
Scientific Programming 17 (2009) 77–95 77
DOI 10.3233/SPR-2009-0272
IOS Press

CellSs: Scheduling techniques to better
exploit memory hierarchy

Pieter Bellens a, Josep M. Perez a, Felipe Cabarcas b,c, Alex Ramirez a,b, Rosa M. Badia a,d,∗

and Jesus Labarta a,b

a Barcelona Supercomputing Center – Centro Nacional de Supercomputación, Barcelona, Spain
b Computer Architecture Department, Universitat Politècnica de Catalunya, Barcelona, Spain
c Universidad de Antioquia, Medellín, Colombia
d Consejo Superior de Investigaciones Científicas, Madrid, Spain

Abstract. Cell Superscalar’s (CellSs) main goal is to provide a simple, flexible and easy programming approach for the Cell
Broadband Engine (Cell/B.E.) that automatically exploits the inherent concurrency of the applications at a task level. The CellSs
environment is based on a source-to-source compiler that translates annotated C or Fortran code and a runtime library tailored for
the Cell/B.E. that takes care of the concurrent execution of the application. The first efforts for task scheduling in CellSs derived
from very simple heuristics. This paper presents new scheduling techniques that have been developed for CellSs for the purpose
of improving an application’s performance. Additionally, the design of a new scheduling algorithm is detailed and the algorithm
evaluated. The CellSs scheduler takes an extension of the memory hierarchy for Cell/B.E. into account, with a cache memory
shared between the SPEs. All new scheduling practices have been evaluated showing better behavior of our system.

Keywords: Cell superscalar, task scheduling, Cell/B.E., locality exploitation

1. Introduction

While programming models for supercomputers and
clusters of SMPs have not significantly changed in
recent years, the appearance of multicore chips (and
the prediction of manycores in a near future) has
been recognized as an inflection point in the com-
puting history that will severely impact the way we
write code [2]. The Cell Broadband Engine (Cell/B.E.
hereafter) depicted in Fig. 1 serves as an example
of such a device [22]. The Cell/B.E. is a multi-
core chip that consists of a PowerPC Processor Ele-
ment (or PPE, a 64-bit, 2-way multi-threaded, in-order
PowerPC processor) and multiple Synergistic Proces-
sor Elements (or SPEs, in-order, 128-bit wide SIMD
cores). All of them are connected to the Element In-
terconnect Bus (EIB), that also couples main memory
and I/O devices. The SPEs only access main memory
via DMA transfers by programming their individual
Memory Flow Controllers (MFCs). For each SPE, data

*Corresponding author: Rosa M. Badia, Barcelona Supercom-
puting Center – Centro Nacional de Supercomputación, Build-
ing Nexus II, Jordi Girona 29, 08034 Barcelona, Spain. Tel.: +34
934034075; Fax: +34 934037721; E-mail: rosa.m.badia@bsc.es.

and code reside in its 256 kB Local Store (LS). The
Cell/B.E. basically is a single-chip MIMD.

From here on, the question is not only how efficient
applications perform on such a parallel platform, but
how productive is the source code? In this case, pro-
ductivity means: how many source code lines did we
need to add or alter to convert the application into a
parallel one? To what degree does the parallel code dif-
fer from the sequential version? Can it easily be ported
to other platforms (parallel or not)? To this end, Cell
Superscalar (CellSs [7,37] hereafter) offers a set of
tools that assist in expressing parallel applications on
the Cell/B.E. The CellSs programming model hides the
complexity of a parallel architecture to the program-
mer and enables code written with a sequential execu-
tion model in mind to behave like parallel code at run-
time. As a consequence, porting legacy code or pro-
gramming new applications for a parallel platform be-
comes much easier. It is out of the scope of CellSs to
SIMD’ize the SPE code, although the authors recog-
nize the importance of this step to achieve high perfor-
mance. CellSs relies on the backend compiler for this
purpose, or uses assembly vector code crafted by the
user. The burden of dealing with multiple threads, syn-
chronization and data sharing shifts from the program-

1058-9244/09/$17.00 © 2009 – IOS Press and the authors. All rights reserved

78 P. Bellens et al. / CellSs: Scheduling techniques to better exploit memory hierarchy

Fig. 1. Block diagram of the Cell Broadband Engine.

mer to the CellSs runtime. Hence the implementation
of each of these aspects in the CellSs runtime deter-
mines the quality of the resulting parallel code. CellSs’
programming model is based on annotations (or prag-
mas, as in OpenMP [41]). Similarly to OpenMP ver-
sion 3.0 [5], the pragmas are associated with functions,
or tasks in CellSs terminology. The task is the unit
of parallel work in CellSs. The CellSs runtime gener-
ates a data dependence graph of the tasks while it ex-
ecutes the application. The assignment of tasks to the
various SPEs, or scheduling in short, is one of the as-
pects that determines the quality of the CellSs runtime.
The theoretic properties of task scheduling have been
well-studied, and heuristics try to bridge the gap be-
tween the NP-hard nature of this problem and practical
tractability. When the focus is on a particular architec-
ture or programming model, the scheduling problem
is affected in two ways. On one hand, this additional
constraint makes the scheduling problem easier, since
more information about the hardware, the type of the
tasks, the execution model, . . . becomes available. In
general, the setting for the scheduler gets defined more
sharply, and this knowledge can be incorporated into
the scheduler to increase its efficiency. On the other
hand, the specifics of the runtime can be exploited to
guide the search for useful scheduling heuristics or to
improve the quality of the produced schedules.

This paper outlines a scheduling practice based on
this dual philosophy for CellSs, our programming en-
vironment for the Cell/B.E. (Section 3), and contrasts it
with previous related work (Section 2). Our very gen-
eral scheduling model (Section 4) distinguishes CellSs
from the rest of the literature. We introduce a sim-
ple scheduling algorithm with O(N) time complex-
ity (Section 5) for an N -task dependence graph, and
demonstrate how the features of CellSs and the char-
acteristics of the Cell/B.E. can be exploited in order
to further reduce the makespan and increase the algo-
rithm’s efficiency (Section 6).

This paper contributes to the analysis, design, imple-
mentation and validation of different dynamic schedul-
ing techniques for CellSs. Previous scheduling strate-
gies for CellSs assigned data-independent tasks or
tasks structured as a chain to the same SPE. These
solutions proved to be sensible since they allowed to
benefit from data locality and to reduce the number of
data transfers. However, the algorithm proposed in this
paper demonstrates a possible way to further improve
the schedules produced by CellSs. This new algorithm
is able to schedule more complicated subgraphs and
make better use of the data locality of the applica-
tion. This paper considers a potential extension of the
Cell/B.E. that incorporates a cache memory shared be-
tween the SPEs, to analyze the locality of an applica-
tion. Furthermore, we present SPE-side techniques to
improve the quality of a schedule: early callback, min-
imal stage-out, double buffering and a software cache
implemented in the SPE’s local store. All techniques
have been implemented and this paper documents the
results for several example applications.

2. Background and related work

Given a limited set of resources and a set of tasks
{t1, t2, . . . , tn}, a schedule assigns tasks to resources
and starting times to tasks. Each task has a computa-
tion time or cost, and possibly requires the result of
other tasks. If tj depends on the output of ti, there is
a communication cost for transferring the result of ti
to tj .1 This precedence constraint is expressed through
a binary relation, data dependence. Data dependence
partially orders (‘<’) the task set. ti < tj implies that
ti must finish before tj executes. More accurately, the
computation of tj must not start before all the input
data it requires has arrived. In the case where ti ≮ tj

1This cost decays to zero for tasks located in the same resource.

P. Bellens et al. / CellSs: Scheduling techniques to better exploit memory hierarchy 79

and tj ≮ ti, ti and tj can run in parallel. A valid sched-
ule is a schedule that does not violate the data depen-
dencies among tasks. The objective of scheduling is to
minimize an application parameter, mostly the elapsed
time or makespan. This can be achieved by maximally
exploiting the available parallelism while minimizing
the communication overhead. The concept of granular-
ity [16] quantifies the ratio between task computation
time and task communication time and assists in deter-
mining the quality of the schedules.

