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Abstract

We study extensions of supersymmetric models without R-parity which include an anomalousU(1)H horizontal symmetry.
Bilinear R-parity violating terms induce a neutrino mass at tree levelmtree

ν ≈ (θ2)δ eV whereθ ' 0.22 is theU(1)H breaking
parameter andδ is an integer number that depends on the horizontal charges of the leptons. Forδ = 1 a unique self-consistent
model arises in which (i) all the superpotential trilinear R-parity violating couplings are forbidden by holomorphy; (ii)mtree

ν

falls in the range suggested by the atmospheric neutrino problem; (iii) radiative contributions to neutrino masses are strongly
suppressed resulting in1m2

solar≈ few 10−8 eV2 which only allows for the LOW (or quasi-vacuum) solution to the solar
neutrino problem; (iv) the neutrino mixing angles are not suppressed by powers ofθ and can naturally be large. 2000 Elsevier
Science B.V. All rights reserved.

1. Introduction

The field content of the standard model (SM) to-
gether with the requirement ofGSM = SU(2)L ×
U(1)Y gauge invariance implies that the most general
Lagrangian is characterized by additional accidental
U(1) symmetries implying baryon (B) and lepton fla-
vor number (Li , i = e,µ, τ ) conservation at the renor-
malizable level. When the SM is supersymmetrized,
this nice feature is lost. The introduction of the su-
perpartners allows for several new Lorentz invariant
couplings. The most general renormalizable superpo-
tential respecting the gauge symmetries reads

* Corresponding author.
E-mail address:enardi@naima.udea.edu.co (E. Nardi).

W = µαHαφu + λαβkHαHβlk + λ′αjkHαQjdk
(1)+ λ′′ijkuidj dk + hujkφuQjuk,

where i, j, k = 1,2,3 and α,β = 0,1,2,3, and all
the fields appearing in (1) are superfields. In the
following we will denote with the same symbol the
minimal supersymmetric SM (MSSM) superfields and
their SM fermion and scalar components. Since we
will soon extend the model to include a horizontal
U(1)H symmetry, we take the fields in (1) in the
basis where the horizontal charges are well defined.
We have denoted byHα a vector containing the
four hyperchargeY = −1/2 SU(2)L doublets of the
MSSM and, without loss of generality,H0 is the field
whose main component is the down-type Higgs field:
H0 ' φd (φd is defined as the direction inHα field
space that acquires a vacuum expectation). It follows
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that H1,H2 and H3 have as main components the
lepton doubletsLe ,Lµ and Lτ , with 〈Li〉 = 0 by
definition.φu denotes theY = +1/2 Higgs doublet,
ui, dj andlk (i, j, k = 1,2,3) are theSU(2)L singlets
up-type quarks, down-type quarks and leptons of
the three generations, andQj denotes theSU(2)L
quark doublet. The Yukawa couplings responsible of
the up-type quark masses are denoted byhujk and,
given our definition of the down-type Higgs field,
in first approximation the leptons and down-type
quarks Yukawa couplings are given byhljk ' λ0jk and

hdjk ' λ′0jk. As it stands, (1) has potentially dangerous
phenomenological consequences:

(i) The dimensionful parametersµα are gauge
and supersymmetric invariant, and thus their natural
value is expected to be much larger than the elec-
troweak and supersymmetry breaking scales. A large
value ofµ0 would result in too large Higgsino mix-
ing term (this is the supersymmetricµ problem)
while µi ∼ µ0 would give a large mass to one neu-
trino [1–3].

(ii) The dimensionless Yukawa couplingshljk ('
λ0jk), hdjk(' λ′0jk) andhujk are expected to be of order
unity, suggesting that all the fermion masses should be
close to the electroweak breaking scale.

(iii) The trilinear couplingsλijk , λ′ijk, λ′′ijk are also
expected to be of order unity, implying unsuppressed
B andL violating processes.

