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Abstract

In this work, we study the exciton states in a zincblende InGaN/GaN quantum well using a variational technique. The
system is considered under the action of intense laser fields with the incorporation of a direct current electric field as
an additional external probe. The effects of these external influences as well as of the changes in the geometry of the
heterostructure on the exciton binding energy are discussed in detail.
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Background
InGaN-based systems have revealed a high prospect for
applications in optoelectronics. Although the hexagonal
(wurtzite) allotropic form is the one most commonly con-
sidered, the zincblende (ZB) III-V nitrides are also very
promising materials that have been obtained with high-
quality crystal structure [1-4]. This is mostly due to the
fact that the cubic symmetry avoids the presence of rather
high spontaneous polarizations in the crystal, which are,
in a greater extent, responsible for the presence of large
built-in fields in wurtzite-based heterostructures, respon-
sible for important reductions in the oscillator strength,
and the optical recombination rates in that kind of sys-
tems [5,6]. However, the ZB structure in nitrides is pro-
vided with higher carrier mobilities, larger optical gain
and lower threshold current density because of its smaller
effective mass, and has mirror facets compatible with
substrates such as GaAs [7-9]. In consequence, the ZB
nitride-based heterostructures have drawn much atten-
tion in recent times [10-13].
The knowledge of exciton states is important for the

correct understanding of some optical properties in the
semiconducting low-dimensional systems. Investigations
on excitons and related optical properties in ZB nitride
low-dimensional systems have been mostly performed in
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quantum dots [14-18], but much less in quantum well
(QW) heterostructures [19,20].
Research activities on the interaction of intense laser

fields (ILF) with carriers in semiconductor nanostruc-
tures have revealed interesting physical phenomena. For
instance, the presence of changes in the electron den-
sity of states in QWs and quantum well wires (QWWs)
[21,22], the measurement of zero-resistance states in two-
dimensional electron gases under microwave radiation
[23], terahertz resonant absorption in QWs [24], and
Floquet-Bloch states in single-walled carbon nanotubes
[25], among others. A number of investigations on the
effect of laser fields on low dimensional heterostructures
have been published. The dressed atom approach was
extended by Brandi et al. [26,27] to treat the influence
of the laser field upon a semiconductor system. In the
model, the interaction with the laser is taken into account
through the renormalization of the semiconductor effec-
tive mass. The appearance of an unexpected transition
from single to double QW potential induced by ILF was
revealed in a theoretical study from Lima et al. [28].
Within the laser-dressed potential model, it is found that
the formation of a double-well potential for values of the
laser frequencies and intensities such that the so-called
laser-dressing parameter α0 is larger than L/2, where L is
the QW width. This fact is associated with the possibil-
ity of generating resonant states into the system’s channel
as well as of controlling the population inversion in QW
lasers operating in the optical pumping scheme.

© 2012 Duque et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.
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The present work is concerned with the theoretical
study of the effects of ILF on exciton states in single ZB
nitride QWs of the InGaN-GaN prototype. The research is
extended to include the additional influence of an applied
direct (dc) electric field oriented along the growth direc-
tion of the system. The paper is organized as follows.
In the ‘Theoretical framework’ subsection in the ‘Meth-
ods’ section, we describe the theoretical framework. The
‘Results and discussion’ section is dedicated to the results
and discussion, and finally, our conclusions are given in
the ‘Conclusions’ section.

Methods
Theoretical framework
Here, we are concerned with the effects of ILF on
the binding energy of a heavy-hole exciton in a single
InxGa1−xN-GaN QW grown along the z-axis and in the
presence of applied electric field. The envelope-function
and parabolic-band approximations are assumed. The
choice for the electric field orientation is �F = (0, 0,−F).
The Hamiltonian for the confined exciton is then given as
follows:

Ĥ = − �
2

2m∗
e
∇2
e + Ve(ze) + e �F · �re

− �
2

2m∗
h
∇2
h + Vh(zh) − e �F · �rh − e2

ε | �re − �rh| , (1)

where �re ( �rh) is the electron (hole) coordinate, m∗
e (m∗

h) is
the spherically symmetric electron (hole) effective mass, ε
is the static dielectric constant, e is the absolute value of
the electron charge, and Vi(zi) (i = e, h) are the QW con-
fining potential for the electron and hole. The functional
form of the potential in the absence of the ILF is given as
follows:

Vi(zi) =

⎧⎪⎪⎨
⎪⎪⎩

0, |zi| ≤ +L/2,

Vi, + L/2 < |zi| ≤ +L∞/2,

∞, |zi| > +L∞/2.

