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Abstract

We study the constraints on neutrino masses that could be derived from the observation of a galactic
supernova neutrino signal with present and future neutrino detectors. Our analysis is based on a recently
proposed method that uses the full statistics of neutrino events and does not depend on particular astrophys-
ical assumptions. The statistical approach, originally justified mainly in terms of intuitive reasoning, is put
on a more solid basis by means of Bayesian inference reasoning. Theoretical uncertainties in the neutrino
signal time profiles are estimated by applying the method to two widely different supernova models. Present
detectors can reach a sensitivity down to 1 eV. This is better than limits from trigkgdiecay experiments,
competitive with the most conservative results from neutrinoless dgitoliecay, less precise but less de-
pendent from prior assumptions than cosmological bounds. Future megatorOegakov detectors will
allow for about a factor of two improvement. However, they will not be competitive with the next generation
of laboratory experiments.
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1. Introduction

During the past few years, atmosphefld and solar[2,3] neutrino experiments provided
strong evidences for neutrino flavor oscillations and therefore for nonvanishing neutrino masses.
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The KamLAND resultd4] on the depletion of thé, flux from nuclear power plants in Japan,
and the K2K indication of a reduction in the, flux from the KEK accelerator, gave a fi-
nal confirmation of this picture. However, to date all the evidences for neutrino masses come
from oscillation experiments, that are only sensitive to mass square differences and cannot give
any informations on single mass values. The challenge of measuring the absolute value of neu-
trino masses is presently being addressed by means of a remarkably large number of different
approaches, ranging from laboratory experiments to a plethora of methods that relay on astro-
physical and cosmological considerations (for recent review$s6. From the study of the
end-point of the electron spectrum in tritiuadecay, laboratory experiments have set the limit
m,, < 2.2 eV [7]. If neutrinos are Majorana particles, the nonobservation of neutrinoless dou-
ble 8 decay can constrain a particular combination of the three neutrino masses. Interpretation
of these experimental results is affected by theoretical uncertainties related to nuclear matrix
elements calculations, and this reflects in some model dependence of the corresponding limits,
that lie in the rangen®™ < 0.2-13 eV [6,8]. Tight boundsy_; m,, < 0.6-18 eV have been re-
cently set using WMAP observations of cosmic microwave background anisotropies, galaxies
redshift surveys and other cosmological data (for a recent reviey@kaad references therein).
However, these limits become much looser if the set of assumptions on which they rely is relaxed
(se€[10] for discussions on this point). For example, by relaxing the hypothesis that the spectrum
of CMB fluctuations is described by a single power law, consistent cosmological models have
been constructed in which the neutrino masses can be of ordédé\Cosmological constraints
on neutrino masses might even be completely evaded in exotic scenarios where neutrinos anni-
hilate into hypothetical light bosons, implying a suppression of their contribution to the cosmic
matter density and negligible effects on structure formation at large dé2les

As it was realized long time ago, valuable informations on the neutrino masses could also
be provided by the detection of neutrinos from a supernova (SN) explfis3dnThe basic idea
relies on the time-of-flight delay: that a neutrino of mass, and energy, traveling a distance
L would suffer with respect to a massless particle:
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Indeed, already in the past the detection of about two dozens of neutrinos from SNISB7A
allowed to set upper limits om,. Due to the low statistics, the model independent bounds
derived were only at the level of;, < 30 eV[15] while more stringent limits could be obtained

only under specific assumptiofis5]. More recently, a detailed reexamination of the SN1987A
neutrino signal based on a rigorous statistical analysis of the sparse data and on a Bayesian
treatment of prior informations on the SN explosion mechanism, yielded the tighter bourd

5.7 eV[17].

The first observation of neutrinos from a SN triggered in the years following 1987 an in-
tense research work aimed to refine the methods for neutrino mass measurements, in view of
a future explosion within our Galaxy. With respect to SN1987A, the time delay of neutrinos
from a galactic SN would be reduced by a factor of a few due to the shorter SN-earth distance.
However, the neutrino flux on earth would increase as the square of this factor and, most im-
portantly, the large volumes of the neutrino detectors presently in operation will yield a huge
gain in statistics. In recent years several proposal have been put forth to identify the best ways to
measure the neutrino time-of-flight delays, given the present experimental facilities. Often, these
approaches rely on the identification of “timing” events that are used as benchmarks for mea-
suring the neutrino delays, as for example the emission of gravitational waves in coincidence
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with the neutrino bursf18,19] the short duration, neutronization peak that could allow to
identify time smearing effectd 9], the abrupt interruption of the neutrino flux due to a further
collapse of the star core into a black h{@®]. The more robust and less model dependent limits
achievable with these methods are at the levehpf< 3 eV, as for example if21] where only

the sudden steep raise of the neutrino luminosity due to neutrinosphere shock-wave breakout is
used, without the need of relying on additional time benchmarks from other astrophysical phe-
nomena. Tighter limits are obtained only under specific assumptions for the original profiles of
the SN neutrino emission or for the astrophysical mechanisms that give rise to the benchmarks
events.

In a recent papgR2] we proposed a new method to extract information on the neutrino mass
from a high statistics SN neutrino signal. The method allows to take advantage of the full statis-
tics of the signal, can be applied independently of particular astrophysical assumptions about the
characteristics of the neutrino emission (time evolution of the neutrino luminosity and spectral
parameters) and does not rely on additional benchmarks events for timing the neutrinos time-of-
flight delays. The method relies on two basic assumptions: the first and most important one is
that inside the collapsing core neutrinos are kept in thermal equilibrium by means of continuous
interactions with the surrounding medium, and therefore are emitted with a quasi-thermal spec-
trum. Besides being a solid prediction of any SN model, this picture was also confirmed by the
duration of about 10 seconds of the SN1987A signal, that constitutes an evidence for efficient
neutrino trapping within the high density core. According to this assumption, a high statistic neu-
trino signal can be considered as a ‘self timing’ quantity, since the high energy part of the signal,
that suffers only negligible delays, could determine with a good approximation the characteris-
tics of the low energy tail, where the mass induced lags are much larger. Therefore, no additional
timing events are needed, and each neutrino, according to its specific energy, provides a piece
of information partly for fixing the correct timing and partly for measuring the time delays. The
second hypothesis is that the time scale for the variation of the characteristics of the neutrino
spectrum is much larger than the time lags induced by a nonvanishing mass (say, much larger
than 5 ms, seél)). In other words, we assume that the time evolution of the spectral parameters
as inferred from the detected sample reproduces with a good approximation the time evolution of
the neutrino spectrum at the source. Also this assumption is quite reasonable, since it is a robust
prediction of all SN simulationg23-27]that sizable changes in the spectral parameters occur on
a time scale much larger than 5 ms.