The approach originally suggested by Froggatt and
Nielsen (FN) [4] to solve (ii) and account for the
fermion mass hierarchy turns out to be quite power-
ful in the context of the MSSM to solve also theµ
problem. FN postulated an horizontalU(1)H symme-
try that forbids most of the fermion Yukawa couplings.
The symmetry is spontaneously broken by the vac-
uum expectation value (vev) of a SM singlet fieldχ
and a small parameter of the order of the Cabibbo an-
gle θ = 〈χ〉/M ' 0.22 (whereM is some large mass
scale) is introduced. The breaking of the symmetry
induces a set of effective operators coupling the SM
fermions to the electroweak Higgs fields, which in-
volve enough powers ofθ to ensure an overall van-
ishing horizontal charge. Then the observed hierarchy
of fermion masses results from the dimensional hierar-
chy among the various higher order operators. When
the FN idea is implemented within the MSSM, it is
often assumed that the breaking of the horizontal sym-

metry is triggered by a single vev, for example the vev
of the scalar component of a chiral supermultipletχ

with horizontal chargeH(χ)=−1. Then, because the
superpotential is holomorphic all the operators carry-
ing a negative charge are forbidden in the supersym-
metric limit. If underU(1)H the bilinear termH0φu
has a chargen0< 0, aµ0 term can only arise from the
(non-holomorphic) Kähler potential, suppressed with
respect the supersymmetry breaking scalem3/2 as [5]

(2)µ0'm3/2θ
|n0|.

A too large suppression (|n0| > 1) would result in
unacceptably light Higgsinos, so that in practice on
phenomenological groundsn0 = −1 is by far the
preferred value.

More recently it has been realized that the FN mech-
anism can play a crucial role also in keeping under
control the trilinearB andL violating terms in (1)
without the need of introducing an ad hoc R-parity
quantum number [6–11]. For example in [6] it was ar-
gued that under a set of mild phenomenological as-
sumptions about the size of neutrino mixings a non-
anomalousU(1)H symmetry together with the holo-
morphy conditions implies the vanishing of all the su-
perpotentialB andL violating couplings. A system-
atic analysis on the restrictions on trilinear R-parity
violating couplings in the framework ofU(1)H hori-
zontal symmetries was also recently presented in [11].

In this paper we argue that if theµ0 problem is
solved by the horizontal symmetry in the way out-
lined above, and if the additional bilinear termsµi
are also generated from the Kähler potential and sat-
isfy the requirement of inducing a neutrino mass be-
low the eV scale, as indicated by data on atmospheric
neutrinos [12,13], then in the basis where the horizon-
tal charges are well defined, all the trilinear R-parity
violating couplings are automatically absent. This
hints at a self-consistent theoretical framework in
which R-parity is violated only by bilinear terms that
induce a tree level neutrino mass in the range sug-
gested by the atmospheric neutrino anomaly,L and
B violating processes are strongly suppressed, and the
radiative contributions to neutrino masses are safely
small so thatmloop

ν ≈ 10−4 eV, which barely allows
for the LOW or quasi-vacuum solutions to the solar
neutrino problem [14,15].
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2. Tree level neutrino mass

Our theoretical framework is defined by the follow-
ing assumptions: (i) Supersymmetry and the gauge
groupGSM × U(1)H . (ii) U(1)H is broken only by
the vev of a fieldχ with horizontal charge−1; the
field χ is a SM singlet, chiral underU(1)H . (iii) The
ratio between the vev〈χ〉 and the mass scaleM of
the FN fields is of the order of the Cabibbo angle
θ ' 〈χ〉/M ' 0.22. In the following we will denote
a field and its horizontal charge with the same symbol,
e.g.,H(li) = li for the lepton singlets,H(Qi) = Qi
for the quark doublets, etc. It is also useful to intro-
duce the notationfij = fi − fj to denote the differ-
ence between the charges of two fields. For exam-
pleHi0 denotes the difference between the charges of
theHi ' Li ‘lepton doublet’ and theH0' φd ‘Higgs
field’. On phenomenological grounds we will assume
that the charge of theµ0 term isn0=−1 and we will
also assume negative chargesni = Hi + φu < n0 for
the other three bilinear termsHiφu. It is worth stress-
ing that the theoretical constraints from the cancella-
tion of the mixedGSM×U(1)H anomalies hint at the
same valuen0=−1 both in the anomalous [16] and in
the non-anomalous [6]U(1)H models (see Section 6).
With the previous assumptions the four components of
the vectorµα in (1) read

(3)µα 'm3/2
(
θ |n0|, θ |n1|, θ |n2|, θ |n3|),

where coefficients of order unity multiplying each
entry have been left understood. It is well known that
if µα and the vector of the hyperchargeY = −1/2
vevsvα ≡ 〈Hα〉 are not aligned [1,3]:

(4)sinξ ≡ µ∧ v√
vαvα µβµβ

6= 0

the neutrinos mix with the neutralinos [17], and one
neutrino mass is induced at the tree level [3]:

