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A nonanomalous horizontal U({,)gauge symmetry can be responsible for the fermion mass hierarchies of
the minimal supersymmetric standard model. Imposing the consistency conditions for the absence of gauge
anomalies yields the following result§) unification of leptons and down-type quark Yukawa couplings is
allowed at most for two generation§ij) the u term is necessarily somewhat below the supersymmetry
breaking scaleiii ) the determinant of the quark mass matrix vanishes, and there is no &Rpgoblem;(iv)
the superpotential has accidenBandL symmetries. The predictiom,,=0 allows for an unambiguous test
of the model at low energy.

PACS numbgs): 11.30.Hv, 11.30.Fs, 12.15.Ff, 12.60.Jv

One of the most successful ideas in modern particle physsidered by several groups, both in the context of supersym-
ics is that of local gauge symmetries. A huge amount of datanetry[3] and with a gauged U(1)[4-7]. It was argued that
is explained in terms of the standard mod&M) gauge consistency with phenomenology implies that UgInust
group Ggy=SU(3)cxSU(2) xU(1)y. ldentifying this be anomalous, and thus only the anomalous case was studied
symmetry required a lot of experimental and theoretical efin detail.
fort, since SU(2) X U(1)y is hidden and color is confined. Our theoretical framework is defined by the following as-
Today we understand particle interactions but we do nogsumptions:(1) Supersymmetry and the gauge groGgy
have any deep understanding of other elementary particl& U(1)y . (2) U(1)y is broken only by the VEV of a fiel®
properties, such as fermion masses and mixing angles. Theith horizontal charge-1." Sis a SM singlet and is chiral
SM can only accommodate but not explain these data. Anunder U(1);. (3) The ratio between the VEVS) and the
other puzzle is whyC P is preserved by strong interactions to mass scalé of the FN fields is of the order of the Cabibbo
an accuracy<10 °. One solution is to postulate that one angle A\=(S)/M~0.2. (4) The only fields chiral under
quark is massless, but within the SM there are no good jusd/(1)y and charged undeBs), are the minimal supersym-
tifications for this. Adding supersymmetry does not providemetric SM supermultiplets(5) The lepton and down-type
us with any better understanding of these issues. In contrasyuark mass matricesl' andM? satisfy deM'<detM? (of
it adds new problems. A bilinear coupling for the down-typecourse this last assumption is an experimental) fact
and up-type Higgs superfields ¢4¢, is allowed both by In the following we will use the same symbol to denote a
supersymmetry and by the gauge symmetry. However, phdield and its horizontal charge. Upon U({ Joreaking, the
nomenology requires that should be close to the scale Yukawa couplingsy", Y9 andY' of the up-type and down-
where these symmetries are broken. With supersymmetryype quarks and of the leptons are generated. They satisfy the
several operators that violate baryd@) and leptonlL) num-  following relations:
bers can appear. However, none of the effects expected from
these operators has ever been observed. Since a few of them L [ANSTUT i Qi+ ujt ¢, =0,
can induce fast proton decay, they must be very suppressed Yii 0 if Q+ui+ by<0, (1)
or absent. !

Relying on the gauge principle, in this paper we attempt - . .
to gain insight into these problems. We extend minimally@"d Similar ones foﬂ{d andY'. The zero entries arise from
Ggy With a nonanomalous horizontal Abelian U(ifactor. holomorphy, whileA;; are numerical coefﬁuentg of ordef
An unambiguous prediction of the nonanomalbld),, is a that we will of@en .Ieave understood. Let us introduce the
massless up quark. This represents the crucial low enerd!lowing combinations of charges:
test of our framework. Shall future lattice computations rule
out m,,=0 [1], the whole idea will have to be abandoned. _ - _ . _ ,

To pexplain the fermion mass pattern we follow the ap- lu 2. (Qtu), ne=2 (Qitd), Ne=2 Qi
proach originally suggested by Froggatt and Niel$EN)

[2]. U(1)y forbids most of the fermion Yukawa couplings.