In Ref. [22] we carried out a number of tests in order to evaluate the sensitivity of our ap-
proach. A typical statistics of several thousands of neutrino events as could be detected by
Super-Kamiokande (SK) was assumed. Synthetic neutrino signals were generated by means of
a Monte Carlo (MC) code according to the numerical results for the neutrino luminosity and
average energy profiles resulting from the simulation of the core collapse off,26tar pub-
lished by the Livermore grouf26]. The spectral shapes were taken from the dedicated study of
Janka and Hillebrand®8]. They contained a certain amount of nonthermal distortions that are a
general outcome of self consistent simulations of SN explosions. Finally, also the effects of neu-
trino oscillations in the SN mantle were briefly analyzed in one rather conservative case (large
differences between the average energies of the different neutrino flavors, and a sizable mixing
between the neutrino spectra). As a result, it was shown that the method can have enough sen-
sitivity to allow disentangling with good confidence a neutrino mass of 1 eV from the massless
cas€22,29]

In this paper we present important improvements on the method and a more complete set
of results. We begin in Sectiohwith a discussion of the statistical approach put fortfi2ig]
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and we show that it can be justified on a solid theoretical basis by means of Bayesian inference
reasoning. To verify that the quality of the results does not depend crucially on any particular
SN model, we carry out independent analysis of two different sets of neutrino samples, as is
described in Sectio3. The first set is generated according to the same time pr¢figisand
spectral shapelR8] used in our previous worlR2]. The second set is generated using the al-
ternative time profiles obtained quite recently by the Garching gf@dB0] Comparison of

the results obtained with the two different sets shows that our procedure for fitting the neu-
trino masses is robust with respect to changes in the SN model. We also refine the treatment of
the effects of neutrino oscillations in the SN mantle. The mixed spectra are generated by using
the most recent results on SN neutrino spectra formg8adr32] that include a proper treat-

ment of the contributions to, . opacities. We do not include earth matter effects, since they
will depend on the specific position in the sky of the SN relative to the earth, on the specific
location of each detector and on the time of the day. However, given that even with a dedi-
cated analysis it appears quite challenging to identify clearly these ef&itsve believe that

this neglect is of no practical importance. We have identified and corrected a flaw in our MC
generator that was slightly (but artificially) enriching the number of neutrinos in the low en-
ergy tail of the distribution. Given that low energy neutrinos carry important informations on
the mass, the sensitivity of the method was also slightly enhanced. The procedure of fitting
the time evolution of the neutrino spectra is described in SectidWith respect td22] we

have improved both in efficiency and in precision by adoptingdHeé function suggested in
[27,32] This allows for a more simple analytical treatment of the firsts momenta of the energy
distributions, and considerably reduces the statistical fluctuations with respect to the numeri-
cal fits based on the ‘pinched’ Fermi-Dirac functions usefR®]. Our results are presented

in Section5. We have studied the sensitivity of two classes of present and planned detectors:
the SK and Hyper-Kamiokande (HK}4] water Cerenkov detectors that are characterized by
large statistics, and the KamLAN[35] and LENA [36] scintillator detectors characterized by

a lower energy threshold, better energy resolution, but lower statistics. The results show that the
power of the method relies mainly on the overall amount of neutrino events. The lower energy
threshold and better energy resolution of scintillator detectors do not compensate for the lower
statistics.

The claim that with the detectors presently in operation the method is sensitive to neutrino
masses at the 1 eV levil2,29,37]is confirmed by the results of the present more complete
analysis. Note that this sensitivity is seizable better than present results from Biievay ex-
perimentg7], is competitive with the most conservative limits from neutrinoless doghlecay
[6,8], and is less precise but much less dependent from prior assumptions than cosmological
measurementfl0]. A future megaton wate€erenkov detector as HK will allow for about a
factor of two improvement in the sensitivity. However, it will not be competitive with the next
generation of tritiums-decay[38] and neutrinoless doublg-decay experiments (s¢&9] and
references therein). We can conclude that the occurrence of a galactic SN explosion within
the next few years might still provide valuable informations on neutrino masses. However, as
is briefly discussed at the end of Sectidneven in the idealized situation in which the time
profiles of the SN neutrino signal are assumed known a priori, the sensitivity of these mea-
surements remains approximately at the level eV (at SK). Therefore, as new laboratory
experiments and cosmic observations will push the neutrino mass limits sensibly below 1 eV,
the corresponding effects of the neutrino time of flight delays on a SN signal will become un-
measurable.
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2. Outline of the statistical method

In real time detectors, supernova electron antineutrinos are revealed through to the positrons
they produce via charged current interactions, that provide good energy informations as well.
Eachi, event corresponds to a pair of energy and time measurenigntg) together with
their associated errors. In order to extract the maximum of information from a high statistics
SN neutrino signal, all the neutrino events have to be used in constructing a suitable statistical
distribution, as for example the likelihood function, that can be schematically written as