Theoretical results indicate that the NP-complete
scheduling problem [11,38] only becomes tractable
when factoring in constraints on the type of the tasks
and the dependencies, and the amount and type of
the available resources or combinations of these. In
particular, the literature on this topic contains three
polynomial-time algorithms for finding exact solutions
(i.e. with minimal makespan) for reductions of the
problem. Each of these references assumes zero com-
munication delays and unit-time tasks, and uses a di-
rected acyclic graph (DAG), the task dependence graph
(TDG), to model the computation. Hu proposes such
an algorithm for free-trees on an arbitrary number
of processors [21]. Coffman and Graham confine the
scheduling problem to a two-processor system, for ar-
bitrary DAGs [12]. Interval graphs for an arbitrary
number of processors have been studied by Papadim-
itriou and Yannakakis [34]. In the absence of the afore-
mentioned limiting assumptions, Yang and Gerasoulis
and others [10,33,43,45] have developed polynomial-
time heuristics that approximate optimal solutions to
varying degrees of success. An overview of algorithms
and techniques for scheduling DAGs can be found
in [25].

The common denominator of the scheduling algo-
rithms mentioned previously is that they are all sta-
tic, in the sense that they require the complete TDG of
the application as an input. When task execution and
communication times, and dependencies are known
a priori, scheduling can be accomplished offline, at
compile-time. Even for the heuristic solutions, a global
overview of the TDG is required. The majority of these
algorithms greedily attempt to reduce the critical path
in the DAG, and in order to do so they require global in-
formation, e.g., the Dominant Sequence Cluster (DSC)
algorithm [43] uses the level of a node to calculate
its priority. Cosnard and Jeannot [13] describe a more
dynamical approach for scheduling DAGs. Scheduling
decisions are made at runtime, using the parametrised
task graph. Their scheduling algorithm decodes the
TDG as needed, but this approach still requires a de-
scription of the complete TDG all the same.

The data-flow graph (DFG) is a different paradigm
to define computations. DFGs are pervasive in the
area of digital signal processing (DSP), where the de-
mand for computational power requires parallel sched-
ules [9,31,35,36]. The DFG inherently is a static de-
scription of the application, in that it needs to be avail-
able prior to the execution of the tasks. Even in areas
that do not rely on graph-theoretic notions to describe
a computation, knowledge of the entire task set is re-
quired before execution starts. For example, real-time
scheduling [3,4,27,29,30,44] minimally assumes that
for each task that will appear in the system, the com-
putation time τ , the period T and the deadline D are
known beforehand.

Dynamic scheduling (as defined in this paper) on the
other hand has limited knowledge of the task set un-
der scrutiny and its governing dependencies. Schedul-
ing is done at runtime, as the computation unfolds and
the task set grows. This approach allows for complex
control flow, since the trivial way to deal with branches
is not to deal with them until they are resolved. This
requires a slightly different scheduling model (see Sec-
tion 4). As opposed to the aforementioned static meth-
ods, only part of the TDG is known at scheduling time.
Dynamical task scheduling, defined as such, bears a
lot of resemblance with instruction scheduling tech-
niques [17,42] or techniques applied in reconfigurable
computing [32].

Scheduling independent tasks on a multiprocessor
system can be performed by dynamic scheduling. Sim-
ilar to the problem faced in CellSs, scheduling deci-
sions must be taken at execution time since only then
the tasks and their parameters are known. In [19,20]
the authors present the family of SADS algorithms
that schedule tasks in a multiprocessor system tak-
ing into account the memory locality (affinity) of the
tasks and the processors. However, the complexity of
the scheduling problem is reduced, since SADS al-
gorithms do not consider data dependences between
tasks. In [28] the authors present WBRT, a passive
scheduling system. It combines static and dynamic
scheduling. Initially, the data and the computations are
distributed among all processors, but dynamic load bal-
ancing reorganizes the computation as needed. WBRT
only migrates tasks when data locality is preserved.

Solutions that tackle dynamic scheduling for mul-
ticore architectures are limited in number. In [8] the
authors present the scheduler used in SuperMatrix,
which is a paradigm that like CellSs considers out of
order execution and scheduling techniques from su-
perscalar processors. SuperMatrix, unlike CellSs, can

80 P. Bellens et al. / CellSs: Scheduling techniques to better exploit memory hierarchy

only be applied to linear algebra matrix operations.
Even though the authors claim to implement dynamic
scheduling, tasks are queued and executed once the full
task dependence graph has been build. Another impor-
tant difference is that SuperMatrix does not support
data renaming, which is applied in CellSs to increase
the graph parallelism.

Cilk [15] and OpenMP 3.0 [5] address task schedul-
ing in a similar fashion, since none of these approaches
uses a task dependence graph, but a list of indepen-
dent tasks instead. For this reason, the scheduling tech-
niques from these environments are not fully applica-
ble to CellSs. The new directives of OpenMP 3.0 allow
the user to identify units of independent work, leaving
the decisions of how and when to execute them to the
runtime system. Traditional OpenMP pragma annota-
tions includes the possibility of describing to the run-
time how iterations of parallel loops are divided among
the threads in the team. However, the standard does not
include any proposal with regard task scheduling in the
tasks’ pragmas.

Both OpenMP and Cilk implement scheduling
strategies that consider the data locality, like Work-first
scheduling in the OpenMP case, or work-stealing for
Cilk. Within the OpenMP community steps have been
made towards the integration of task precedence [18]
and task dependence [14].

3. Cell superscalar

The CellSs environment consists of a library and a
compiler that implement a programming interface for
the Cell/B.E. Basically, it offers an easy way to convert
standard (sequential) C or Fortran into a parallel equiv-
alent. The user adds pragmas to the original code to
mark the functions (or tasks) intended to be executed
in an SPE. At run time, CellSs executes the user code
and internally organizes the parallel execution: it tracks
data dependencies, resolves them and schedules tasks
to the multiple cores.

The main program of a CellSs application runs on
the PPE, together with the CellSs PPE runtime library
that orchestrates the execution and delegates the execu-
tion of tasks to the SPEs. Each time an annotated task
is called a vertex is added to a data dependence graph
and the corresponding detected data dependences be-
tween the new task and the existing ones are added
by means of edges in the graph. This is performed by
the CellSs PPE runtime library, as well as the deci-
sion of what tasks to submit for execution to the avail-

able SPEs. The CellSs SPE runtime library repeats a
three-phase cycle: on task availability, the CellSs PPE
runtime library assigns a bundle (see Section 4) to an
SPE. Then, for each task of the bundle a stage-in phase
brings the tasks arguments to the SPE’s LS and the task
is computed during the execution phase. As the task
finishes, the output arguments are transferred back to
main memory during the stage-out. Finally, a callback
synchronizes the SPE with the PPE by signaling the
completion of the entire bundle. A callback per bundle
reduces the synchronization overhead. The reception
of a callback tells the CellSs PPE runtime library (PPE
runtime hereafter) that the corresponding tasks can be
removed from the TDG and that a free resource or SPE
is awaiting the assignment of new tasks. At that point,
scheduling proceeds on the modified TDG.

As stated previously, the CellSs runtime library is
composed of a PPE and an SPE component. Both have
their importance in the scheduling mechanism. The
PPE library runs two separate threads, one of which
executes the user application: the master thread. This
master thread generates the tasks and takes care of the
data dependence analysis based on the task arguments.
Also, it renames arguments to avoid false dependencies
and defines the task precedence based on the remaining
true dependencies. The tasks and the associated depen-
dence information are visible to the other thread run in
the PPE, the helper thread. In turn, the latter uses this
dependence information to build the TDG for the ap-
plication. As the helper thread disposes of global de-
pendence information, it can perform task scheduling,
and it is in charge of the communication and synchro-
nization with the SPEs through callbacks.