(5)mtree
ν '

µcos2β

sin2β cosξ − µM1M2
M2
ZMγ

sin2 ξ,

whereMγ = M1 cos2 θW +M2 sin2 θW , M1 andM2
are theU(1)Y and SU(2)L gaugino masses, and
tanβ = 〈φu〉/〈φd 〉. Sincemb/〈φu〉 tanβ ≈ θ2.7 tanβ
(with mb(mt ) ∼ 2.9 GeV [18]) in the following we
will use the parameterization tanβ = θx−3 that ranges

Fig. 1. Tree-level neutrino mass dependence on logθ sinξ ≈H30 for
different assignments of the charge differenceH30=H3−H0 and
for different values of tanβ. Details in the text.

between 90 and 1 forx between 0 and 3. Keep-
ing in mind that we are always neglecting coeffi-
cients of order unity, we can approximate cos2β =
(1 + tan2β)−1 ≈ θ2(3−x). Taking alsoM1 ' Mγ ,
µM2/M

2
Z � sin 2β cosξ and 100 GeV. M2 .

500 GeV we obtain from (5)

(6)mtree
ν ≈

[
θ−(5+x) sinξ

]2 eV.

The magnitude of the tree-level neutrino mass as
a function of logθ sinξ ≈ H30 for different values
of x (which in our notations parameterizes tanβ)
is illustrated in Fig. 1. The grey bands correspond
to Eq. (5) withM2 ranging between 100 GeV and
500 GeV, while the dashed lines correspond to the
approximate expression (6). In general, two conditions
have to be satisfied to ensure exactµα–vα alignment
andmtree

ν = 0 [3]: (1) µα ∝ Bα and (2) m̃2
αβµβ =

m̃2µα , whereBα is the bilinear soft-breaking term
coupling theHα andφu scalar components, and̃m2

αβ

is the matrix of the soft scalar masses for theHα
fields.

In our case the goodness of the alignment between
µα andvα is controlled by the horizontal symmetry,
and in particular there is no need of assuming univer-
sality of the soft breaking terms to suppressmtree

ν to
an acceptable level. This is because the previous two
conditions are automatically satisfied in an approxi-
mate way up to corrections of the orderθ |Hi0|, where
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the minimum charge difference betweenH0 and the
Hi ‘lepton’ fields is responsible for the leading effects.
Thus we can estimate

(7)sinξ ≈ θ |Hi0| = θ |ni−n0| ' µi

µ0
.

Confronting (7) with (6) it follows that in order to
ensure thatmtree

ν is parametricallysuppressed below
the eV scale we need

(8)|ni − n0|> 5+ x (i = 1,2,3).

3. Vanishing of theλ and λ′ couplings

As we have shown in the previous section, requiring
a sufficient suppression of tree level neutrino mass
with respect to the Higgsino mass implies that the
chargesHi should be much larger in absolute value
thanH0. Then it follows that in the basis where the
charges are well defined, the relationsH0 ' φd and
h
l(d)
ij ' λ(′)0ij are satisfied to a very good approximation.

Let us introduce the parameterization

(9)|ni − n0| − (5+ x)= δi .
Without loss of generality, we can also assumen1 6
n26 n3 which implies

(10)mtree
ν ≈ θ2δ3 eV.

It is worth stressing that the parameter that controls the
scaling ofmtree

ν with respect to changes in the values of
the horizontal charges isθ2' 0.05, and thus neutrino
masses are much more sensitive to the horizontal
symmetry than the other fermion masses that scale
with θ . For exampleδ3 = −1 yieldsmtree

ν ∼ 20 eV
in conflict with cosmological structure formation [19];
δ3 = 0 yieldsmtree

ν ∼ 1 eV which implies a sizeable
amount of hot dark matter; however, as we will see, it
also allows for non-vanishingλ andλ′′ couplings; for
δ3= 1 all the trilinear R-parity violating couplings are
forbidden, and at the same timemtree

ν ∼ 5× 10−2 eV
(see Fig. 1) is in the correct range for a solution to the
atmospheric neutrino problem [12,13]; finally,δ3= 2
would suppressmtree

ν too much to allow for such a
solution.