1

c=[]ci=][{¢w) x F(Ei:t) x o (Ep}. @

L; represents the contribution to the likelihood of a single event, with the indexing over the
entire set of events; (E) is thev, detection cross-section which is a well-known function of the
neutrino energy40,41]while F(E; t) is the energy spectrum of the neutrinos whose time profile
is determined by the time evolution of some suitable spectral parameters. According to the first
assumption in the previous section, the spectrum can be reasonably described by a quasi-thermal
(analytical) distribution. If for example a distorted Fermi—Dirac function is used, as was done
in [22], F(E;t) can be parametrized in terms of a time dependent effective temperature and a
‘pinching’ factor[28] describing the spectral distortions, and according to the second assumption,
the time dependence of the relevant spectral parameters can be inferred directly from the data.
Therefore, the main problem in constructing the likelihg@ylis represented by the first factor
¢ (1), that is the time profile of the neutrino flux. The strategy outlinedi?] was to find a
suitable class of parametric analytical functions that could fit reasonably welkteetedlux.
Given that the time delays of the neutrinos of lowest energy are still only of the order of a few
milliseconds, it seems reasonable to assume that the same parametric functions could also fit
well the flux profile at the source. In addition, the fact that the induced delays have a very simple
dependence on the neutrino energy and affect the signal in the same way, independently of the
specific time of the neutrino emission, yielded us to expect that maximizing the likelihood would
allow to pin down in an independent way the best-fit flux parameters and the neutrino mass.
Confidence regions for the neutrino masses were found by marginalizimith respect to the
flux parameters, and at each step of our analysis a special care was put in checking that no large
correlations between the flux parameters and the mass would be present. This was interpreted as
an indication of the independence of the fitted masses not only from the flux parameters, but also
from the specific analytical profile chosen for the flux.

This procedure, that in Ref22] was justified mainly on the basis of intuitive arguments,
can in fact be put on a more solid basis by means of Bayesian reasoning, according to which
the likelihood function is precisely the probability of the data given some hypothesis for their
origin. This allows us to give a well-defined statistical role to the flux profi&s. Moreover,
the marginalization procedure followed [22] can be put in direct relation with the integration
of nuisance parameters specific of Bayesian methods. In the remaining part of this section we
give a brief introduction to the main concepts of Bayesian inference that we will use. A short,
self contained and physics oriented introduction to Bayesian statistics can be f¢uif imhile
a more complete review of Bayesian techniques and their applications in physics data analysis is
given in[42].

In Bayesian inference, the degree of credibility that is assigned to a model on the basis of cer-
tain empirical evidence, must be weighted according to the previous knowledge of the problem
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(the prior). The central logical proposition at the basis of Bayesian statistics is Bayes theorem:
p(M|D,I)=p(DIM, 1) x p(M|I)/p(DII). 3)

The meaning of the notatiop(x|y) is the probability of proposition given thaty is true. The
probability p(M|D, I) is called theposterior probabilityfor model M given the dataD and
some background informatioh; p(D|M, I) is the probability that the dat® are described
by model M and it is called thesampling probabilityfor D or the likelihood for model M;
p(M|I) is the prior probability for model M in the absence oD, and p(D|I) is called the
evidencdor D and represents the probability that the measurement produce th® datahe
entire class of hypotheses. Whahis described by a (continuous) set of parameters collectively
denoted a3, the posterior probability (A| D, I') becomes a multivariate probability distribution
function (pdf) for the parameters, while the likelihopdD| A, I), that we will denote by the
symbol L(D; A) in spite of its explicit dependence is not by itself a pdf for the parameters. The
evidencep(D|I) isindependent oft and plays simply the role of the pdf normalization constant
N =p(D|I)= [dAL(D; A)p(All).

Often one is interested just in a subset of the parameters. For example in thiAwo(r}nf, A)
and we will be interested in the implications of the SN neutrino data for the neutrino mass square
mf irrespectively of the particular values of the other model parametetisat therefore are
callednuisance parameter3he posterior pdf for the parameter of interest is calledhheginal
posterior probability and is given by anarginalizationprocedure, namely by integrating the
posterior probability with respect to the nuisance parameters:

p(m2|D, 1) =/d)\p(m§,x|D,1) =N—lfd,u:(D;mf,,\)p(mﬁ,,\u). 4

In practice, as is often done, we will use flat priors for all the model paramgtarsl a step
function @(m%) =1, (0) formﬁ > 0, (< 0) to exclude unphysical values of the neutrino mass.
Therefore the neutrino mass square pdf, given the SN neutrindatads

p(miID. 1) =@(m§)fdw(0;m5%)’ ©

where the normalization constant has been absorbed for simplicity in the likelihood function.
The posterior pd{5) is what we will use in Sectio® to estimate credible regions and upper
limits for the neutrino mass. Note that we could have assumed a different prior for the neutrino
mass square, for example by introducing a second step function to exclude mass values larger
than the tritiumg decay upper limif7]. This is the way Bayesian inference allows one to take
advantage of prior informations on physical quantities. However, when the data under analysis
are informative, as is in our case, a change in the prior makes little difference on the results. More
subtle is the use of a flat prior in, rather than innﬁ. Throughout our analysis we will useeﬁ
not only to avoid the problem of double maxima that would be encountered in maxindiziritp
respect ton,,, but also becausa§ is the relevant physical parameter for computing the neutrino
time lags. Note that a flat prior im, would imply for the pdfp(m,|D, I) ~ |mv|p(m§|D, I
and therefore it would favor credible regions located at smaller values of the mass. However,
by comparing results obtained with both types of priors, we have verified that there is enough
information in the data to make of little difference which specific prior is used in estimating the
credible regions and the mass upper limits.

Coming back to the problem of constructing the likelihood function, and in particular of
choosing a specific time profile for the neutrino flux (namely the madeve have proceeded
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Fig. 1. The two flux profiles discussed in Sectdrin both panels, the histogram corresponds to a time binning of a SN
signal generated according to the Garching group simulation (SN mo@#r 30] The left panel depicts the analytical
time-profile (6) that has been used in our analysis for a few different choices of the relevant paramgter @nd

n, = 8 have been held fixed for simplicity). The right panel shows the alternative flux pfofiier ng =n, =1,A=2,

C = 0.8, and a few different choices of the other parameters.

according to the following requirements: (i) the analytical flux function must go to zero at the
origin and at infinity; (ii) it must contain at least two time scales, corresponding to the two main
physical processes responsible for neutrino emission from the star core: the initial, fast rising
phase of shock-wave breakout and accretion, and the later Kelvin—-Helmholtz cooling phase;
(i) it must contain the minimum possible number of free parameters to avoid degenerate direc-
tions in parameter space. Still, it must be sufficiently ‘adaptive’ to fit in a satisfactory way the
numerical flux profiles resulting from different SN simulations, as well as flavor mixed profiles
as would result from neutrino oscillations (see Sec8di).