The symmetry is spontaneously broken by the vacuum ex- n|=2 (Li+1), ng=¢,+ ¢y, n|_=2 L;. 2
pectation valu¢VEV) of a SM singlet fieldS giving rise to : !

a set of effective operators that couple the SM fermions to

the electroweak Higgs field. The hierarchy of fermion

masses results from the dimensional hierarchy among the'we assume that a tree level Fayet-lliopouliserm triggers the
various higher order operators. This idea was recently recorbreaking of U(1), while preserving supersymmetry.
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After electroweak symmetry breaking, the Yukawa cou-
plings (1) give rise to the fermion mass matrictt’, MY,
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C1/k1:CZZC3:5G3, (8)

andM'. In the absence of vanishing eigenvalues their deterghere the Kac-Moody levels of the SU(2)and SU(3)

minants read

detM U= (¢, )3\ 3% detAl, ©)
detM9=(p4)3\"a"3¢d detA?, (4
detM'=(pg)3\"+ 3% detAl (5)

Since all the entries ih"“%' are of orden?, detA"%' is of
order 1. Then the size of the determinat8s-(5) is fixed by

gauge groups have been assumed to be unity and, since we
are not postulating any grand unified thed®UT) symme-

try, the U(1), normalization factok, is arbitrary. Then the
weak mixing angle(at some large scald) is given by
tarf6,,=g'2/g®=1/k,. Using Eq.(6), conditions(8) trans-

late into

2(ng—ng+n)=(k;—3)Jgs. 9

the horizontal charges and by the ratio of the Higgs doublet§iow, one can assume that the gauge couplings unify for the

VEVs tanB= (o )/{ dg).

canonical value t&y,=3/5 [7]. Thenn,=n4—n, is ob-

The SM Yukawa operators are invariant under a set otained. Alternatively, one can assume that for some reasons

global U1) symmetriesB, L, hyperchargeY), and a sym-
metry X with chargesX(d)=X(l)=—X(¢4) and X=0 for

the left-hand side in Eq9) vanishes, and thus predict ca-
nonical gauge couplings unificati¢f]. However, in the ab-

all the other fields. Therefore, shifts of the horizontal chargesence of a GUT symmetry the vallig=5/3 is not compel-

proportional toL, B, Y, andX do not affect the fermion mass
matrices. In the following, we will denote as equivalent two

ling. Other values ok; can be in reasonable agreement with
unification at scales\ # Agyr [10], so thatn, andng—n,

sets of charges that can be transformed one into the other ife not necessarily related in any simple way. For a nona-
means of shifts of this kind. Note that the superpotential termiomalous U(1), Egs.(8) and(9) still hold with 55s=0, so

noydy (the w term) is not invariant undeX, and hence it

that the interplay with gauge couplings unification is lost.

can be different for two equivalent sets. Experimental evi-However,n,=ny—n, now follows as an unavoidable con-

dences for nonvanishing neutrino mixing8] imply that
shifts proportional to individual lepton flavor numbelsg
(a=e,u,7) transform between phenomenologically non-

sistency condition, giving a first constraint on the permitted
horizontal charges.
Let us now study the symmetry properties of the coeffi-

equivalent set of charges. In fact, while these shifts do nogients (6). Since for each SU(2) multiplet T{T3YH]
affect the charged lepton masses, they still produce differerie Y HTI[ T3] =0, the mixed electromagnetic-U(;} anomaly

patterns of neutrino mixings. In our analysis we will work
with the following linear combinations of generatobs;: B,
B-L,L,-L,, L,-Le, andY.