Let us now write the down-quarks and lepton
Yukawa matrices as

hdjk ' θH0+Qj+dk = θQj3+dk3+x,
(11)hljk ' θH0+Hj+lk = θHj3+lk3+x,

wherex =H0+Q3+ d3=H0+H3+ l3 consistently
with our parameterization of tanβ and with the ap-
proximate equality between the bottom and tau masses
at sufficiently high energies (which in particular allows
for b–τ Yukawa unification). The order of magnitude
of the trilinear R-parity violating couplings is then:

λ′ijk ' θni−n0 hdjk ' θQj3+dk3−(5+δi),
(12)λijk ' θni−n0 hljk ' θHj3+lk3−(5+δi).

One can show that the phenomenological information
on the charged fermion mass ratios and quark mixing
angles

mu :mc :mt ' θ8 : θ4 : 1,

md :ms :mb ' θ4 : θ2 : 1,

me :mµ :mτ ' θ5 : θ2 : 1,

(13)Vus' θ, Vcb' θ2,

which gives rise to eight conditions on the fermion
charges1 can be re-expressed in terms of the following
sets of eight charge differences [7,10,20–22]

(14)

Model Q13 Q23 d13 d23 u13 u23

MQ1 : 3 2 1 0 5 2

MQ2 : −3 2 7 0 11 2

Model H13+ l13 H23+ l23

ML1 : 5 2

ML2 : 9 −2

We will not repeat here the phenomenological analysis
leading to these sets of charge differences, since this
has been extensively discussed in the literature [7,
10,20–22]; however, let us comment briefly on the
different models listed in (14). The first set of charge
differences labeled as MQ1 and ML1 corresponds the
simplest solution where all the charges are fixed before
supersymmetry breaking by the phenomenological

1 Note thatVub' VusVcb' θ3 is a prediction of the model (in
agreement with the experimental measurements) and does not give
additional constraints.
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conditions listed in (13). Note however, that the charge
differences in the second row labeled as MQ2 and
ML2 are also compatible with (13). This is due to
the fact that in MQ2 and ML2 some entries in the
mass matrices have negative values of the charges,
and initially correspond to holomorphic zeroes. After
canonical diagonalization of the field kinetic terms
these zeroes are lifted to non-vanishing values which
are the correct ones to reproduce the same pattern (13)
of mass ratios and quark mixing angles [7,10,22].
For example, with the restrictionx 6= 3, the overall
charge of the(1,2) entry in the down quark mass
matrix Q13 + d23 + x = −3 + x is negative and
implies hd12 = 0 . However, afterQi and dj field
redefinition this entry is lifted to tohd12 ' θx+3 [7]
which yields the correct value of the Cabibbo mixing
angle Vus ' θ . Similarly, with the restrictionx 6=
2,3 ML2 reproduces correctly the lepton mass ratios
in (13).

Confronting now (12) with (14) we can conclude
the following
• In MQ1, δi > 0 is a sufficient condition to

ensure that the overall charges of theλ′ couplings are
negative, implying that in the charge basis all these
couplings are forbidden by holomorphy.
• In ML1, δi > 1 is only a necessary condition to

achieveλijk = 0. Since in the leptonic sector the single
values of the charge differences that control the mixing
angles are not known, we need more assumptions
to make a definite statement about these couplings.
Let us note that the valuesH12= −1,−2 are always
excluded since they would result in incorrect values
of theme/mµ mass ratio, whileH12=−3 is allowed
only for x = 0. Therefore in the leptonic sector the
conditionni < 0 forces the mixing between the first
two generation neutrinosVeµ ' θ |H12| to be either
very strongly suppressed (. θ3) or of order unity.
The first case excludes the possibility of explaining
the solar neutrino data throughνe–νµ oscillations.
The other possibilityH12 = 0 corresponds toνe–νµ
mixing not suppressed by powers ofθ , and hence
gives the possibility of implementing a large mixing
angle solution for the solar neutrino problem. On the
other hand, since a maximalνµ–ντ mixing is strongly
supported by the atmospheric neutrino data, we will
take H23 = 0 as a phenomenological assumption.
Then from Eq. (12) it is easy to see thatH23=H12= 0

is enough to guarantee the vanishing of all theλijk
couplings.
• In MQ2,Q23+d13= 9 so that to eliminate theλ′

couplings we would needδi > 5 . This results in a
very large suppression of the tree level neutrino mass
mtree
ν . 10−7 eV so that this case is not very interest-

ing from the point of view of neutrino phenomenology.
Insisting onδi = 1 results inλ′i21' θ3 andλ′i31' θ
while all the othersλ′ couplings vanish. Apparently,
this is not in conflict with the existing experimental
limits. However, afterQi and di field redefinition a
tiny coupling λ′i12 ' λ′i31θ

|Q13|+|d12| ' θ11 is gener-
ated. This is enough to conflict with the strong limit
λ′i21λ