4. Schedule model

Each CellSs task consists of a pair (Fid, Arg). Fid
identifies the function to be executed and Arg is the
sequence of arguments for this particular instance of
Fid. The TDG(V , E) structures the vertex set V , where
each v ∈ V represents a task, according to the edge
set E, where each e ∈ E represents a data dependence
between a pair of tasks (u, v). The directionality of the
edge indicates for each edge e = (u, v) that u is the
source of the data and v the sink. CellSs constructs the
TDG at run time, and at the same time offloads tasks to
workers. This dynamic behavior influences the sched-
ule model in two ways.

Firstly, scheduling necessarily advances in steps.
The CellSs runtime invokes the scheduler more than

P. Bellens et al. / CellSs: Scheduling techniques to better exploit memory hierarchy 81

Fig. 2. Task bundle in the TDG.

once, and each time it assigns sets of tasks B0, B1,
. . . , Bn to corresponding free resources R0, R1,
. . . , Rn. The lack of a complete TDG means that
scheduling advances in bursts. As the program exe-
cutes, the TDG grows, and the scheduler assigns tasks
to SPEs. The scheduler outputs bundles: partial sched-
ules or sequences of tasks to be executed on a specific
SPE (Fig. 2). We want to amortize the scheduling over-
head over multiple tasks instead of on a per-task basis.

Secondly, the TDG at the time of scheduling will
represent only part of the user application. The sched-
uler sees a sequence TDG0, TDG1, TDG2, . . . , TDGm,
where V (TDGi+1) = (V (TDGi) \ Finishi) ∪ Newi,
i = 0, . . . , m, where Finishi is the set of tasks that have
finished between step i and i + 1, and Newi the set of
tasks that have been created, and TDGm+1 the empty
TDG, corresponding to the end of the application when
all tasks have been executed.

CellSs renames task arguments (see [24]) in order to
resolve output and anti-dependencies. An edge (i, j) in
the TDG reflects a true data dependency from task i
to task j. j depends on i, if and only if i writes an
argument that j reads, with i preceding j in program
order. Data dependence naturally leads to the concepts
of input, output and input–output (or inout) arguments.
Given the terminology introduced above, for two tasks
(Fidi, Argi) and (Fidj , Argj): ∃(i, j) ∈ E ⇔ ∃arg ∈
Argi: arg ∈ Argj , arg being an output argument in
Argi and an input argument in Argj .

The weight of a node in a TDG indicates the tasks
execution time and edge weights serve as an indica-
tion for communication cost between the tasks. When
scheduling in CellSs, we assume uniform unit task ex-
ecution times and ignore communication costs. This
is acceptable since DMA transfers on the Cell/B.E.
can be overlapped with computation. Given enough

bus bandwidth and a large task granularity, this asser-
tion effectively holds. We adopt the unit-time task as-
sumption for simplicity, and since the granularity of
the tasks in most CellSs applications tends to be sim-
ilar. The size of the LS limits the size of task argu-
ments, and the vector capacity of the SPEs flattens out
the differences in computational complexity of tasks.
This is a very nice illustration of how knowledge of
the hardware can simplify the scheduling model (see
Section 1).

Task execution adheres to the static macro data-flow
model, as detailed in [38]. Furthermore, scheduling
in CellSs requires only the assignment of tasks to re-
sources (or clustering), which implicitly defines the
start times of the tasks.

5. Scheduling in CellSs

5.1. Design of the scheduler

The particular problem setting for scheduling in
CellSs (Section 4) requires us to rephrase the goal of
makespan minimization. It is not clear how to guide the
search for a global measure such as makespan based on
a partial TDG. However, every schedule that prevents
the occurrence of idle gaps in an SPE trivially approxi-
mates an optimal schedule (Fig. 3). We therefore adopt
idle time exclusion as a design principle in our sched-
uler. The two causes that possibly prevent this strategy
are:

1. The lack of schedulable tasks, or ready tasks:
these are tasks without any outstanding depen-
dencies. This type of starvation can be due to the
characteristics of the user application. The width
of the parallelism can be too small to keep all the
resources busy during the whole execution. Es-
pecially since CellSs only sees part of the TDG,
and therefore only a fraction of the opportunities
for concurrent execution.

2. The inability of the scheduler to keep pace with
the SPEs. Figure 3(a), shows the scheduler un-
able to keep up with the execution in the SPEs.
Blank periods indicate idle time. At the end of
each schedule round, a communication from the
helper thread instructs an SPE to start executing
the bundle that has just been scheduled. As an
SPE finishes the execution of its bundle, it starts
idling, because the scheduler has not yet finished
assigning tasks to the other SPEs.

82 P. Bellens et al. / CellSs: Scheduling techniques to better exploit memory hierarchy

(a) (b)

Fig. 3. A different optimality criterion for scheduling. (a) Idling, (b) no idling.

The latter occurs when the time required to sched-
ule a bundle (scheduleT), multiplied by the number of
SPEs, exceeds the time required to execute the bun-
dles on the SPEs. An important characteristic related
to scheduling is the task execution time or task size.
Larger tasks imply more freedom for the scheduler,
because its complexity clearly does not vary with the
task size, while the allotted scheduling time increases.
Smaller tasks require a higher throughput, hereby forc-
ing the scheduler to finish in a shorter time frame.
The implementation of the scheduler then should be
such that scheduleT is small enough not to cause SPE
idling. Anticipating a small task size and scheduleT,
we avoid backtracking or search techniques. Essen-
tially, each node that the scheduler considers as a
candidate, should be included in the schedule, or re-
jected but not unnecessarily revisited. We amortize the
scheduling latency by pre-scheduling tasks. While an
SPE executes a bundle, the scheduler anticipates the
pending callback and preemptively constructs a new
bundle.

The makespan can further be shortened by compact-
ing the bundle execution time. The main idea here is
to reduce the number of DMA transfers to the local
store, as well as to hide the latency of the remaining
ones. Double buffering successfully achieves the lat-
ter. DMA transfers can be eliminated only if the ob-
jects already reside in the LS. For the scheduler, this
implies that it has to take the temporal locality of the
task arguments into consideration, while the CellSs
SPE runtime library (SPE runtime hereafter) incorpo-
rates a caching mechanism. The SPE-side measures
that reduce the bundle execution time complement the
scheduling algorithm, and are discussed in Section 5.3.

To summarize, the scheduler in CellSs requires a fast
algorithm that operates on a partial TDG and sched-

ules multiple tasks per invocation. Moreover, sched-
uled tasks should have temporal locality. These consid-
erations lead to the linear-time algorithm described in
Section 5.2.

5.2. Scheduling in the PPE runtime

Figure 4 lists our scheduling algorithm. It outputs
a bundle B, which we define as an ordered sequence
of tasks (Fig. 2). When building a bundle B, tasks
are added to the end of the sequence. A bundle can
have maximally Bmax entries. In order to build B,
the scheduler traverses lists of ready tasks, Ri, i =
1, . . . , N . These tasks are the entry nodes of the par-
tial TDG. After adding a ready task t ∈ Ri to B, the
scheduler visits its child nodes and co-parent nodes. If
none can be found, we loop back and restart scheduling
a task from a ready list. The number of outstanding de-
pendencies of a task t, ODep(t) equals the dependency
count of t in the TDG minus the number of t’s parents
in B. A bundle built as such permits to assign tasks
with incoming dependencies at the time of schedul-
ing and increases the number of valid candidates for
scheduling beyond the tasks in the ready lists. Addi-
tionally, tasks found by descending into the graph or
co-parent edges by definition reuse arguments. Lines
8–18 form the loop that descends into the TDG and
adds a sequence of tasks without outstanding depen-
dencies (in agreement with the definition of ODep)
to B. This depth search halts whenever B has reached
size Bmax, or BTemp becomes empty. The predicate
DepthSearch expresses this double condition in Fig. 4.
The main loop, from lines 6–22 repeats until there are
no more ready tasks or B has size Bmax (predicate
ScheduleStop).