SinceGgyX U(1)y is a local symmetry, it is mandatory
to study the(field theory consistency conditions for cancel-
lation of the gauge anomalies. The mixed 8)xU(1)y
anomalies, quadratic in Sdf=SU(3)c, SU(2)_, U(1)y

can be expressed in terms @f; and C, as CQ=%(Cl
+C,). Being SU(3)} <X U(1)q vectorlike, it is free ofB and
L anomalies, and the@; and C, must be invariant under
shifts of the horizontal charges proportional Boand L.
Clearly, the same is not true f@; andC, separately. How-
ever, the SM is free oB-L anomalies, and thu§; andC,
are invariant under the corresponding shift. AlspL , and

and linear in the horizontal charges, can be expressed ih,-L. have vanishing anomalies witBgy, so they identify

terms of the coefficients

Cs=n,tny,

Ci=ng4+5n,+5ng+2n—(3ng+ny).

The coefficient of the mixed U(1,)X U(l)ﬁ anomaly qua-
dratic in the horizontal charges reads

CO= g3 43+ 3 Q- 2P+ LP+E. (O

The pure U(lﬁI and the mixed gravitational anomalies can

always be canceled by adding SM singlet fields with suitable

charges, and we assume they vanish. If@hés in Eq. (6) do
not vanish, the Green-Schwaf@S) mechanisn{9] can be
invoked to remove the anomalies by means of a (1)
gauge shift of an axion fieldy(x) — 7(x) — &(X) 6gs. The
consistency conditions for this cancellation r¢aq]

two more possible shifts that leave invariant ©gs. In the
following we state the consistency conditions for cancella-
tion of the Gg, X U(1)y gauge anomalies.

A set of horizontal chargefH} is equivalent to a second
set{H"} for which the coefficient; of the mixed linear
anomalies vanish, if and only if the mixed U@—)J(l)H and
SU(B)(Z;-U(l)H anomaly coefficients are equal:

Co—C3=0&C)=C)=Cj=0. (10)

Moreover, if for{H"} the charge of the. termn} is differ-
ent from zero, the coefficient of the quadratic anon@fy
can always be set to zero:
n’,#0=C?=0. (11

[As it stands, this condition is sufficient but not necessary.
However, if all the neutrinos are mixed at a measurable level

(11) turns out to be necessar¥l]. In the following we take
n,#0 in the strong sensk.
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To prove this, let us assume that for the initial ¢  is forbidden by holomorphy and vanishes in the supersym-
C,#0. Then we start by shifting the charges proportionallymetric limit. Let us confront these results with phenomenol-

to the X quantum numberdd —H + (a/3)X yields ogy. To a good approximation the mass ratiugm#~)\3 or
A, m,/m ~\2 my/mg~\? andmg/m,~\? are renormal-
Cr—Ch=Cpt+ana, (12)  ization group invariant. Then, since Yukawa coupling unifi-
. ] cation works remarkably well for the third family,
with az=1, a;=-13, and a;=+7/3. We fix a=  detM'/detM?~\ or A2, and the allowed values af,, are
—Cs/as so thatC;=0. Note that the combinationC4  —1 or —2. Then au term arising from thenonholomor-

+Cp)/(as+ay) —Cszlaz=Cq—C; besides beind andL  phic) Kahler potential[12] will have a value somewhat be-
invariant, is alsoX invariant by construction. Now a shift |ow the supersymmetry breaking scatg,:

proportional toB can be used to s&}=0. SinceC; is B

invariant, C4=C4=0. The sumC}+ C} is alsoB invariant p~N"elmg, with nyg=-1 or —2. (15
and thusCj=C}+C,=2Cq. However, by assumptioB
=C4(=0) and then the s¢H"} has vanishing mixed linear
anomalies. Now, in order to cancel the quadratic anomal
while keeping vanishingC;, we can use any of the SM
anomaly free symmetrieB-L, L-L,, L ,-L. [that in gen-
eral will have nonvanishing mixed anomalies with U{1.)
SinceL -L , andL ,-L transform between nonequivalent set
of charges, we keep this freedom to account for two neutrin
mixings (the third one results as a predictjoand we use
B-L. Under the charge redefinitiad—H + B(B-L)

As we have explicitly shown, the anomaly cancellation con-
ition Co—C3=0 (10) is Y, B, L, and X invariant (as it
hould bé, and hence it shares the same invariance of the

Yukawa couplings. Therefore, any product of the determi-

nants(3)—(5) for which the overall horizontal charge can be

recasted just in terms of theé,'s must depend precisely on
this combination. Such a relation was first found [ify.