′
i12. θ15 from K–SK mixing [23]. We conclude

that in MQ2 either the neutrino masses are uninterest-
ingly small, or theλ′ conflicts with existing experi-
mental limits.2

• In ML2, once we setH23 = 0 to allow for
maximal νµ–ντ mixing, the lepton mass ratios (13)
can be correctly reproduced only ifH12> 4, which
would again exclude the possibility of explaining the
solar neutrinos deficit throughνe–νµ oscillations.

In conclusion, we have shown that in the framework
of models of Abelian horizontal symmetries, the
phenomenological information on the charged fermion
mass ratios and quark mixing angles listed in (13)
and re-expressed in terms of the eight horizontal
charge differences in (14), when complemented with
the requirement thatmtree

ν is adequately suppressed
below the eV scale (δi > 1) hints at one self-consistent
model (MQ1+ML1) where all theλ andλ′ couplings
vanish. It is interesting to note thatδ3= 1 which yields
mtree
ν ≈ θ2 eV in the correct range required by the

atmospheric neutrino problem is also the minimum
value that ensuresλ = 0, λ′ = 0 and, as we will see
in the next section,λ′′ = 0.

4. Vanishing of theλ′′ couplings

Even if the trilinear lepton number violating cou-
plings are absent in the basis where the horizontal
charges are well defined, field rotation to the phys-
ical basis(φd,Li) will still induce tiny δλ and δλ′

2 As we will see in the next section, MQ2 withδi = 1 is also
excluded by the requirement that theλ′′ couplings vanish.
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terms. In general the couplings induced in this way
remain safely small to satisfy most of the experimen-
tal constraints, however some combination of theδλ′
with theB violating λ′′ couplings can endanger pro-
ton stability. In this section we will show that the addi-
tional theoretical constraints from cancellation of the
mixedGSM × U(1)H anomalies, which are manda-
tory if U(1)H is a local symmetry, ensure that all the
λ′′ charges are negative and that the couplings are for-
bidden by holomorphy.3 Since for theλ′′ a change of
basis or a field redefinition cannot lift any of the holo-
morphic zeroes, proton stability is not in jeopardy.

Let us introduce the notationnQ =∑i Qi for the
sum of the charges of the quark doublets and let us
write the charge of a genericλ′′ijk coupling as

di + dj + uk = di1+ dj2+ uk3+ (Q1+ d1+H0)

(15)
+ (Q2+ d2+H0)+ φu − nQ − 2n0,

where we have usedQ3+ u3+ φu = 0 as implied by
mt ∼ 〈φu〉. The consistency conditions for cancella-
tion of the anomalies via the Green–Schwarz mech-
anism [24] imply that the coefficients of the mixed
SU(2)2L × U(1)H and SU(3)2C × U(1)H anomalies
C2=∑α Hα+φu+3nQ andC3=∑i (2Qi+di+ui)
must be equal [26]. This equality can be written as

(16)
3∑
α=0

nα + 3(nQ − φu)= 3(6+ x − n0),

where forC2 on the left-hand side of (16) we have
used

∑
α Hα =

∑
α nα − 4φu, and the expression for

C3 on the right-hand side can be easily derived from
the charge differences given in (14) and holds for both
MQ1 and MQ2.

Inserting in (15) the value ofφu − nQ derived from
the anomaly cancellation condition (16) and writing
the explicit values of themd andms charges appearing
inside the parentheses in (15) (respectively, 4+ x and
2+ x) we obtain

3 Here we assume that theU(1)H is anomalous, so that the
anomaly cancellation is achieved via the Green–Schwarz mecha-
nism [24]. This is the only possibility consistent with the implicit
assumptionmu 6= 0 made in (13) [6]. A study of the non-anomalous
case is presented in [25].

di + dj + uk

= di1+ dj2+ uk3+ (x − n0)+ 1

3

3∑
α=0

nα

(17)6 di1+ dj2+ uk3− 5− 1

3
,

where in the last step we have usedn0 = −1 and
n16 n26 n36−(6+ x) as suggested by the analysis
in the previous sections. Now it is straightforward
to verify that the charge differences in (14) imply
di1+ dj26 0 both in MQ1 and MQ2 (remember that
i 6= j because of the antisymmetry of theλ′′) and
uk3 6 5 (MQ1), uk3 6 11 (MQ2). The values that
saturate these relations are the most conservative ones.
Therefore in MQ1di + dj + uk < 0 for all values of
the indices and independently of tanβ , thus ensuring
the vanishing of all theλ′′ couplings, while in MQ2
some of theλ′′ do not vanish.