The following model for the flux, in spite of being very simple, has all the required behaviors,
and moreover it showed a remarkable level of smoothness and stability with respect to numerical
extremization and multi-parameter integrations:

e_(ta/f)na ~ e—(ta/t)"a (t — 0), (6)

L+ /1) el {~ (te/D)"  (t — 00),
where an overall normalization factor has been omitted for simplicity. This model has five free
parameters that on the I.h.s. @) have been collectively denoted with two time scales, for
the initial exponentially fast rising phase andor the power law cooling phase, two exponents
ng andn. that control the detailed rates for these two phases, and one additional expgnent
that mainly determines the width of the ‘plateau’ between the two phaseBi(se®. Given that
in the likelihood analysis we will set the origin of times in coincidence with the first neutrino
detected and this obviously cannot correspond to the origin of time of the flux fur{é)isimce
¢ (0, 1) =0, a sixth parameteir is needed to allow the function to shift freely along the time
axis according t@ (r) — ¢ (¢t + &t). Note that the function i(6) is nothing else that a physically
more transparent re-parametrization of the flux model first introducg®in

How much our results on the neutrino mass will depend on the specific flux profile that
has been chosen? To answer this question we have carried out a set of tests by using another
flux model probably better motivated on astrophysical grounds, and that was thoroughly studied
in[17]

o(t; 1)

Ae—@/ta)" C
A +t/tp) + A+t/t)ne

P(t; 1) ~ (7
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This profile is constructed by combining a truncated accretion component (first term) with a
power law cooling component (second term). In the analysjs @fthis kind of models proved

to give the best fits to the SN1987A neutrino data. To enforce the correct belgawjor> 0

for t — 0 we have multiplied7) by a suitable exponential factor. The profiles of the two flux
models are depicted ifig. 1for a few different choices of the relevant parameters, and compared
with a typical flux histogram from our MC generator. For the case shown in the figure, the
neutrino sample was generated according to the results of the SN simulation giZh3a]

(see SectioB). We have carried out a set of statistical tests with a few synthetic neutrino samples
using our flux mode{6) and the more complicated profi(&). Within statistical fluctuations, the
results for the neutrino mass best fits, credible regions and upper limits, showed a high degree of
consistency. Again, this is a firm indication that the SN data are indeed informative on neutrino
mass values of the order of 1 eV, and that our procedure is robust not only with respect to changes
in specific priors, but also with respect to different choices of the analytical time profiles for the
neutrino flux.

3. Generation of the supernova neutrino signals

The last decades have witnessed a continuous and intense effort in the development and im-
provement of numerical simulations of the core collapse of massive stars. In spite of the important
achievements in the theoretical understanding of the underlying explosion mechanism and of the
huge gain in processing speed of modern computers, it is still unclear if the set of physical inputs
of present SN simulations is able to produce successful explosions, and it might well be that
some clue ingredients to the whole collapse/explosion process is still m{gS§hd&learly, this
somewhat weakens our confidence about the reliability of the detailed results from the numerical
simulations and, specifically for our study, about the average energy and flux time profiles of the
neutrino emission. In particular, different simulations produce quite diverse patterns for the time
evolution of the average energy of the different neutrino flavors, and also the approximate values
of the ratios between the amounts of energy carried away pyandt (anti)neutrinos remains
an issue still under debafg7,32] These two points acquire special importance in view of the
recent experimental evidences for neutrino oscillations, that imply that the, ®Nergy spec-
trum that we will observe on earth will most likely correspond to a superposition of the spectra
of different flavors.

In order to estimate to what extent the conclusions of our study could depend on the specific
results of a given SN simulation, we have applied the method to two different SN models, that
are characterized by neutrino spectra that fall close to the two extremes of the allowed range of
possibilities. The first SN model, which was also used in our previous analjj&ig]iand that we
will denote assupernova model,Xkorresponds to a simulation of the core collapse of &20
star[26] that was carried out with the Livermore group cd@8]. The neutrino time profiles
resulting from this simulation are depicted in the left panel$iof 2 The electron ang., ¢
antineutrino fluxes are shown in the left-upper pakad(2(a)) while the time evolution of the
neutrinos average energy is shown in the left-lower pdfigl @(b)). According tg27,31,32] in
this simulation (as well as in other simulations previously publishedkthedt (anti)neutrino
opacities were treated in a simplified way. This is because these flavors are less important than
the electron (anti)neutrinos for determining the core evolution and the SN explosion. The lack
of inclusion of important contributions to the opacities is responsible for large (and probably
unrealistic) differences in the, . average energies with respectilg and also results into
approximate equipartition of the emitted total energy between the six neutrino flavors. Since
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Fig. 2. Thev, (solid lines) andv, ; (dotted lines) time profiles for the luminosities and mean energies for the two
different SN models described in the text. Left panels correspond to m¢aé] and right panels correspond to model 2
[27,30] To show how in model 1 the spectral differences between different neutrino flavors is increasing at later times,
the time axes in panel (b) has been extended upto 5 s.

the simplified treatment gf andt (anti)neutrino opacities has been a common approximation
adopted in the past by several groups, large neutrino spectral differences (up to a factor of two,
seeFig. 2(b)) together with approximate energy equipartition was established as the standard
picture for SN neutrino emission. The second model, that will be denotegjpesnova model,2
corresponds to a recent state-of-the-art hydrodynamic simulation of dlprogenitor star
[27,30] carried out by means of the Garching group cpt. This simulation includes a more
complete treatment of neutrino opacit[@%,31,32]and results in a quite different picture for the
neutrino spectral properties and energy repartition: the spectra of antineutrinos of the different
flavors do not differ for more than about 20%d. 2(d)) while flavor energy equipartition appears
to be violated by large factof27,31,32]