Given that Co—Cz=n;—3ng+3n,+n, we can write it

down at once:

—2/3 1/3

detM') [ detm ¢ detMY oo
=\~Q" >3, (16

() \ (¢a)® (du)®

where in the last step we have used the idendity—2n,  Let us confront this relation with phenomenology. Anomaly
+2n=C;+C,— §C3—2n¢ and the vanishing of th€!. . If, cancellation implieg that the right-hand side i§ u.nity, while
as we have assumen,#0, we can always se€€?=0 by E?g;ﬁ&%ﬂ?i;g‘;d& u?(o ;ng()a?ysbz larEﬁ p;_)ririsllrmzocz‘sgrder
; —_(2) " . . . d u < . -
chopsmgﬂ—C( . /(2ny). The constraint derived here is toncy (or similar ones led several authors to conclude that
again stronger than in the anomalous ca3&’) cannot be U(1),, must be anomalou§d—7]. However, Eq.(16) is
canceled with the GS mechanism, and one has to redefine trpﬁeaningfm only under the assumption that, none of the de-
; . o > 2

charges so that it vanishes identically. Assumkig:5, the  terminants vanishes, and since low energy phenomenology is
s con3|sten<232/) conditiones) yield C1+Cy—3C3=35Cs il compatible with a massless up qudtk13] (see, how-
#0 and thenC'*’=0 does not constrain the charges in anyeyer, [14]), this might not be the case. In the following we

useful way. _ 2 prove that insisting on the vanishing of the gauge anomalies
A set of horizontal chargefH} for which C,=C=0  yie|dsm, =0 as a prediction.

identifies a one parameter family of anomaly free charges \ye start by noticing that if the determinant of the matrix
generated by Sh|ft5 proportional to hyperchargd§2—>H Ui' w)\QiJrUjJr(/’u has an Overa” negative Chargeuznu
SM anomalies TiSU(n)®Y]=0. For C® we have Thjsis because dét consists of the sum of six terms of the

C@"—~C@=c@+p3n}—fnj+2n{]1=CE"—2pn,,
(13

THYH* =T Y(H+Y)?]=2C,=0. o form A"1. \"2.\"s wheren,; + n,+ny= »Y<0. Then at least
This property can be useful for model building: if the e of then; must be negative, corresponding to a holomor-
charges of theth family satisfy Li—di=ui—Qi=Qi=li,  phic zero in the mass matrix. Hence each one of the six terms

then it is possible to arrange the corresponding fermions intggnishes.

5+ 10 representations of §8). Alternatively we can choose Now, if U(1)y is anomaly free and assumption 5 holds, it

to fix, e.9.,¢q= p,=ny/2. is easy to see thaiii ) the determinant of the six quark mass
In summary, imposing cancellation of thggyxXU(1)y matrix M, vanishes:

gauge anomalies results in the following constraints on the

fermions charges n=ny
| c —cO—g =detMy=0. 7
#0 I detM (14 )
n , Ngy=ng—n=1In , . . .
¢ ¢ T T detM In fact adding and subtractingn3 to C3=0 yields
where the last relation follows from Eg&l) and (5). Since 7Y+ 17D=3n(/,<0. (18

nyg# N, we conclude thafi) Yukawa coupling unification is
permitted at most for two families. Together with assumptionThen at least one of the twg must be negative, and the
5, we also obtaim ,<0 so that(ii) the superpotentigk term  corresponding determinant vanishes. Of course, on phenom-
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enological grounds, a massless up quark is the only viablsuperpotential has accidenBaandL symmetries. This result
possibility [1,13]. Using the d-quark mass ratios given is deeply related to the solutions of the and strongCP
above, assuminm,/m,~\2 (as is preferred at large scales problems (,<0, 7nY<0). The proof of(iv) requires phe-
and choosingi,= —1, we obtain nomenological inputs, like fermion mass ratios and Cabibbo-
Kobayashi-Maskawd CKM) mixings plus the assumption
(190  that neutrinos mixings are sizeable. Since it is somewhat
lengthy, we will present it elsewhefé&1]. An intuitive (but
not rigorous argument goes as follows: given a set of mini-