5. One loop neutrino masses

It has long been realized that loop effects may lead
to radiative neutrino masses [27]. In order to estimate
the size of these effects in the present framework, first
we need to evaluate theδλ and δλ′ terms induced
by the rotation from the basis(H0,Hi) in which the
charges are well defined to the basis(φd,Li) in which
the Yukawa couplings are well defined. Given that
H0' φd +∑i θ

|Hi0|Li we obtain

(18)(δλ′)ijk ' θ |Hi0| hdjk ' θ5+δi+x θ Qj3+dk3+x,

(19)(δλ)ijk ' θ |Hi0| hljk ' θ5+δi+x θ Hj3+lk3+x.

Once non-vanishingλ andλ′ couplings are generated,
quark–squark and lepton–slepton loop diagrams will
induce a mass for the two neutrinos that are massless
at the tree level [28–31]. An approximate expression
for the leading one-loop contributions to the neutrino
mass matrix reads [32]

(
m

loop
ν

)
ij
' 3(δλ′)ikl(δλ′)jmn

8π2

(md)kn(M̃
d2

LR)lm

m̃2

(20)+ (δλ)ikl(δλ)jmn
8π2

(ml)kn(M̃
l2

LR)lm

m̃2 .

Heremd (ml) is the d-quark (lepton) mass matrix,

M̃
d(l)2

LR is the left–right sector in the mass-squared
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matrix for the d̃ (l̃) scalars,m̃ represents a slepton
or squark mass, and the expression holds at leading
order inM̃2

LR/m̃
2. As was discussed in [29] the largest

loop contribution comes from quark–squark loops
involving (md)32 ∼ (md)33 ∼ mb and (M̃d2

LR)32 ∼
(M̃d2

LR)33∼ m̃mb, and gives a mass of the order

(
m

loop
ν

)
ij
≈ 3

8π2

m2
b

m̃
(δλ′)i33(δλ

′)j33

(21)≈ θδi+δj+4x eV,

where we have used 3/(8π2)(mb/m̃)(mb/1 eV) ≈
θ−10 corresponding tõm ≈ 100 GeV. We see that for
δ2 = δ3 = 1 (that allows for aνµ–ντ mixing angle
without parametric suppression) we have two main
possibilities: (i)x = 0 (tanβ ∼ mt/mb) andmloop

ν ≈
mtree
ν ≈ θ2 ∼ few 10−2 eV. While this allows for a

m2
ντ
− m2

νµ
difference in the correct range for the

atmospheric neutrino problem,νe–νµ oscillations do
not solve the solar neutrino problem. Only form̃ &
1 TeV we obtain enough suppression andmloop

ν ∼
few 10−3 eV can fall in the correct range for the
large mixing angle solutions to the solar neutrino
problem. Of course,x = 0 implies that the value of
tanβ is very large (& 60) and therefore this case
is phenomenologically disfavored [33,34]. (ii)x = 1
(tanβ ≈ 10–40) yieldsmloop

ν ≈ θ6 ∼ 10−4 eV which
allows for the LOW or the quasi-vacuum solution to
the solar neutrino problem. Finallyx = 2 (tanβ ∼ 5)
would yield a too large suppressionmloop

ν ≈ θ10 ∼
10−7 eV to be interesting for the solar neutrinos.

In conclusion, our analysis results in the following
set of fields charge differences and ofnα = Hα + φu
charge sums:

(22)

Q13 Q23 d13 d23 u13 u23 H13 H23 l13 l23 ni n0

3 2 1 0 5 2 0 0 5 2−8 −1

where we have used the valuex = 1 (corresponding
to tanβ ≈ 10–40) as suggested by the analysis of
the loop effects. The corresponding structure of the
charged fermion mass matrices is:

Mu

〈φu〉 '
[
θ8 θ5 θ3

θ7 θ4 θ2

θ5 θ2 1

]
,

Md

〈φd 〉 ' θ
[
θ4 θ3 θ3

θ3 θ2 θ2

θ 1 1

]
,

(23)
Ml

〈φd 〉 ' θ
[
θ5 θ2 1
θ5 θ2 1
θ5 θ2 1

]
.