(2)

The electron and hole effective masses and the static
dielectric constant have been considered to have the same
value (the one in InxGa1−xN) throughout the InxGa1−xN-
GaN QW.
In order to find the eigenfunctions �( �re, �rh) of the exci-

ton Hamiltonian (Equation 1), it must be noticed that
the total in-plane exciton momentum �̂P = (̂Px, P̂y) is an
exact integral of motion, and the exciton envelope wave
function may be written as follows:

�( �re, �rh) =
exp

[
(i/�)(�P · �R)

]
√
S

φ(ρ, ze, zh) , (3)

where S is the transverse area of the InxGa1−xN-GaNQW,
�R, �ρ are the in-plane center of mass and relative exciton
coordinates, and �P = (Px,Py) is the eigenvalue of the oper-
ator �̂P. If �P = 0 (ground state), then φ( �ρ, ze, zh) is the
eigenfunction of the Hamiltonian:

Ĥ = p̂ 2
ρ

2μ
+ Ĥe + Ĥh − e2

ε r
, (4)

where r = [ ρ2 + (ze − zh)2]
1
2 , −̂→p ρ = x̂ p̂x + ŷ p̂y, μ =

m∗
e m∗

h/(m
∗
e + m∗

h),

Ĥe = p̂ 2
ze

2m∗
e

+ Ve(ze) − e F ze , (5)

and

Ĥh = p̂ 2
zh

2m∗
h

+ Vh(zh) + e F zh. (6)

The method for the obtention of the electron and hole
states is based on the work by Xia and Fan [29].
In order to consider the ILF effects (the polarization of

the laser radiation is parallel to the z-direction), the so-
called Floquet method is adopted [30,31]. According to
this formalism, the second term at the right hand side
in Equations 5 and 6 must be replaced by laser-dressed
potential 〈V 〉(zi,α0i), where for α0i is the laser-dressed
parameter (from now on the ILF-parameter) defined as
follows [32]:

α0i = (e A0)/(m∗
i cω)

= (I1/2/ω2)(e/m∗
i )(8π/c)1/2 (7)

In Equation 7, I and ω are, respectively, the average
intensity and the frequency of the laser, c is the velocity of
the light, and A0 is the amplitude of the vector potential
associated with the incident radiation. A detailed discus-
sion on the derivation of 〈V 〉(zi,α0i) is provided in other
studies [28,33-37].
Under the laser effects, the last term of Equation 4—the

one-center electron-hole Coulomb interaction—must be
replaced by a two-center Coulomb interaction as follows:

〈V 〉C(ze, zh,α0) = − e2

2 ε [ ρ2 + (zeh − α0)2]1/2

− e2

2 ε [ ρ2 + (zeh + α0)2]1/2
, (8)

where zeh = ze − zh and α0 = (e A0)/(μ cω).
The procedure adopted for the variational evaluation

of the exciton wave function in the InxGa1−xN-GaN QW
under the ILF effects is the one proposed by Fox et al. [38]
and Galbraith and Duggan [39]. The functional

E(λ) = 〈φ(ρ, ze, zh)|H|φ(ρ, ze, zh)〉 (9)
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must be minimized with the use of the variational wave
function:

φ(ρ, ze, zh) = N f (ze) f (zh) exp [−λ (| �r1| + | �r2|)] (10)

where λ is the variational parameter. Besides, �r1 = �r −
(0, 0,α0) and �r2 = �r + (0, 0,α0) with �r = (x, y, ze − zh).
The exciton binding energy is obtained from the follow-

ing definition:

Eb = E0 − E(λmin) , (11)

where E0 is the eigenvalue of the Hamiltonian in Equation
4 without the Coulomb interaction term—the last one at
the right hand side—and λmin is the value of the vari-
ational parameter in which the energy in Equation 11
reaches its minimum.

