somewhat greater than the ν =
0.6289 ± 0.0008 value obtained by Ferrenberg and Landau45

for a 3D pure Ising model, where a high-resolution Monte
Carlo study was carried out, and somewhat smaller than the
ν = 0.79 ± 0.03 value obtained for the same system under
bulk conditions.13 Differences respect to the ν exponent of the
pure 3D Ising model can be attributed to the diluted character
of our system, in addition to the disorder involved in the
distribution of exchange integrals, which is consistent with
Harris criterion,46,47 whereas the difference of the ν exponent
of the nanoparticles with respect to the corresponding infinite
system is consistent with Fisher’s theory.40

IV. CONCLUSIONS

The pseudocritical behavior of ferromagnetic pure and
random diluted nanoparticles with competing interactions
has been addressed. In both cases we have employed the
free-energy variational principle based on the Bogoliubov
inequality and an Ising model. In the case of random
diluted nanoparticles, for which we have considered the
Fe0.5Mn0.1Al0.4 system as a case of study, we have used,
additionally, a standard Monte Carlo simulation. In order to
validate the use of the variational approach in nanoparticles,
the model was applied to account for the pseudocritical
behavior of pure ferromagnetic nanoparticles on the basis
of an average nearest-neighbor coordination number obtained
via numerical simulation. Our results allow to conclude that
the variational model is successful in reproducing features
of the particle size dependence of the ordering temperature
for both pure and random diluted particles. Comparisons
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with other theoretical models and experimental results for
Ni nanostructures were carried out in order to evaluate the
reliability of the model. A better agreement with experimental
data is obtained if a particle size dependence of the ex-
change integral is considered, consistent with previous works
where lattice contraction of metallic nanoparticles has been
observed.

For random diluted nanoparticles, low-temperature magne-
tization reduction was consistent with the same type of RSG
behavior observed in the bulk counterparts, in accordance with
the Almeida-Thouless line at low fields. Such a RSG behavior
is attributed to the presence of competing interactions, random-
ness, and the aluminum dilution effect. A linear dependence
of the freezing temperature with the reciprocal of the particle
diameter was also obtained, indicating that the corresponding
region in the magnetic phase diagram becomes smaller as the
particle size diminishes. Concerning pseudocritical behavior,
data obtained by using the variational method were fitted
according to finite-size scaling theory, and the best estimate for
the correlation length shift exponent was ν = 0.926 ± 0.004.
Differently from this, a value ν = 0.71 ± 0.04 was obtained
via the Monte Carlo simulation. Differences are attributed to
the so-called pair approximation in the variational approach.

From both approaches, differences in the ν exponent of
Fe0.5Mn0.1Al0.4 nanoparticles with respect to that of the pure
Ising model agree with Harris and Fisher arguments. Finally,
we want to stress that, even though thermodynamic models
can be indeed used in the study of nanostructures55 and they
can reproduce experimental features, special attention must
be paid regarding pseudocritical behavior depending on the
approximations of the model.
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