A task becomes ready and enters the ready queues
when it has no more incoming edges in the TDG. All

P. Bellens et al. / CellSs: Scheduling techniques to better exploit memory hierarchy 83

1: ready lists Ri, i = 1, . . . , N
2: partial task dependency graph TDG
3: temporary task list Btemp
4: bundle B
5: task set CParents
6:
7: bool ScheduleStop = (|B| = Bmax||∀i: Ri empty)
8: bool DepthSearch = (|B| = Bmax||BTemp empty)
9: while not ScheduleStop do

10: dequeue task t from the head of RM , M = max{i |
0 < i � N and Ri not empty}

11: add t to Btemp
12: while DepthSearch do
13: get task u from the head of Btemp
14: if ODep(u)==0 then
15: add u to B
16: if HasCoParents(u) then
17: CParents = processCoParents(u)
18: add CParents to the front of Btemp
19: else
20: retrieve a successor s from the set of succes-

sors of u in the TDG
21: add s to Btemp
22: end if
23: end if
24: end while
25: end while

Fig. 4. Basic schedule algorithm.

ready tasks are equal, but some ready tasks are pre-
ferred to others: if the descent into the TDG does not
allow to extend the bundle any further, the scheduler
should ideally select the “best” ready task (line 7 of al-
gorithm in Fig. 4). Our scheduler operates on a partial
TDG, and hence we are restricted to a local criterion
for the quality of a ready task. In this context, a good
candidate reuses as much of the objects in the LS or
cache of the SPEs as possible, as argued in Section 5.1.
Hence, we define the quality of a ready task in terms of
the temporal locality of its arguments. To distinguish
among the ready tasks according to their temporal lo-
cality, we use a hierarchy of ready queues (R0 to RN in
Fig. 5). Tasks move up along the hierarchy according
to information that the SPEs send back to the sched-
uler: each SPE runtime constructs an array of local-
ity hints in main memory at runtime (LocHints). The
hints could be related to recently used objects in the
LS, objects that have been transferred back/from main
memory, or combinations of these. Equivalently, each
task in a ready queue has an associated set of objects
that it uses. These are recorded in a global queue in
main memory: ReadyLocs. A fresh ready task t starts
off at ready list R0. In Fig. 5, suppose a task t is in

Fig. 5. Locality feedback mechanism.

ready queue Ri. t uses an object X for its computation,
so an identifier for X is recorded in ReadyLocs. If an
SPE executes a task that causes object X to enter the
memory hierarchy, the SPE records the temporal lo-
cality by entering the identifier for X in its associated
LocHints. For SPEi, X enters LocHintsi (step (1) in
Fig. 5). Each time the scheduling infrastructure detects
a match between an entry in ReadyLocs and an entry in
a LocHints queue, the corresponding task is upgraded
in the ready queue hierarchy. In Fig. 5, the match is de-
tected at step (2), after which step (3) bumps the asso-
ciated task t from ready queue Ri to ready queue Ri+1.
The traversing and matching of these data structures
can be performed out of the critical path of the schedul-
ing algorithm, at the cost of losing accuracy (e.g. while
awaiting callbacks).

The concept of “co-parent tasks” improves the
search for tasks with no outstanding dependences
and stimulates argument reuse. In particular, this sim-
ple extension allows the scheduler to recognize join-
subgraphs as in Fig. 6(b). Straightforward descent into
the TDG has problems finding eligible tasks for all but
the simplest TDGs. In Fig. 6(a), the scheduler would
not be able to schedule task 9 after scheduling task 1,
since its parent task 2 would likely not have been found
first. Here, tasks 1 and 2 are co-parents of 9. To solve
this shortcoming, our runtime adds “co-parent edges”
between tasks that share a child (Fig. 6(b)), so that a
child will not be scheduled before all his co-parents. At
scheduling time, the call to processCoParents returns
a set of tasks. Suppose tasks u and y are co-parents
of a task z, i.e. there is a co-parent triple (u, y, z) and
u is a candidate for scheduling. If y has already been
scheduled, then z ∈ CParents and u, y /∈ CParents,
else y ∈ CParents and u, z /∈ CParents (Fig. 7).

84 P. Bellens et al. / CellSs: Scheduling techniques to better exploit memory hierarchy

(a) (b)

Fig. 6. TDGs for a hierarchical reduction. Tasks are labeled according to the order in which they are generated, or equivalently, the sequential
program order. Co-parent edges are labeled with the label of the task that generated the co-parent relation. (a) Basic TDG, (b) TDG after
identifying co-parents.

1: task u
2: task set CParents
3: for all coparent − triple(u, y, z) do
4: if scheduled(y) then
5: add z to CParents
6: else
7: add y to CParents
8: end if
9: end for

Fig. 7. processCoParents(u) of algorithm in Fig. 4.

5.3. Scheduling assistance in the CellSs SPE runtime
library

The SPE runtime complements the PPE runtime
scheduling algorithm with a few performance-enhanc-
ing techniques, including double buffering. Part of
their interest lies in the relative independence from the
PPE runtime, the scheduler in particular. The major-
ity of these techniques try to decrease the bundle ex-
ecution time by overlapping or bypassing phases in
the SPE runtime cycle (see Section 3). The scheduling
strategy proposed in this paper defines the makespan
of the application as the maximum over all SPEs of the
sum of the execution times for all the bundles (plus the
time spent in the PPE), barring idle time. A reduction
of the bundle execution time then equally shortens the
makespan.

5.3.1. Early callback
The placement of the callback at the very end of a

bundle sometimes delays the discovery of ready tasks.
For example, in Fig. 8(a), the sooner the PPE run-
time receives the confirmation that task A has finished,
the better. The end of this task opens up parallelism
for this application. The earlier the scheduler can ac-
cess this region, the better the quality of the following
schedules, and the better the performance. Therefore,
for this type of bottleneck tasks, CellSs performs an
early callback. In general, this situation arises when-
ever a task has more than one outgoing dependency.
When scheduling task A, the algorithm in Fig. 4 al-
ready queries the children of A in the TDG, so de-
tecting whether this improvement applies at scheduling
time essentially is free of cost.

5.3.2. Minimal stage-out
In the final stage of the three-part task cycle in

the SPE runtime (Section 3), the output arguments of
a task are transferred to main memory. Under cer-
tain circumstances, this stage-out can be avoided with-
out changing the program semantics. Given an argu-
ment A, if another task in the bundle overwrites A, and
it can be proven that no other SPE requires the current
value of A, A does not have to be copied to main mem-
ory. Again, this strategy does not need the participation
of the PPE runtime, and can be implemented without
complicating the scheduler.

P. Bellens et al. / CellSs: Scheduling techniques to better exploit memory hierarchy 85

(a) (b)

Fig. 8. SPE-side techniques for reducing the makespan. (a) Sample graph for early callback, (b) stage-out reduction.

5.3.3. Caching
Each SPE runtime maintains a software cache popu-

lated with task arguments inside the local store. It uses
a LRU replacement strategy, and the decision of which
type of argument to cache (in, out or inout) is config-
urable. The scheduler in the PPE runtime library is un-
aware of this behavior of the SPEs. As such, the sched-
uler does not take argument reuse into account when
assigning tasks to an SPE. Rather, it is the SPE runtime
that tries to exploit the locality that inherently presents
itself in the task bundle. This relieves the PPE runtime
from keeping track of the location of arguments in the
SPE, or from doing expensive lookahead to determine
at scheduling time which arguments should be cached.
The software cache identifies each object with its main
memory address and a version number. At stage-in,
a hit in the software cache avoid a DMA transfer from
main memory to the local store. A miss makes the ob-
ject eligible to be cached itself. Our distributed soft-
ware cache resembles the one in [6], but with variable-
sized objects as units instead of cache lines.