In the appendix we will derive the individual charges
of an anomaly free model that reproduces these results.

6. Inputs versus predictions

Models based on a singleU(1)H Abelian factor
are completely specified in terms of the horizontal
charges of the SM fields. There are five charges for
each fermion family plus two charges for the Higgs
doublets, for a total of 17 charges that a priori can
be considered as free parameters (the charge of the
U(1)H breaking parameterθ is just a normalization
factor). The individual value of these charges is deter-
mined by a set of phenomenological and theoretical
conditions. To some extent it is a matter of taste what
is taken as an input condition, and what is derived as
a model prediction. However it is important to under-
stand to what extent the model has a predictive power,
and to what extent it just has enough freedom to fit
the experimental data. The purpose of this section is to
clarify this issue.

The six mass ratios plus two CKM mixing angles
listed in (13) provide the first eight constraints on the
fermion charges. There are two additional constraints
from the absolute values of the masses of the third
generation fermions, corresponding to a top mass
unsuppressed with respect to the electroweak scale
and to the approximate equality between theb andτ
masses at high energy

mt ∼ 〈φu〉 H⇒ Q3+ u3+ φu = 0,

mb ∼mτ H⇒ x ≡Q3+ d3+H0

(24)=H3+ l3+H0.

In this paper we have also assumed that the supersym-
metricµ problem is solved by the horizontal symme-
try and we have taken the phenomenologically pre-
ferred value of the charge of theµ term

(25)n0=H0+ φu =−1

as an additional input. If we assume thatU(1)H is a
gauge symmetry, then additional constraints arise from
the requirement of cancellation of the mixedGSM ×
U(1)H anomalies. The vanishing of the coefficient
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of the U(1)Y × U(1)2H anomaly quadratic in the
horizontal charges

(26)

C(2) = φ2
u −

∑
α

H 2
α +

∑
i

[
Q2
i − 2u2

i + d2
i + `2

i

]
gives a first condition. If, as we are assuming here, the
non-vanishing mixed anomalies linear in the horizon-
tal charges are canceled through the Green–Schwarz
mechanism by aU(1)H gauge shift of an axion field
η(x)→ η(x) − ξ(x) δGS [24] the following consis-
tency condition must be also satisfied [26]

(27)C3= C2= C1

k1
= δGS,

whereC1= φu+∑α Hα+ 1
3

∑
i [Qi+8ui+2di−3li ]

is the coefficient of the mixedU(1)2Y ×U(1)H anom-
aly, andC2 andC3 have been defined before Eq. (16).
While the first equality in (27) represents an addi-
tional constrain on the horizontal charges, the second
condition depends on the hypercharge normalization
factor k1 that, since we are not postulating any GUT
symmetry, must be considered as a new arbitrary para-
meter. When written explicitly in terms of horizontal
charges, Eq. (27) yields the following interesting rela-
tion [6]:

(28)n0+ ηl − ηd =
(
k1− 5

3

)
δGS/2,

where we have introduced the notationηd ≡∑i (Qi +
di + H0) ' logθ (detMd/〈φd 〉) and ηl is defined in
a similar way. From the fermion mass ratios in (13)
we obtain ηl − ηd = 1 that, together with the as-
sumption (25) impliesk1 = 5/3. Therefore, while
the second equality in (28) does not provide addi-
tional constraints on the horizontal charges, it predicts
gauge coupling unification for the canonical value
sin2 θW = 3/8. Of course, we could have equivalently
taken the running of the gauge couplings in the MSSM
as a good reason to assume canonical gauge couplings
unification [16], thenn0=−1 would have resulted as
a theoretical prediction. In summary, the 17 horizontal
charges are constrained by eleven phenomenological
conditions (includingn0=−1) and by two theoretical
conditions from anomaly cancellation. This leaves us
with four free parameters, and we can chose them to
be the chargesni (i = 1,2,3) of the bilinear termsµi ,
andx =Q3+d3+H0 that fixes the value of tanβ . The
expressions of the horizontal charges for all the SM

fields as a function of these four parameters is given in
the appendix.