Results and discussion
Zincblende III-V nitride heterostructures are strained
ones, given the lattice mismatch between the constituent
materials. Although we are considering here a (001)-
oriented In0.2Ga0.8N-GaN QW configuration, the small
indium content does not prevent from taking strain effects
into account. In particular, there is a breaking of the
degeneracy of heavy and light hole valence bands at the
center of the two-dimensional Brillouin zone. In this work,
we are including strain effects in the most simple way, that
is, by incorporating the strain-induced shifts of the con-
duction and valence band edges in the unperturbed poten-
tial profile configuration for both electrons and holes (see,
for instance, [40,41]). Data related with material proper-
ties and confining potential are taken from another work
[42].
Considering the strain effects between the well and bar-

riermaterials, the electron and hole confinement potential
have been obtained, respectively, by the following:
Ve = Q (Ebg − Ewg ) − 
Ec and Vh = (1−Q) (Ebg − Ewg ) +


Ev, where Q = 0.7, 
Ec = 2 awc e11 (Cw
11 − Cw

12)/C
w
11,


Ev = 2 awv e11 (Cw
11−Cw

12)/C
w
11+bw e11 (Cw

11+2Cw
12)/C

w
11,

and e11 = (aw − ab)/aw. The super-index w and b refer to
the well (InxGa1−xN) and barrier (GaN) materials.
In Table 1, the main used parameters are reported.

Here, m0 is the free electron mass. The parameters of
the InxGa1−xN material have been obtained by linear
interpolation between InN and GaN.
The potential responsible for the confinement of elec-

trons and heavy holes in the QW is depicted in Figure 1
for several values of the ILF parameter (Figure 1a,b,c,d).

The column at the left-hand side contains the graphics
that correspond to the conduction band profile, while the
corresponding valence band bendings are shown in the
column at the right. It is possible to observe the evo-
lution of the QW shape associated with the change in
the laser intensity—without applied dc field—by going
through rows one to four in the picture. The transition
from a single to a double QW potential is detected in
the figures of the fourth road. We consider, of interest,
to highlight that the confining potential for holes in a
In0.2Ga0.8N-GaNQWalso experiences that kind of single-
to-double QW transition at the value of α0 reported in
the current work. This is because such a feature is not
present in the case, for instance, of a Ga0.7Al0.3As-GaAs
QW, in which, for the same value of the ILF parameter,
the shape of the conduction band profile is very similar
with that of Figure 1b [43]. Despite the greater value of the
hole effective mass in the present system compared with
that of the arsenide-based one, the main reason of such a
difference lies in the height of the valence band confining
barrier, which in the latter case is almost three times larger
than the one formed in the nitride-based heterostructure
studied here.
In the fifth row (Figure 1e), the evolution of the confined

electron and hole levels as functions of α0 clearly show the
growth in the energy values that resulted from the laser-
induced deformation of the conduction and valence band
potential profiles. Such modification in the QW shape
involves a significant rise of the well bottom which acts
by pushing up the energy levels. In the valence band, the
original depth of the QW is only enough to accommodate
a single heavy-hole level and, according to the basic prop-
erties of the confined one-dimensional motion, there will
always be one energy level in the hole subsystem. In the
conduction band, for sufficiently large laser field intensi-
ties, the first excited state is expelled from the QW, and
there only remains a single confined level (the ground
state one).
Figure 2 contains our results for the heavy-hole exciton

binding energy as a function of the QW width, without
the application of any dc electric field and taking several
values of the α0 as a parameter. The shape of the curves is
typical in the case of a zincblende QW. Independent of the
laser intensity, there is initially a growth in Eb associated
to the transition from a purely two-dimensional exciton
to a quasi-two-dimensional one, that is, for the lower
values of the well width, it favored the overlap between the

Table 1 The effective mass parameters used in the calculations [42]

a C11 C12 av ac b Eg me mh ε

InN 4.98 187 125 -0.7 -2.65 -1.2 0.7 0.1 0.835 9.7

GaN 4.50 293 159 -0.69 -6.71 -2.0 3.22 0.19 0.81

The units are as follows: a in Å, av , ac , b, and Eg in eV, andme andmh in units ofm0 (the free electron mass).
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Figure 1 Confinement potential and z-dependent amplitude of probability for the first two electron and ground hole confined states in a
In0.2Ga0.8N-GaN QW. The results are for L = 200 Å and have been considered several values of the ILF-parameter: α0 = 0 (a), α0 = 50 Å (b),
α0 = 100 Å (c), α0 = 150 Å (d). For the sake of illustration, the scale for the wave function amplitudes has been set to the same value. Graphics in
row (e) correspond to the variation of the energies of the first two electron states (left panel) and the heavy hole ground state (right panel) as
functions of the intense laser field parameter. In all cases, it is taken that F = 0 and P = 0.