5.3.4. Double buffering
This well-known technique has been thoroughly de-

scribed and illustrated [23]. In an SPE, CellSs overlaps
DMA transfers with computation and uses a software
pipeline for iterating over the sequence of tasks in a
bundle (Fig. 9). The stage-in phase has been separated
into a part that starts the asynchronous DMA transfer,
and a part that waits for the transfer to end (the tail
and the head of the arrows in Fig. 9, respectively). The
dark areas mark the parts where the SPE waits on an
asynchronous DMA operation. Blank areas are stage-
in phases, barred areas indicate the stage-out phases,
grey areas task execution. The depicted stage-in and

stage-out phases represent the start of the asynchro-
nous DMA transfers.

6. Experiments

All measurements were conducted with a prototype
of CellSs on a Cell blade at the Barcelona Supercom-
puting Center and the presented numbers average fifty
executions. For each instance we ran the application
with a different set of parameters for our scheduler, and
the TDGs were unrolled 1–10% before starting execu-
tion. The results in Section 6.2 have been obtained with
CellSs 1.4 and a prototype of the locality scheduler.
We present results for the following applications:

matmul: A blocked matrix multiplication, implemen-
ted with the kernel from the Cell SDK.

sparselu: A blocked LU decomposition, that com-
putes L and U and checks if A = L × U up to a
certain accuracy.

choleskyC: A blocked Cholesky factorization. The
TDG for a small execution is depicted
in Fig. 10(b). The matrix is traversed by columns
to perform the factorization.

choleskyR: A blocked Cholesky factorization, but
here the matrix is traversed by rows. This algo-
rithm is slightly different from choleskyC.

reduct: This is a symmetric, hierarchical reduction of
an array. The array is divided into vectors, and
the vectors are combined according to the pat-
tern in Fig. 6(a) to compute the reduction.

fft3d: A 3D-FFT of a cube of complex numbers, com-
puted as a series of FFTs and transposes of the
various planes [39,40].

86 P. Bellens et al. / CellSs: Scheduling techniques to better exploit memory hierarchy

Fig. 9. A software-pipelined execution in the SPE.

(a) (b)

Fig. 10. (a) Block diagram of the architecture, (b) TDG for choleskyC for an 8 × 8 float matrix of 64 × 64 blocks. Different task types have
different colors.

The source code for these applications can be down-
loaded from our website. Unless mentioned other-
wise, the default block size is 64 × 64 (BS = 64).
For matmul and sparselu the input matrices con-
sist of 32 × 32 blocks (NB = 32). For choleskyC
and choleskyR, the input matrices were scaled to
48 × 48 blocks (NB = 48). reduct reduces an array
of 16384 × 4096 elements and each vector consists of
4096 elements (NV = 16384, VS = 4096). These di-
mensions were chosen in order to roughly generate the
same number of memory accesses for each applica-
tion. The cube in fft3d contains 256 × 256 × 256 ele-
ments (CS = 256). The FFTs are performed on slices
of 256 × 32 elements (BS = 32), and the transpositions
on blocks of 64 × 64 elements (BS_TRS = 64).

To reflect the productivity factor of the CellSs
programming model mentioned in the Introduction,
Table 1 indicates the number of lines added to each of
the codes mentioned above to convert them from pure
sequential to CellSs applications. Most of these lines
are pragma annotations that have been added and that
will be ignored when compiling for a sequential ar-
chitecture. Therefore, is not only that there are a few

Table 1

Productivity of CellSs in the application cases

Application # Original lines # Added lines

matmul 262 4

sparselu 560 14

choleskyC 190 6

choleskyR 489 8

reduct 142 5

fft3D 349 18

changes added, but that the code keeps very similar to
the original one.

To analyze the temporal locality of these bench-
marks under CellSs, we used DMAsim, a memory
simulator, that simulates an extension of the Cell/B.E.
memory model (Fig. 10(a)): we assume the presence
of an SL1-cache as described in [22]. Additionally, an
SPE manages its own software cache (Section 5.3.3).
Both caches use a LRU replacement strategy and are
fully associative. With this setup, the presence of tem-
poral locality can be quantified by the amount of reuse
in the software cache and the SL1. The reuse in the
software cache is measured by the number of cache
hits. Reuse in the SL1 is measured by a dual figure,

P. Bellens et al. / CellSs: Scheduling techniques to better exploit memory hierarchy 87

namely the amount of accesses to main memory. As
the application succeeds in reusing objects from the
SL1-cache, the number of main memory accesses de-
creases.

An application under CellSs potentially benefits
from an improved temporal locality of task arguments
(Section 5.2). This section omits performance results
that prove that our locality scheduler is able to con-
vert the gain in temporal locality into a reduction of
the makespan. A gain in locality translates into an
improvement in performance through a severe reduc-
tion in DMA transfers from and to main memory. But
the improved locality will only become manifest in
the presence of a hardware cache, which the Cell/B.E.
lacks, although it has been proposed as a future ex-
tension to the architecture. A larger LS or the use of
shortcircuiting (see Section 8) are alternatives that im-
prove the execution time via good temporal locality.
Therefore we would like to stress that the following
experiments aim to demonstrate CellSs’ ability to ex-
tract temporal locality by reordering tasks. The impact
of such a locality scheduler on the execution time and
performance is left as future work. Consequently, the
measurements in Section 6.3 are expressed in units of
memory accesses per execution instead of GFlops. The
experiments in Section 6.2 on the other hand evaluate
the worker-side techniques that help to reduce the bun-
dle execution time (Section 5.2). In this case the choice
for GFlops as a unit of measure is perfectly appropri-
ate.

To summarize, Section 6.2 analyses the effect of the
SPE-side techniques on the execution time of a CellSs
application. Section 6.3 quantifies our major interest:
whether the scheduler proposed in Section 5 succeeds
in bringing out the temporal locality of an application.
Sections 6.5 and 6.6 briefly introduce the extension to
multiple SPEs and the importance of the block size re-
spectively.

6.1. DMAsim

Figure 11 shows the structure of DMAsim for 2 clus-
ters. DMAsim can simulate the DMA traffic generated
by the SPEs of a Cell/B.E. compliant processor [23].
DMAsim is driven by a trace of an application’s DMA
operations. Each DMA operation is identified by the
SPE it originates from, the starting time, the address,
the size (in bytes) and type (get or put).

The traces used as input to DMAsim in this paper
have been obtained from the Paraver [26] trace that is
generated by an instrumented CellSs application.

Fig. 11. Simulator structure.

The MFC of an SPE divides the DMA operations in
blocks of 128 bytes [1] to be transferred through the
Cell EIB to their destiny. Since DMAsim is concerned
only with the DMA operations that originate on the
SPEs and go to the main memory, the EIB was replaced
by a single-ring bus that can transfer one 128-byte
package each 5 ns (the clock cycle of DMAsim). This
gives a maximum bandwidth of 25.6 GB/s bandwidth
for the bus and the SPEs in each direction.

The main objective of DMAsim is to analyze the
data impact on the cache, shared between the SPEs,
and on the traffic that goes to main memory.

The simulator reads the DMA trace and assigns each
entry to its corresponding SPE. The SPE divides the
DMA in 128-byte packages. Each cycle the bus passes
a token and allows one SPE to send a package from
an active DMA to the cache in a round-robbin fashion.
For more than one cluster, the bus that connects the
caches, uses a priority token to select the cluster that
has access to memory. A DMA is considered active if
the internal simulator time is greater or equal to time
recorded in a DMA trace entry. It is possible that one
SPE has more than one active DMA, in this case the
SPE would always choose packages from the oldest
active DMA.

Each selected package from the bus is sent to the
cache. The cache simulates the hits and misses, and
models the traffic to main memory (no miss infor-
mation/status handling registers (MSHR) or latency
are considered). The traffic generated by the cache is
passed to main memory, which simulates the page hits
and misses in the cache. The cache can be configured
with any number of banks, page size, and interleaving
strategy.