The starting point for studying what informations on neutrino masses could be extracted from
a measurement of SN neutrinos is to generate by means of a MC a set of synthetic measurements
that hopefully will resemble closely the results of real measurements. This is achieved with
three main steps: firstly, we have to generate different signals for the different neutrino flavors
as they are produced at the source; next, we have to take into account the effects of oscillations
in the SN mantle that will mix different fluxes and spectra (as already stated, we neglect earth
matter effects); finally the specific characteristics of the different detectors (fiducial volumes,
energy thresholds and resolutions) have to be properly accounted for. We will now give a brief
description of each one of these steps.
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Fig. 3. Snapshots of the neutrino spectra for the different flavors at 100 ms after core bounce. (a) SN model 1 (adapted

from [28]). (b) SN model Z230,45]

3.1. Neutrino fluxes and spectra at the source

In order to carry out a proper treatment of the emission and propagation of the neutrino to the
earth, including the effects of oscillations, we need to know the time and energy dependence of
the neutrino signa$, (E, ¢) at the emission point for each flaver

So(E 1) =¢s" (1) FS™(E; 1),

M(r) =

Lo(1)
Eq(t)

8)

whereL, (1) is the luminosity,E, (¢) is the average energy, af™(E; t) is the original energy
spectrum foib, . Both SN models 1 and 2 do not provide the complete set of informations needed
to generate our samples (we generate signals of the duration of 20 s). The results of model 1
include neutrino luminositied., (r) and average energies time profilEs(r) of the required
duration. However, the detailed spectral sha@8(E; ¢) are not giver{26]. To obviate this we

have adopted the numerical spectra from the detailed study presefi2&l iBnapshots of these
spectra taken at 100 ms. after bounce are reprodudeid.id(a). At each instantwe rescale the
spectra so that the evolution of the average enéigy) is correctly matched. For SN model 2

we have used the luminosities, average energies and second momenta of the energy distributions
directly from the original simulatiof27,30] However, this simulation was stopped after 750 ms,

and the results were not completely reliable already after the firsts 3QB80fsTherefore, we

had to extrapolate the results to later times. For the luminosities we have assumed a power law
decay in agreement with general results of SN simulatjgBs27]while for the mean energies

we have assumed a mild decrease after 750 ms.

3.2. Supernova neutrino oscillations

On their way out from the high density core to the outer low density regions of the SN mantle
neutrinos will undergo flavor oscillations. Neutrino conversion will mainly occur in crossing
resonant layers where the difference between the effective potentials felt by the different neutrino
flavors is close to the mass square difference between two mass eigenstates. Two resonant layer
are important for the neutrino conversion process, the first one is associated with the atmospheric
neutrinos mass square differermmé ~ 2.2 x 1073 eV [46] and the second one with the solar
neutrinos mass square differenaen? ~ 8.2 x 10~° eV? [46,47] As a result the flux of each
neutrino flavor as observed on earth will be and admixture of the different fluxes at the source. In
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terms of the emitted, andv,, , signalsS; andSx thev, signal at the detector can be written as
L2S%® = p; Sz + (1 — pe)Ss. 9)

whereL is the SN-earth distance apd is thev, survival probability. Note that while three dif-

ferent mass eigenstates propagate incoherently from the SN to the earth and concur to determine
Sget, the mass differences are much smaller than the sensitivity to the absolute value of the neu-
trino mass, and therefore neutrinos can be treated as degenerate for all practical purposes. We see
from (9) that the observed flux can be written in terms of just one survival probapiityhis is

because of two reasons: firstly, the large hierarchy betw&mé andAmé implies that the two
resonant layers are well separated, and therefore the conversion process can be factorized into a
two flavor problem at each layer; secondly, theandv, fluxes are equal (both are represented

by S;). A careful analysis of the level crossings encountered by the propagating eigenstates al-
lows to write p; in terms of the two antineutrino probabiliti®, and P, for jumping to a
different matter eigenstate when traversing the resonant Ig§@rsWe need to distinguish two
possibilities: the case of normal hierarchy (NH) wheinas the small admixture 9f,3 < 0.047

(30) [46,47]in the heaviest state, and the inverted hierarchy (IH) when the small admixture is in
the lightest state. Denoting Q¥.;| the modulus of the electron (anti)neutrino mixing with the

i =1, 2, 3 mass eigenstate, we have:

(NH):  pz = |Uo12(1 — Po) + |Ue2? Po,

pe = |Ue1]? ~ co$ 6 (10)
(IH):  pz =|Ual>(1— Po) Py + |Up2|? P P + |Ue3|?(1 — Pg),
pe = |Ue1|*Pg + U3l (1 — Pg); (11)

where in the second and last lines the adiabatic lifait—> 0 has been taken. Adiabaticity of the
transitions in the layer corresponding to the solar neutrino mass square difference is guaranteed
by the results of global fits to solar neutrino oscillations, that established the large mixing an-
gle solution with siRf, ~ 0.29 [46,47] Note that for NH theb, <> i3 transitions are strongly
suppressed due to the smallness$taf |2, and since there are no level crossing figithis state
decouples angh; does not depend oAg. In general this is not true for the IH case. However,

for |U.3|> > 1073 the transition is adiabatic also in the first layer implyifg ~ 0 and we
obtain p; ~ |U.3|? < 0.047 [46,47] This corresponds to an almost compléte 7, spectral

swap. For smaller values oF/,3|2 the transition enters the nonadiabatic regime and we obtain
pe ~ Pg c0g 6 (in this case the survival probability also depends on the neutrino energy, though
not in a strong way). In the following we will restrict ourself to the NH case that corresponds
to the most interesting situation, since it yield$.aspectrum which is an admixture of about

1/3 of the hardeb, original spectrum. Note that the IH case in the strongly nonadiabatic regime
(U31% <1075, Pg ~ 1) would also yield the same mixed spectrum. The IH case with adiabatic
transitions in the first layer is less interesting since the almost complefg spectral swap
would yield a single component neutrino spectrum just with a different effective temperature,
much alike the non-oscillation case. Obviously, oscillations effects resulting in a mixed spectrum
will be more important for large spectral differences as in SN model 1, since the fits to the energy
distributions by means of a single quasi-thermal spectral function will yield only an approximate
result. In SN model 2, where the two spectra do not differ too much, the main effect of oscilla-
tions would be that of a change in the statistics of the detected signal induced by deviations from
exact energy equipartition of the original fluxes, while the fits to the energy spectrum will not be
affected much.
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3.3. Neutrino detection