The main predictions of the model is the vanishing
of all the trilinear R-parity violating couplings in the
charge basis, as well asx = 1 which corresponds
to tanβ in the range≈ 10–40. In what concerns
the pattern of neutrino mixings, our model is most
naturally realized with no parametric suppression
of the mixing angles, in agreement with the solar
and atmospheric neutrino observations, and in sharp
contrast with the pattern of mixings in the quark
sector. The exact values of the mixings depend on
the unknown coefficients of order unity, which are
not determined by the Abelian symmetry. Finally, the
absence of parametric suppression also applies to the
mixing angle which is restricted by reactor neutrino
experiments [35], whose small value in the present
framework can only arise from a conspiracy between
the unknown coefficients of order unity.

7. Conclusions

We have studied extensions of supersymmetric
models without R-parity which include an anomalous
horizontal symmetry. We have assumed that all the bi-
linear superpotential terms coupling the up-type Higgs
doublet with the four hypercharge−1/2 doublets
carry negative horizontal charges, and hence are for-
bidden by holomorphy. We have constrained the value
of these charges by several theoretical and phenom-
enological requirements, such as having an acceptable
higgsino mass (µ problem) and neutrino masses sup-
pressed below the electron-volt scale, as suggested by
present neutrino data. We have found that under these
conditions all the trilinear R-parity violating superpo-
tential couplings vanish, yielding a consistent model
which is defined by the charge differences in (22),
where lepton number is mildly violated only by small
bilinear terms. This implies that the magnitude of the
tree level neutrino mass is automatically suppressed by
the goodness of the alignment betweenµα andvα im-
plied by the horizontal symmetry. From this it follows
that neutrino masses can be in the correct ranges sug-
gested by the atmospheric neutrino problem and by the
LOW and quasi-vacuum solutions to the solar neutrino
problem. Moreover, having only bilinear R-parity vi-
olating terms as the origin of the neutrino masses im-
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Table 1
The anomaly free set of charges of model MQ1+ ML1 for x = 1 andn1= n2 = n3 =−8

Q1 Q2 Q3 u1 u2 u3 d1 d2 d3 H1 H2 H3 l1 l2 l3 φu H0

161
30

131
30

71
30

103
15

58
15

28
15 − 18

5 − 23
5 − 23

5 − 113
30 − 113

30 − 113
30

98
15

53
15

23
15 − 127

30
97
30

plies that also the three neutrino mixing angles (as-
suming CP conservation in the leptonic sector) are de-
termined as functions of the three bilinear/Rp terms,
leading to a predictive scenario, independently of the
particular structures of the charged lepton mass ma-
trix. However, no precise theoretical information can
be obtained about the neutrino mixing angles except
for the fact that, unlike the quark mixings, there is no
parametric suppression of their values and thus they
can be naturally large.
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Appendix A

In this appendix we derive the general expressions
for the individual field charges satisfying the set of 13
phenomenological and theoretical constraints corre-
sponding to the six mass ratios for the quarks and
the charged leptons plus the two quark mixing an-
gles listed in (13); the two relations provided by
the absolute value of the masses of the third gen-
eration fermions given in (24); one phenomenologi-
cal assumption about the charge of theµ term (25);
one theoretical constraint corresponding to the con-
sistency conditions (27) for the coefficients of the
mixed linear anomalies (the second constraint fixes
k1= 5/3) and one additional constraint from the van-
ishing of the mixed anomaly quadratic in the horizon-
tal charges (26). As discussed in Section 6, this leaves

us with four free parameters that we choose to beni
(i = 1,2,3) andx. We obtain

Q3= 1

15(7+ x)
× [− 180− 45x − 3x2+Q13(41+ 5x)

− 7L23+L2
23+ n1(2+ x +L23)

(A.1)+ n2(9+ x −L23)+ n3(9+ x)
]
,

H3= 1

15(7+ x)
× [20+ 50x + 6x2+ 18Q13− 21L23+ 3L2

23

− n1(29+ 2x − 3L23)− n2(8+ 2x + 3L23)

(A.2)+ n3(97+ 13x)
]
,

whereL23= H23+ l23 andQ13 parametrize the two
different possibilities for the quark and lepton charge
differences given in (14). In terms ofQ3 andH3 and
of our four free parameters we have

φu = n3−H3, u3=−Q3− φu,
(A.3)H0=−1+ φu, d3=−Q3+ x −H0,

l3=−H3+ x −H0

and from these all the other individual charges can
be straightforwardly determined from the charge dif-
ferences in Eq. (14). The solution for the charges in
model MQ1+ ML1 for the preferred valuesn1 =
n2= n3=−8 andx = 1 is given in Table 1.
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