6.2. Scalability and worker-side techniques

We quantify the impact of the SPE-side techniques
that assist the scheduler described in Section 5.3:

88 P. Bellens et al. / CellSs: Scheduling techniques to better exploit memory hierarchy

(a) (b)

Fig. 12. Reducing the makespan using SPE-side techniques. (a) Cholesky, (b) matmul.

minimal stage-out (mso), early callback (ec), caching
(cache), and double buffering (db). We selected two
benchmarks from our experimental test set and incre-
mentally enabled each of the mechanisms. As can be
observed from Fig. 12, for both choleskyC and matmul,
these techniques reduce the execution time of the ap-
plication, so the performance improves.2 The TDG of
matmul consists of tasks with no or one single incom-
ing edge, because of the inout argument that accumu-
lates the result for a block. It follows that no benefit
can be achieved from early callbacks for this particu-
lar application. The rest of the worker-side techniques
improve the makespan of matmul (Fig. 12(b)). With-
out these optimizations, the need for bus bandwidth is
higher, and each additional SPE adds to the bus con-
tention and further slows down the execution and hurts
the speedup. With all optimizations enabled, matmul
scales perfectly up till 4 workers. The speedup is 4 for
4 workers, and steadily declines for an increasing num-
ber of workers, with a speedup of 7.2 for 8 workers. For
choleskyC, the TDG no longer is trivial (Fig. 10(b)).
The speedup for choleskyC is 7.8 for 8 workers.

6.3. Locality exploitation

We are interested in the temporal locality our sched-
uler is able to detect or generate. For that purpose, we
compare the number of memory accesses generated by
executions with the locality scheduler with the behav-
ior of the application under a naive scheduler. A naive

2The matrix size for choleskyC in this case is 2048 × 2048. For a
size of 4096 × 4096 CellSs achieves up to 125 GFlops.

scheduler assigns tasks according to the sequential pro-
gram order. We want to qualify how the memory ac-
cess pattern generated by the locality scheduler differs
from the access pattern according to program order.
In this section we execute the application on a single
SPE. This eliminates noise caused by the interaction
between the DMA transfers of the various SPEs. First
we want to evaluate whether the locality scheduler is
able to improve the temporal locality. The interaction
with more than one SPE is only secondary.

For matmul, except for a cache size of 2048 kB
(see Fig. 13(a)), the access pattern to main memory
has been significantly improved. Especially for a cache
size of 8192 kB the locality scheduler succeeds in im-
proving the temporal locality. Here, the accesses to
main memory have been reduced by more than 50%.
As can be seen from Fig. 13(b), this increase in tempo-
ral locality in the SL1-cache comes at the expense of
a decreased hit rate in the software cache. For a block
size of 64×64, the amount of hits in the software cache
is lower for the locality scheduler than for the naive
scheduler, but the number of accesses to main memory
decreases nevertheless because of good locality in the
SL1-cache. For smaller block sizes, the locality sched-
uler does a better job than the naive scheduler at utiliz-
ing the software cache.

In the case of sparselu, the analysis is slightly dif-
ferent (Fig. 14). For all block sizes, the locality sched-
uler makes better use of the software cache compared
to the naive scheduler. For all sizes of the SL1-cache,
this results in an improvement of the temporal locality.
The locality scheduler gains a 5 − 15% improvement in

P. Bellens et al. / CellSs: Scheduling techniques to better exploit memory hierarchy 89

(a) (b)

Fig. 13. Temporal locality for matmul. (a) Locality in the SL1-cache for matmul, (b) locality in the software cache for matmul.

(a) (b)

Fig. 14. Temporal locality for sparselu. (a) Locality in the SL1-cache for sparselu, (b) locality in the software cache for sparselu.

memory accesses for this application for an SL1-cache
size between 512 and 8192 kB.

Both choleskyC and choleskyR exhibit a better soft-
ware cache usage for the locality scheduler. For smaller
block sizes, choleskyC maximally achieves a 55% in-
crease in the software cache hit ratio. The hit ratio im-
provement tops off at 16% for a block size of 64 × 64
(Fig. 15(b)). For this largest of block sizes, the local-
ity scheduler improves the accesses to the SL1-cache
with 25% for a cache size of 512 kB, and from there
on steadily converges with the naive scheduler, with
an outlier at a cache size of 2048 kB (Fig. 15(a)).
choleskyR does not improve its software cache ac-

cesses to the same extent as choleskyC: for a block
size of 64 × 64 the number of hits increases by 15%
(Fig. 16(b)). Nevertheless, the improvement of the
temporal locality due to the locality scheduler results
in a 10–30% decrease in accesses to main memory for
an SL1-cache size of 2048 and 8192 kB, respectively
(Fig. 16(a)).

The original source code for reduct is a generic,
straightforward implementation of the algorithm. It is
a sequential implementation, written without consid-
ering the memory hierarchy, parallelism or scheduling
issues. We simply added a pragma to the function that
does the vector reduction, to indicate the CellSs task.

90 P. Bellens et al. / CellSs: Scheduling techniques to better exploit memory hierarchy

(a) (b)

Fig. 15. Temporal locality for choleskyC. (a) Locality in the SL1-cache for choleskyC, (b) locality in the software cache for choleskyC.

(a) (b)

Fig. 16. Temporal locality for choleskyR. (a) Locality in the SL1-cache for choleskyR, (b) locality in the software cache for choleskyR.

This reduces the number of main memory accesses by
60% on average, and the application makes much bet-
ter use of the software cache (Fig. 17).

For fft3d, the results are comparable to reduct, al-
though less outspoken (Fig. 18). The number of main
memory accesses decreases by 6–7%. The locality
scheduler makes better use of the software cache as
well, but since the task arguments have non-uniform
sizes, it is hard to calculate the exact number of hits.

6.4. Locality with software cache disabled

We found that the same simulations and measure-
ments with the software cache disabled delivered no

different results. Figure 19 compares an execution of
choleskyC without software cache with an execution
with a software cache for the case of the locality sched-
uler. Neither is there a difference for the number of
main memory accesses for the same experiment but
with the naive scheduler. The software cache is repli-
cated in the SL1-cache, so the number of main mem-
ory accesses is the same regardless of the presence of
a software cache. The advantage of a software cache
hit is the immediate availability of the object (in that
sense the software cache functions as a higher level in
the memory hierarchy for an SPE) and the reduction of
MFC traffic.

P. Bellens et al. / CellSs: Scheduling techniques to better exploit memory hierarchy 91

(a) (b)

Fig. 17. Temporal locality for reduct. (a) Locality in the SL1-cache for reduct, (b) locality in the software cache for reduct.

Fig. 18. Locality in the SL1-cache for fft3d.

6.5. Extension to multiple SPEs

In this section, an “access” is a transfer operation
from/to the SPE. As such, an access can be satisfied
by the SL1-cache or by main memory. A “memory ac-
cess” is an access that goes to main memory (because
it misses in the SL1-cache). Depending on the use of
the SL1-cache, the number of main memory accesses
can increase or decrease with the number of SPEs. The
“working set” is the union of all the objects that have
been used recently and still carry reuse, and the objects
that reside in the SL1-cache. Ideally, both sets involved
in the union coincide.

A naive scheduler for multiple SPEs can be con-
structed by sending a ready task to an SPE in a round-

Fig. 19. Locality in the SL1-cache for choleskyC, with and without
software cache.

robin fashion, and waiting for the callback before ad-
vancing the next task. Incidentally, such a scheduler
would generate, independently of the number of SPEs,
exactly the same memory accesses as the naive sched-
uler for a single SPE, so we can compare with the re-
sults from Section 6.3 here.

For more than one SPE, the feedback of locality in-
formation to the scheduler suffers an additional de-
lay. An execution with a single SPE as in Sections
6.4 and 6.3 executes a tight cycle in which a bundle
is scheduled and the locality information is fed back.
In contrast, with e.g. 2 SPEs, when the scheduler con-
structs a bundle for SPE 1, it is very likely that SPE 2
in the meanwhile is processing a bundle of its own.