The double differential rate for the SN neutrino events in specific detector reads

d?n;, (E, 1)

_ / qdet, v / / /
e _NT/dE SIYE, )0 (E')e(EYR(E, E'), 12)

Etn
Wheresgft(E, t) is the incoming energy and time dependegntlistribution(9) ando (E) is the
cross-section, that for wat€erenkov and scintillator detectors corresponds to the invérse
decay process of producing a positron viacapture by a protofd40,41]. All the other quan-
tities vary according to the specific detector considerég:is the number of target particles
in the fiducial volume Ey, is the detection energy threshold an@:) the detection efficiency.
We assume 100% efficiency above threshold (that is a good approximation, e.g., for SK) so that
e(E) =0(E — E) with 4 the unit step function. FinallR (E, E') is the energy resolution func-
tion that accounts for the uncertainties in the measurement of neutrino energies. We approximate
this function with a Gaussian distribution with mean equal to the measured eBeand stan-
dard deviatiorA E given by[49]

BE L p L (13)
Mev ~ “EV Mev T Mev

The specific values aig andbg as well as other relevant parameters for the most important
SN neutrino detectors presently in operation and for a few proposed large volume detectors are
collected inTable 1 In the last column of the table we also give a range for the total number
of 1, events that a galactic SN at a distance of 10 kpc is expected to produce in each detector,
assuming the two SN model and the oscillation pattern discussed above, and taking into account
only charged current reactions that can provide good energy and time informations.

The sets of synthetic samples to which we have applied our procedure have been generated
with a MC code where bi-dimensional rejection ihand: is applied to the functioif12) de-
scribing the neutrino event rate for each detector considered. This yields a set of energy and time

Table 1

The relevanty, detection parameters for some of the present and proposed detectors. In the last column we give the
expected range for the number of charged curwgeents from a galactic SN at 10 kpc, assuming the neutrino oscillation
pattern discussed in Secti@2 The larger (smaller) numbers correspond to SN model 1 (model 2)

Detector Etn (ag,bg) Fiducial mass Ngee‘
(MeV) (kton) (L =10 kpc)
Cerenkov SK50,51] 5 (0.47,0) 32 5900-9990
(H20)
SNO[52,53] 4 (0.35, 0)
H,O 14 260-440
D,0 10 80-160
Scintillator KamLAND([54] 26 (0, 0.075) 10 240-400
(N12+ PC+ PPO)
Cerenkov HK[34] 5 (0.5, 0) 540 100000170000
(H20)
UNO[55] 5 (0.5, 0) 650 120000-203000
(H20)
Scintillator LENA[36] 2.6 (0.1,0) 30 7500-12600

(PXE)
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pair of values(E;, t;) each of which corresponds to the detection of one neutrino. To take into
account the finite energy resolution, the valueHfis obtained from an initial MC valué’

by redrawing the energy according to the resolution funciik, E’). Of course, because of
oscillations, the times and energies of the final samples will correspond to a superposition of the
original v, andv,, ; fluxes and spectra.

4, Construction of thelikelihood

We will now describe the construction of the likelihood that is used as a statistical estimator
for the model parameters, and in particular for the neutrino mass. Strictly speaking, a maximum
likelihood analysis of the whole signal should consists in a full bi-dimensional extremization
(in time and energy) of a complete SN model, thus including the spectrum and its time evolu-
tion. However, besides requiring the introduction of several more parameters, this would also
introduce an unpleasant model dependence, since the spectral characteristics and in particular
their time evolution are probably the quantities that more crucially depend on the specific SN
simulation. However, in the limit of large statistics and under the second assumption discussed
in Sectionl, the problem can be greatly simplified by performing first, as an independent step,
a fit to the neutrino spectrum. Namely, the time dependent spectral function for the model can be
inferred directly from the data (and therefore without introducing any crucial model dependence)
and next the result can be input in the likelihood analysis as a given information. Strictly speak-
ing, because of the statistical fluctuations affecting the results of the spectral fit, at each new run
we will be testing a different SN model (the same flux function, but slightly different spectral
characteristics). Nevertheless, if the statistics is large, the models will not differ too much, and
as we will see ‘factorizing’ the problem in this way indeed yields consistent results.

As was discussed in Secti@y three different terms enter the expression for the likelihood
(2): the v, detection cross section, the time dependent spectral function and the neutrino flux
time profile. For the cross-section we use the convenient parametrization gi¢¥)j in

s(Vep — et _ _
0y (1\)(;:?43 - :12 n) — p.E, E;O.07056+0.02018InE,,70.001953Ir? Ev (14)
whereE, = E; — Ay, with Ay, =m, —m, ~ 1.293 MeV and all the energies are in MeV. This
expression does not take into account the effects related to the non isotropic angular distribution
of the differential cross section, discussed in detaf#iit]. However, since for the relevant range

of SN neutrinos energies the corresponding error induced on the energies of the positrons remain
safely below the experimental error, for the present scope¢lByis sufficiently accurate. We

model the time dependent spectral functiotE'; ) by means of the.-distribution introduced in
[27,32}

F(E,&(1t),a(t)) = N(E, a) (E/&)* e @HDE/E,
N@E, o) = (a+ 1/ (a + 1)e. (15)

Using the well known relation I (o) = I' (a + 1) it is easy to verify that the functiofl5) has
the nice property of allowing a simple analytical estimation of the two spectral pararéeteds
«a directly in terms of the first and second momentum of the energy distribution:

2+a  (E?)