confined electron and hole densities of probability, mak-
ing that the expected values of the inter-carrier distance,
〈φ|ze − zh|φ〉 to be smaller, thus provoking the strength-
ening of the Coulombic interaction between them. As
long as the QW widens, this expected value becomes
larger, and the electrostatic interaction weakens, with the
consequent reduction in the exciton binding energies.
The decrease in Eb for a fixed well width, L, observed
when going from a zero laser field to a more intense one
is also due to a decrease in the Coulombic correlation
between both types of carriers. In fact, as can be seen from
Figure 1, augmenting the laser intensity makes the allowed
confined energy states to shift upwards. Therefore, the

corresponding wave functions will spread over a wider
interval of the coordinate, and the values of 〈φ|ze − zh|φ〉
will be larger. The kind of convergence exhibited by the
curves for larger L reflects the increasing effect of the
rigid barriers located at ± L∞/2 (with L∞ = 600 Å). This
means that in all cases, the curves are tending toward the
the exciton binding energy of an infinite barrier QW of
width Ł∞, with or without a laser effect.
If an intense laser field is applied taking the QW geom-

etry as a varying parameter, the results obtained for
the heavy-hole exciton binding energy as a function of
α0 are those shown in the Figure 3. They are consistent
with the explanation given above regarding the weakening
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Figure 2 Binding energy of heavy-hole exciton in a
In0.2Ga0.8N-GaN QW. As a function of the well-width, for several
values of the ILF-parameter with F = 0 and P = 0.

in the strength of the electron-hole interaction associated
with the loss of confinement induced either by the incre-
ment in the laser intensity or by the enlargement of the
QW size.
If a dc electric field of increasing intensity is applied to

the system, keeping fixed its dimension, the heavy-hole
exciton binding energy evolves as observed in the Figure 4.
Once again, the value of the laser field strength appears
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Figure 3 Binding energy of heavy-hole exciton in a
In0.2Ga0.8N-GaN QW. As a function of the ILF-parameter, for several
values of the quantum well-width with F = 0 and P = 0.
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Figure 4 Binding energy of heavy-hole exciton in a
In0.2Ga0.8N-GaN QW. As a function of the applied electric field with
L = 200 Å and several values of the ILF-parameter.

parameterizing the different curves in the graphics. In the
case of zero laser field, the variation of Eb(F) corresponds
to an all the way decreasing function, the dc electric field
amplitude. It is known that the dc field effect is mainly
that of augmenting the polarization by pushing apart, spa-
tially speaking, the carriers of opposite sign. At the same
time, the rectangular QW potential profile transforms in a
way that reduced the degree of carrier localization inside
the well region. All this has the consequence of increas-
ing the value of 〈φ|ze − zh|φ〉 and the corresponding
fall in the Coulomb interaction. However, this particular
evolution of the binding energy seem to practically disap-
pear for the two intermediate values of the ILF parameter
considered. One notices from Figure 4 that a very slight
decrease in Eb is obtained when the value of F goes from
zero to 20 kV/cm, if α0 is a quarter of the QW width.
At the same time, what we see when α0 is equal to the
half of the well width is, even, a slight increase in Eb over
almost the entire interval of F considered, though for the
largest values of the dc field amplitude, that quantity starts
showing a decreasing behavior. Hence, what is happening
here is a phenomenon of compensation of the progres-
sive augmenting of the electron-hole expected distance
via the deformation of the QW potential profile obtained
when combining the effects of the two kinds of externally
applied fields, that is, if the effect of the dc field is to push
the electronic wave function towards the left-hand side of
the QW, given that the height of the barrier for electrons
is significantly bigger than the one corresponding to the
valence band, the displacement of the electron wave func-
tion is counteracted by the barrier repulsion (one must
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keep in mind that the dc field strength values considered
here are not very high). On the other hand, the electric
field will induce a displacement of the heavy hole towards
the right. However, the QW barrier height is so small
here that, thanks to the ILF-induced pushing-up effect
of the energy level position, the hole density of probabil-
ity can penetrate further to the left, with the consequent
increment in the overlap between electron and hole wave
functions. As a result of this, the expected electron-hole
distance diminishes. This is the cause of the compensat-
ing effect and the apparent insensitivity of Eb with respect
to F for such modified QW shapes associated to such
particular values of α0. Once the laser field intensity is
sufficiently high (lower curve in Figure 4), the heavy-hole
exciton binding energy recovers its decreasing variation
as a function of the dc field strength (again due to the fall
in the carrier localization), with the exception of a very
slight increment noticed for very small values of F . Here,
the combination of the slow linear change of |eFz|with the
ILF-induced double QW shape of the confining potential
(Figure 1d) leads to the kind of compensating effect men-
tioned above. In this case, it leads to a small reduction in
〈φ|ze − zh|φ〉 and the observed little increase in Eb in that
region.
Finally, Figure 5 shows the variation of the heavy-hole