92 P. Bellens et al. / CellSs: Scheduling techniques to better exploit memory hierarchy

(a) (b)

Fig. 20. Temporal locality for choleskyC and sparselu with more than one SPE. (a) Locality in the SL1-cache for choleskyC with more than one
SPE, (b) locality in the SL1-cache for sparselu with more than one SPE.

Therefore only partial locality information for this bun-
dle will have been flushed to the PPE runtime, and the
schedule for SPE 1 will consider only part of the actual
working set. Furthermore, unless the computation can
be restructured to have good temporal locality, more
SPEs simply imply a larger working set. These obser-
vations suggest that the hit rate for a small cache will
inevitably decrease as the number of SPEs increases.
The best one can hope for is that the scheduler man-
ages to detect enough reuse to benefit from larger cache
sizes.

Figure 20(a) confirms this tendency for choleskyC.
Even for cache sizes larger than 1024 kB an increase in
the memory accesses accompanies the increasing num-
ber of SPEs, except for the case of 8 SPEs. For 8 SPEs,
an interesting phenomenon occurs. The reuse of ob-
jects in the SL1-cache is far better, more accesses hit
in the cache and reduce the number of main memory
accesses for larger cache sizes. For less than 8 SPEs,
the reuse is worse than compared to a single SPE, and
the number of accesses to main memory increases. For
sparselu, the conclusion for smaller cache sizes is con-
firmed (Fig. 20(b)), although the locality improvement
as observed for choleskyC for larger cache sizes is not
present here. Despite the slight increase in memory ac-
cesses, the locality scheduler still manages to improve
on a naive scheduler by almost 8% for cache sizes be-
tween 2048 and 8192 kB. For choleskyC and a cache
size of 2048 kB, the locality scheduler closes the gap
with the naive scheduler, compared to Fig. 15(a).

Finally, a naive scheduler by definition only includes
ready tasks in its schedules, and thus is bound by the

width of parallelism of the application, while the lo-
cality scheduler is better at finding schedulable tasks.
Locality is only one side of the picture, and although it
is very interesting to reduce the number of main mem-
ory accesses, the requirement to keep all the SPEs from
idling should not be ignored.

6.6. Impact of the block size

The SPEs are vector processors. Conceptually,
a computation inside an SPE repeatedly maps data sets
to vector registers (via vector loads and stores) and per-
forms vector operations. The size of those data sets,
or the block size, together with the time complexity of
the code, determines the execution time. The larger the
time spent in a computation, the more opportunity to
overlap computation and communication. Due to the
small size of the LS in the Cell/B.E., it is the com-
munication (and not the computation) that bottlenecks
the execution, and a larger block size and thus a larger
LS are preferable. There is another argument in favor
of expanding the LS. Because of the characteristics of
an SPE, main memory tends to be accessed in blocks,
rather than in non-adjacent cachelines. This results in
relatively more cache hits as the block size grows (for
example, for choleskyR in Fig. 21(b)) as long as the
SL1-cache is large enough so that the capacity misses
for larger block sizes are compensated by the increase
in hits. In Fig. 21(a), we see the same relative increase
in cache hits for choleskyC. Note that the point for
which the locality scheduler performs worse than the
naive scheduler moves from x = 1024 for BS = 48 to
x = 2048 for BS = 64 to x = 4096 for BS = 96.

P. Bellens et al. / CellSs: Scheduling techniques to better exploit memory hierarchy 93

(a) (b)

Fig. 21. Temporal locality for choleskyC and choleskyR with varying block size. (a) Locality in the SL1-cache for choleskyC, (b) locality in the
SL1-cache for choleskyR.

7. Conclusion

We have presented a linear-time scheduling algo-
rithm for the Cell/B.E. that schedules bundles of tasks
and is dynamical in the strong sense: it schedules tasks
at runtime and is able to operate on a partial task
dependence graph. The latter characteristic increases
the complexity of the scheduling problem to the point
where we cannot make claims about the makespan of
an application anymore. Instead, we have opted for a
design that avoids idling of the SPEs, while simulta-
neously trying to reduce the task execution time of
these SPEs. A very lightweight scheduler tries to keep
pace with the SPEs and reorganizes the TDG to de-
tect temporal locality. Our measurements and simula-
tions point out that a simple feedback mechanism, to-
gether with an equally straightforward graph transfor-
mation, have the potential to significantly increase the
temporal locality of an application on the Cell/B.E.
platform. The SPEs benefit from the temporal local-
ity of the scheduled tasks, and succeed in reducing the
makespan of the application. This software is available
for download at: http://www.bsc.es/cellsuperscalar.

8. Future work

Our current efforts focus on reducing the overhead
of the scheduler. As demonstrated in Section 6, we are
able to extract temporal locality from an application.
But the lack of optimized code for the scheduler cur-
rently causes this improvement not to carry through to

the application execution time. We hope to solve this
issue by hand-crafting optimized PowerPC code for the
scheduler, reducing the contention between the PPE
threads, and using light-weight data structures wher-
ever possible.

Furthermore, we are implementing a lazy renam-
ing policy, that detects temporary renamings, and pre-
vents stale buffers to be copied from and back to main
memory. On the SPE-side, short-circuiting can be used
to reduce main memory accesses. Short-circuiting at-
tempts to keep the task arguments in the LS as long
as possible or necessary. An SPE then tries to fetch
its arguments from the other SPE’s stores, instead of
from main memory. Ideally, arguments will no longer
be copied back to main memory, unless the program
semantics require so.

We are also looking at a method to analyze and
further understand the impact of the feedback mecha-
nism and co-parent edges on the temporal locality of a
CellSs execution. These simple ideas look promising,
but from the locality experiments in Section 6 we can
see there is still room for improvement. It would also
be interesting to evaluate the effect of both separately.

Acknowledgment

The authors acknowledge the financial support
of the Commission Interministerial de Ciencia y Tec-
nologa (CICYT, Contract TIN2007-60625), the BSC-
IBM MareIncognito research agreement and the Pro-
gramme AlBan, the European Union Programme of

94 P. Bellens et al. / CellSs: Scheduling techniques to better exploit memory hierarchy

High Level Scholarships for Latin America, scholar-
ship No. E05D058240CO.

References

[1] T.W. Ainsworth and T.M. Pinkston, On characterizing per-
formance of the Cell Broadband Engine element interconnect
bus, in: Proceedings of the First International Symposium on
Networks-on-Chip, Princeton, NJ, 2007.

[2] K. Asanovic, R. Bodik, B.C. Catanzaro, J.J. Gebis, P. Hus-
bands, K. Keutzer, D.A. Patterson et al., The landscape of par-
allel computing research: A view from Berkeley, Technical
Report EECS-2006-183, University of California at Berkeley,
2006.

[3] N.C. Audsley, Deadline monotonic scheduling, Technical Re-
port YCS 146, Department of Computer Science, University of
York, October 1990.

[4] N.C. Audsley, Optimal priority assignment and feasibility of
static priority tasks with arbitrary start times, Technical report,
Department of Computer Science, University of York, 1991.

[5] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin and
G. Zhang, A proposal for task parallelism in OpenMP, in:
Proceedings of the 3rd International Workshop on OpenMP,
Reims, France, June 2006.

[6] J. Balart, M. Gonzalez, X. Martorell, E. Ayguade, Z. Sura,
T. Chen, T. Zhang and K. O’brien, A novel asynchronous soft-
ware cache implementation for the Cell-BE processor, in: Pro-
ceedings of the Workshop on Languages and Compilers for
Parallel Computing, Urbana, IL, 2007.

[7] P. Bellens, J.M. Perez, R.M. Badia and J. Labarta, CellSs:
A programming model for the Cell BE architecture, in: Pro-
ceedings of the ACM/IEEE SC 2006 Conference, Tampa, FL,
November 2006.