=& T T

(16)
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Often in the literature the SN neutrino spectrum is approximated in terms of a nominal Fermi—
Dirac distribution~ [1 + exp(E/T — )]~ whereT is an effective temperature and that
enters the distribution similarly to a chemical potential, describes the spectral distortions, and
similarly to« in (16) s related to the ratio between the second and the first energy—momentum
square. Such a choice was adoptefP], and indeed is physically well motivated since a ther-
mal spectrum would follow this behavior. However, starting from a discrete sample of neutrinos,
a nominal Fermi-Dirac spectrum can be reconstructed only by carrying out numerical fits to the
energy momenta until the correct valuesfodnd . are determined through a minimization pro-
cedure. In contrast, the distribution can be straightforwardly determined through E48). At
the same time, as it was shown[82], within an energy range sufficiently large for all practical
purposes the distribution is equivalent to a nominal Fermi—Dirac to better than 10%. Clearly,
when estimating and« from a set ofmeasurecheutrino energies, the effect of the detection
cross-sectior{14) that modifies the observed energy distribution has to be taken into account.
Thus, the first and second momentum on the r.h.ELl&)are computed as
n — .
(E'1>=M, n=12, 17)
Zi 1/0%(E})

where the sum runs over all the neutrinos belonging to the same time window. In order to obtain
two continuous function of time(r) anda (¢) Eq.(17)is applied to a set of windows centered in
and of widthAr that, in order to reduce statistical fluctuations, is chosen large enough to contain
a sufficient number of neutrinos (a few hundreds). The central value of each new window is
determined as,1 =t, + 8¢, with 6t < At so that different windows overlap, thus ensuring that
the fit to the spectral parameters yields two smooth functions.

The last ingredient to construct the likelihood is the neutrino flux time prefite ) Eq. (6)
that, as discussed in Secti@ncarries the dependence on the model parameters. Instead than
including the dependence mﬁ directly in the flux function by means of a redefinition of the
time variable, it is more convenient to proceed in the following way: given a test value of the
neutrino mass, the arrival time of each neutrino is shifted according to its time delg$L)Eqg.
After doing this, the value of the likelihood is computed for the time-shifted sample. However,
because of the finite resolution theeasurecenergies that are used to evaluate the time shifts do
not correspond to thieue energies that determine the real neutrino delays. Therefore, even when
the correct value of the test mass is used, the time-shifted neutrino sample will not correspond
exactly to the sample originally emitted. Although completely natural (as well as unavoidable)
this behavior can produce a dangerous situation. When the energy measurement yields a value
smallerthan the true energy, a neutrino arrival time can be shifted to a negative value where
the flux function vanishes, implying that the log-likelihood diverges. This would imply rejecting
the particular neutrino mass value for which the divergence is produced, regardless of the fact
that it could actually be close to the true value. To correct this problem we adopt the following
procedure. The contributios; to the likelihood(2) of a neutrino event with measured energy
E; £ AE; for which, after subtracting the deldly; = m2L/2E?, we obtain a negative value
t; < 0 (or a value close to the origin of the flux functign~ 0) is computed by convolving it
with a Gaussialj(¢; #;, 0;) centered in; and with standard deviation = 25t; AE; /E;:

L =fdt [¢(t) x F(E;t) x 0(E)]G(t: 1;, 07). (18)

Clearly this regularization of the divergent contributions to the log-likelihood is physically mo-
tivated by the fact that the origin of the problem is the uncertainty in the energy measurements,
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that translates into an uncertainty in the precise location in time of the neutrino events after the
energy-dependent shifts are applied.

A few remarks about possible systematic errors in our procedure are in order. We are aware
of the presence in our analysis of at least three sources of systematics: (i) the artificial stopping
of the generation of the neutrino signal at 20 s; (ii) the convolution procedure we have just
described; (iii) the unfolding of the cross section in computing the first and second momentum
of the energy distribution in Eq16). We will give now a brief description of each one of these
effects; however, it should be stressed that we know how they could be avoided in a real analysis
and moreover, as we will show in the next section, the overall uncertainty in the analysis is
statistically dominated and it is safe to neglect the effects of systematic errors on the final results.

(i) Strictly speaking, any procedure that interrupts the generation or the analysis of the neu-
trino signal before it naturally drops to zero can be a source of systematic errors. To show this, let
us focus on the contributions to the log-likelihood of neutrinos of the same energy, say between
E andE + AE that, for a given test mass, will all suffer the same time shiffthe generaliza-
tion to the full signal case with neutrinos of all energies is straightforward). Let us assume that
the distribution in time of this subset of neutrinos in the original signal (that is the pdf) is known,
and let us call itPg (¢). Due to the time shift, we will haveg (t + Ar) dr neutrinos between
andr + dr that will give a contributionPg (r + Ar)log Pg(t) dt to the log-likelihood. Summing
up the contributions of all the neutrinos up to a finite tigeexpanding in powers ohA¢ and
imposing the extremization condition, we easily obtain:

(At

10
8log Ly (AD ‘) / dt PI (1) log Pe () = 0. (19)

S(AT)

+o0
= Pg(to)(log P (1)) — 1) + Y
n=1

n

In the limit g — oo the first term on the r.h.s. vanishes singge(rg) — 0 as is required for any
normalizable pdf, and therefore the extremization condition is satisfiedfet 0. In contrast,

if Pg(tg) # 0 then(19)is not satisfied forAr = 0 and one obtains an incorrect result. However,

if 70> 0 and F(10) ~ 0, as is our case in cutting the signal at 20 s, a good approximation to
the correct answer is found, and for this reason the systematic error induced by this effect on
our results is negligible. Of course, for a real signal the analysis will have to be carried out up
to the last neutrino detected, very likely much beyond the 20 s limit we have been using for
convenience, and therefore we do not have to worry for this kind of systematics.

(i) The convolution procedure described by E#§8) induces a second source of systematic
errors. This is because fast and accurate minimization routines rely on the knowledge of first
derivatives, and hardly tolerate any ‘jump’. Therefore when, because of the scanning of different
mass values, a neutrino event is shifted to time values for which the flux function is not vanishing,
convolution cannot be switched off abruptly, since this can result in the abnormal termination of
the minimization routine. Instead, convolution has to be turned off ‘adiabatically’, by reducing
continuously the width of the convolution region while moving toward times where the flux
function starts raising. However, the time variation of the flux is rather sharp, and this can slightly
alter the contributions to the log-likelihood from the early part of the signal. In our analysis
also this effect is negligible. In the case of a real signal, robust but rather slow non-derivative
minimization routines, like MC minimization, could be used thus avoiding the whole problem at
once.