exciton binding energy as a consequence of the increment
in the intensity of the z-oriented applied dc electric field.
In this situation, the width of the QW appears and is con-
sidered as the parameter that differentiates between the
curves depicted.
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Figure 5 Binding energy of heavy-hole exciton in a
In0.2Ga0.8N-GaN QW. As a function of the applied electric field for
several values of the quantum well-width (L) with α0 = 3L/4.

The configuration chosen includes an applied laser field
with intensity given, in each case, by the parameter α0 =
3L/4. It is seen that for the two lowest values of the well
width, Eb is a slight decreasing function of F until a certain
critical value, Fc, of the dc field strength at which initi-
ates an abrupt fall that leads to a constant, limit value, that
remains for the rest of the increasing range of the ampli-
tude F . The decrease occurring while F < Fc is justified
along the same arguments expressed above with regard
to the progressive enlargement of the inter-carrier aver-
age distance that associates with the loss in electron and
hole confinement. The abrupt descent in Eb has to do with
the escape of one (electron or hole) of the wave functions
away from the QW region, towards the infinite barrier on
the side it was pushed to by the electric field. The value of
the expected electron-hole distance then suffers a sudden
rise which reflects in the drop of Eb observed. Augment-
ing further the dc field strength will function to cause the
same effect on the other wave function in such a way that
the increase in F will not have any other influence on the
polarization because the carriers will remain confined by
the infinite barriers at ± L∞/2. Therefore, one may see
that Eb adopts a constant value when F becomes large
enough.
It is worth mentioning that, for all the values of L taken

into account, setting α0 = 3L/4 implies a great modifi-
cation of the confining potential profile which, as one of
the main features, presents a significantly reduced effec-
tive well depth. At the same time, the effect of confinement
reduction on the carrier wave functions is more pro-
nounced for narrower QWs, for the allowed energy levels
are, initially, placed at higher energy positions. Thus, the
application of the not so intense dc fields readily leads to
the mentioned wave function escape. This explains why
the phenomenon of abrupt change in Eb is manifested for
smaller dc field intensities.
The curves that correspond to the two highest values of

L in Figure 5 show an increasing behavior for the small-
est electric field amplitudes. This fact relates with the
reduction in 〈φ|ze − zh|φ〉 obtained as a result of the com-
bination of the laser and dc fields on the confinement
of the carriers. A small F associates with a slight linear
deformation of the already modified (by the laser effect)
potential profile. The electron and hole densities of prob-
ability are pushed in opposite directions, but the potential
well barriers, not so deformed, repel them away. This has
the consequence of bringing the two particles a little bit
closer and, therefore, of augmenting the strength of their
Coulombic interaction. However, when the dc field is aug-
mented, the dominant influence is that causing the spatial
spreading of the carrier wave functions, which leads to
the decrease in Eb. Notice that the pronounced fall is also
present when L = 150 Å, but for L = 200 Å Eb is a rather
smooth monotonically decreasing function of F , without
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any abrupt change. This is because the QW width is large
enough to avoid the sudden escape of the wave functions
and also because the limiting infinite barriers are much
closer to the inner well ones.

Conclusions
The properties of heavy-hole excitons in InGaN-GaN-
based quantum wells under intense laser and applied dc
electric fields are studied for a set of different values of
the fields intensities and the well spatial dimensions. In
general, for a fixed geometry of the unperturbed system,
the exciton binding energy is a decreasing function of
the intense laser field parameter and of the dc electric
field, although certain combinations of the two applied
field intensities may lead to a rather insensitive behavior
of the binding energy with respect to the application of
a dc field. It is shown that the changes of the degree of
carrier confinement and of the carrier polarization asso-
ciated to the influence of the laser and the dc fields are
mainly responsible for the exciton properties mentioned.
To our knowledge, there seem to be no previous reports
on exciton properties in zincblende nitride QW induced
by intense laser fields. Thus, the results of the present
work might be considered as a first approximation to the
subject in this kind of systems.
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