[8] E. Chan, E.S. Quintana-Orti, G. Quintana-Orti and R. van de
Geijn, Supermatrix out-of-order scheduling of matrix opera-
tions for SMP and multi-core architectures, in: Proceedings of
the 19th Annual ACM symposium on Parallel Algorithms and
Architectures, San Diego, CA, 2007, pp. 116–125.

[9] L.F. Chao and E. Sha, Scheduling data-flow graphs via retiming
and unfoloding, IEEE Transactions on Parallel and Distributed
Systems 8(12) (1997), 1259–1267.

[10] H. Chen, B. Shirazi and J. Marquis, Performance evaluation of
a novel scheduling method: Linear clustering with task dupli-
cation, in: Proceedings of the 2nd International Conference on
Parallel and Distributed Systems, Taiwan, December 1993.

[11] P. Chretienne, Task scheduling over distributed memory ma-
chines, in: Proceedings of the International Workshop on Par-
allel and Distributed Algorithms, Chateau De Bonas, Gers,
France, 1989.

[12] E. Coffman and R. Graham, Optimal scheduling for two-
processor systems, Acta Informatica 1 (1972), 200–213.

[13] M. Cosnard and E. Jeannot, Compact DAG representation and
its dynamic scheduling, Journal of Parallel and Distributed
Computing 58(3) (1999), 487–514.

[14] A. Duran, J.M. Perez, E. Ayguade, R.M. Badia and J. Labarta,
Extending the OpenMP tasking model to allow dependent
tasks, in: Proceedings of the 4th International Workshop on
OpenMP, Purdue University, West Lafayette, IN, 2008.

[15] M. Frigo, C.E. Leiserson and K.H. Randall, The implementa-
tion of the Cilk-5 multithreaded language, SIGPLAN Notices
33(5) (1998), 212–223.

[16] A. Gerasoulis and T. Yang, On the granularity and clustering
of directed acyclic task graphs, IEEE Transactions on Parallel
and Distributed Systems 4(6) (1993), 686–701.

[17] P.B. Gibbons and S. Muchnick, Efficient instruction scheduling
for a pipelined architecture, in: Proceedings of the SIGPLAN
Symposium on Compiler construction, Palo Alto, CA, 1986.

[18] M. Gonzalez, E. Ayguadé, X. Martorell and J. Labarta, Exploit-
ing pipelined executions in OpenMP, in: Proceedings of the
32nd Annual International Conference on Parallel Processing,
Kaohsiung, Taiwan, October 2003, pp. 153–160.

[19] B. Hamidzadeh, L.Y. Kit and D.J. Lilja, Dynamic task schedul-
ing using online optimization, IEEE Transactions on Parallel
and Distributed Systems 11(11) (2000), 1151–1163.

[20] B. Hamidzadeh and D.J. Lilja, Dynamic scheduling strate-
gies for shared-memory multiprocessors, in: Proceedings of the
International Conference on Distributed Computing Systems,
Hong-Kong, 1996.

[21] T. Hu, Parallel sequencing and assemby line problems, Opera-
tion Research 9 (1961), 841–848.

[22] IBM, Cell Broadband Engine Architecture, version 1.02, IBM
Technical Document.

[23] IBM, Cell Broadband Engine Programming Handbook, ver-
sion 1.1, International Business Machines Corporation, Sony
Computer Entertainment Incorporated, Toshiba Corporation,
2007.

[24] D.J. Kuck, R.H. Kuhn, D.A. Padua, B. Leasure and M. Wolfe,
Dependence graphs and compiler optimizations, in: Proceed-
ings of the 8th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, Williamsburg, VA, 1981,
pp. 207–218.

[25] Y. Kwok and I. Ahmad, Static scheduling algorithms for allo-
cating directed task graphs to multiprocessors, ACM Comput-
ing Surveys 9(4) (1999), 406–471.

[26] J. Labarta, S. Girona, V. Pillet, T. Cortes and L. Gregoris, DiP:
A parallel program development environment, in: Proceedings
of the 2nd International EuroPar Conference (EuroPar’96),
Lyon, France, 1996.

[27] C. Liu and J. Layland, Scheduling algorithms for multipro-
gramming in a hard real-time environment, Journal of the ACM
20(1) (1973), 46–61.

[28] P. Liu, J.-J. Wu and C.-H. Yang, Locality-preserving dynamic
load balancing for data-parallel applications on distributed-
memory multiprocessors, Journal of Information Science and
Engineering 18(6) (2002), 1037–1048.

[29] G. Manimaran and C.S.R. Murthy, An efficient dynamic
scheduling algorithm for multiprocessor real-time systems,
IEEE Transactions on Parallel and Distributed Systems 9(3)
(1998), 312–319.

[30] R.R. Muntz and E.G. Coffman, Preemptive scheduling of real-
time tasks on multiprocessor systems, Journal of the ACM
17(2) (1970), 324–338.

[31] P.K. Murthy and E. Lee, On the optimal blocking factor
for blocked, non-overlapped schedules, Memo No. UCB/ERL
M94/46, Electronics Research Lab., University of California,
Berkeley, CA, 1994.

P. Bellens et al. / CellSs: Scheduling techniques to better exploit memory hierarchy 95

[32] J. Noguera and R.M. Badia, Dynamic run-time HW/SW
scheduling techniques for reconfigurable architectures, in: Pro-
ceedings of the Tenth International Symposium on Hard-
ware/Software Codesign, Estes Park, CO, 2002.

[33] M.A. Palis and J. Liou, Task clustering and scheduling for dis-
tributed memory parallel architectures, IEEE Transactions on
Parallel and Distributed Systems 7(1) (1996), 46–55.

[34] C. Papadimitriou and M. Yannakakis, Scheduling interval-
ordered tasks, SIAM Journal of Computing 8(3) (1979), 405–
409.

[35] K. Parhi and L. Lucke, Data-flow transformations for critical
path time reduction in high-level DSP synthesis, IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
System 12(7) (1993), 1063–1068.

[36] K. Parhi and D. Messerschmitt, Static rate-optimal scheduling
of iterative data-flow programs via optimum unfolding, IEEE
Transactions on Computers 40(2) (1991), 178–195.

[37] J.M. Perez, P. Bellens, R.M. Badia and J. Labarta, CellSs: Pro-
gramming the Cell/B.E. made easier, IBM Journal of R&D
51(5) (2007), 593–604.

[38] V. Sarkar, Partitioning and Scheduling Parallel Programs for
Execution on Multiprocessors, MIT Press, Cambridge, MA,
USA, 1989.

[39] H. Servat, C. Gonzalez-Alvarez, X. Aguilar, D. Cabrera-
Benitez and D. Jimenez-Gonzalez, Drug design on the Cell

Broadband Engine, in: Proceedings of the 16th International
Conference on Parallel Architecture and Compilation Tech-
niques, Brasov, Romania, 2007.

[40] H. Servat, C. Gonzalez-Alvarez, X. Aguilar, D. Cabrera-
Benitez and D. Jimenez-Gonzalez, Drug design issues on the
Cell BE, in: Proceedings of the International Conference on
High Performance and Embedded Architectures and Compil-
ers, Paphos, Cyprus, 2008.

[41] The community of OpenMP users, researchers, tool developers
and provider website, http://www.compunity.org/.

[42] R.M. Tomasulo, An efficient algorithm for exploiting multiple
arithmetic units, IBM Journal of Research and Development
11(1) (1967), 25–33.

[43] T. Yang and A. Gerasoulis, A fast static scheduling algorithm
for DAGs on an unbounded number of processors, in: Proceed-
ings of the ACM/IEEE Conference on Supercomputing, Albu-
querque, NM, 1991, pp. 633–642.

[44] W. Zhao, K. Ramamritham and J.A. Stanovic, Preemptive
scheduling under time and resource constraints, IEEE Transac-
tions on Computers 36(8) (1987), 949–960.

[45] H.B. Zhou, Scheduling DAGs on a bounded number of proces-
sors, in: Proceedings of PDPTA, Sunnyvale, CA, Vol. 2, August
1996, pp. 823–834.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