and 1. Because of the constraints from holomorphy<0 mﬁ!ffh?rge$ that fllt Wel}! tk&e ;%rmlor]_ma;]seté(az?q rgxmgs, the
results in an accidental U(])symmetry acting on the _(S : smyarlanlva ueo 7(72)( )|mp es tha n q.(_)
SU(2), singlet up quarku;—e€e'*u;. Then the QCDCP IS nggatlve. To canceC the Sh'f,t_H_’H“L'B'(B'L) s
L — . . required, whereB=C®)/2n, is positive. All the R-parity
violating paramete®= 6+ arg detM, is no more physical, olatin ' operators, L ¢ ¢ ALLI, \'LQd, and \"udd

and can be rotated away by means of a chiral transformatio\é BgL —p—l "ih i u’ d th,' hift tr'1 i ch

of the massless quark field. However, holomorphy is a cru- aveb-L=—1, S0 that under tis shi €l charges are
cial ingredient to achieve this result, and one has to checflliVen to negative values implying that they are not allowed

that after supersymmetry is broken this result is not badlyn the superpotential. Of course, dimension five seesaw op-
spoiled. Supergravity effects induce mixings in the kineticerators for neutrino masses are also forbidden. However, the
terms. Canonical form is recovered by means of the fieldf@me mechanism that generatesvill generate(with larger
redefinitionsQ=V2Q’ andu=Vu’. Then the matrix of the ~Suppressionsalso u L ¢, terms, which induce s-neutrinos
Yukawa couplingsr transforms intoy"’ =VOTYYVY, Since  VEVs. Canonical diagonalization of-¢4 mixed kinetic
detY!=0, dety" =0 follows, so that kinetic terms mixing, t€rms will produce tinyx and 1" from the Yukawa cou-
while it can lift mass matrix holomorphic zeroes, it does notPlings. Both these effects can result in small neutrino masses
lift vanishing eigenvalues. In general, soft supersymmetryt11]. However, since none of the” can be generated in this
breaking terms will not respect the U(l3ymmetry, so that Wway, proton stability is not in jeopardy.

a mass for the up quark can be induced radiatively. A con- Finally, let us stress that except fgt’<0 the condition
servative estimate of these effect givesm,, Cqo—C3=0 does not imply other serious constraints on
S(as/w))\\nuﬂl\((ﬁu)slofs (100 eV [for tang charge assignments, so that a suitable choice of horizontal
~1,(m,/my)] where Y —4 is the charge of the up-quark charges can account for the observed pattern of fermion
mass operator whem,/m,~\* is used. Followind 15] we masses and mixings. The mass matrices of popular models
have estimated the possible contribution to the neutron ele¢3,6] can be easily reproduced and, apart frony,=0, also

tric dipole momentd, /e< 10289, (10"229) cm. Therefore, the same phenomenolog¥1].

for moderate values of tg8, the neutron dipole moment e acknowledge conversations with J. Ferrandis and W.
remains safely below the experimental limit,/e<6.3 A, Ponce, and we thank Y. Nir for precious suggestions. This
X 10 26 cm[16] even foro~1. work was supported by the DGICYT grant PB95-1077 and

Gauge symmetry and supersymmetry, together with conby the TMR contract ERBFMRX-CT96-0090. J.M.M. and
straints from fermion charges relations, imply ttiat) the  D.A.R. are supported by Colciencias.

u My
n-=—9-3log,| —tanB
m;

that ranges between 9 and— 18 for tang betweenm,/my,
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