(iii) To reconstruct the time evolution of the neutrino energy spectrum the effect of the cross-
section that modifies the observed energy distribution must be accounted for. However, the
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expression given in Eq16) represents only an approximation to the exact unfolding of the
cross section. This is because a neutrino of enérggydetected with probability proportional to

o (E) but, because of the detector finite energy resolution, its energy is measure to heé .
Therefore, when unfolding the cross sectn(E + AFE) is used, since the true value of the
energy is unknown. This affects the estimate of the momenta of the distribution by terms that are
formally of order(--- (AE)?) where the dots stand for the relevant combinations of powers of

E and derivatives of; (E). We have verified that the overall effect of the approximation repre-
sented by Eq(16) in reconstructing the time evolution of the energy distribution is observable
but small, and that the systematic error induced on the fits to the neutrino masses is negligible.
Clearly, also this effect can be accounted for in a real analysis by estimating the expectation val-
ues of the relevant terms of ordek E)? and by properly correcting for this the inferred values

of the energy momenta.

5. Resultsand discussion

Once the likelihood is constructed according to the procedure described in the previous sec-
tion, a statistical study of the sensitivity of the SN neutrino signal to the neutrino mass can be
carried out. According to Eq5), the marginal posterior pdf(m?2|D, I) is obtained by mar-
ginalizing the likelihood with respect to the nuisance (flux) parameters. However, the CPU time
required to carry out all the necessary multidimensional integrations would be exceedingly large,
especially considering that we need to analyze a large set of neutrino samples, corresponding to
different SN models, SN-earth distances and also to different detectors. Therefore, as is often
done in this situation, we will approximate the marginal posterior probability withptbéle
likelihood (PL) ﬁ(D|m§), that corresponds to the trajectory in parameter space along which, for
each given value o2, the likelihood is maximized with respect to all the other parameters.

It can be shown that for a multivariate Gaussian the PL coincides with the marginal posterior
p(m§|D, I), and therefore our results will be reliable to the extent the likelihood approximates
well enough a normal distribution. IRig. 4 we compare different parameter space contours for
L(D; mf A) with those of a corresponding normal distribution constructed from the set of sec-
ond derivatives in the maximum. We see that within the region where the contributions to the
integrations are dominant, the likelihood approximates rather well a Gaussian distribution.

In spite of the fact that the contours lig. 4 appear to be sufficiently close to the Gaussian
ones to justify the use of the profile likelihood, there are at least two known effects that imply the
presence in the analysis of a certain amount of non-Gaussian features, and some care should b
put in deriving numerical results.

() Even if each distribution is approximately Gaussian for a wide rang€othere is always
a value of the neutrino mass square for which the distribution is cut to zero. To give an example, in
a standard likelihood analysis the detection of just one neutrino of 7 MeV from a SN at 10 kpc,
10 ms after the onset of the signal would by itself be sufficient to exclude a neutrino mass of
1 eV. This is because in evaluating the likelihood for a test madseV the contribution of
this neutrino would vanish (due (z) — 0) driving to zero the whole likelihood. If the error
on the energy measurement is taken into account, seélBj}j.this effect is smeared but its
non-Gaussian nature is not changed. Therefore, strictly speaking, inferring a limit at some c.l.
from the width of the distribution (say, from the second derivative with respeat’tin the
maximum) would only yield an upper bound on the limit, but not the true limit. Reliable limits
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can be obtained only by careful integration of the whole distribution, and the re-evaluation of one
limit at a different c.l. would in principle require a new integration.

(i) As we have explained, the procedure of fitting in each run the time dependent spectrum
directly from the data, and next using the inferred spectral function for constructing the likeli-
hood, implies that at each new run a slightly different model is being tested. Due to statistical
fluctuations in the spectral fits this becomes a particularly delicate point when the statistics is low,
that is when detectors with small fiducial volume or when large SN distances are considered. In
these cases one cannot assume a naive scaling of the results according to the available statistics
since, as we will see, the inferred limits worsen quickly when the number of neutrino events
becomes too small. In all these cases specific runs are required to infer correctly the sensitivity
of the method.

To keep trace of possible non-Gaussian effects, for each one of the cases considered (different
SN models, detectors and SN-earth distances) we have performed a sufficiently large number
of tests. While we have found that in the cases considered non-Gaussian effects never spoil too
badly the Gaussian approximation, we stress that this is as an outcome of our analysis and not an
a priori assumption.

The sensitivity of the method has been tested by analyzing several neutrino samples, grouped
into different ensembles containing about 40 samples each. Each ensemble corresponds to a par-
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SK + KamLAND, L=10 kpc, m,=1 eV (Error bars at 95%)
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Fig. 5. Best fit values and 95% c.|. error barsﬁtfr resulting from 40+ 40 analysis for the representative case of a SN at
10 kpc, a neutrino mass of 1 eV, and the combined SK plus KamLAND data. The squares and circles refer respectively
to SN simulations performed with mode[26] and with model 427,30}

ticular set of input conditions in the MC code: we vary in turn the SN model (model 1 and 2), the
SN-earth distance (5, 10, and 15 kpc) and the detection parameters (fiducial mass, threshold and
energy resolution) specific for two operative detectors (SK and KamLAND) and two proposed
detectors (HK and LENA) that might be realized in the future. When the simulation involves
HK, since the very large statistics implies considerable CPU time, the number of samples in each
ensemble is reduced to 20. g. 5we present as an example the best fit values and 95% c.I.
limits on m% resulting from the analysis of 48 40 simulations corresponding to the interesting
case of a SN at 10 kpc, a neutrino mass of 1 eV, and the combined SK plus KamLAND data. The
squares and circles correspond to fits to neutrino signals generated respectively with SN model 1
and SN model 2.

While a set of ‘band-plots’ similar to the onesHig. 5would be representative of the complete
results of the analysis for each ensemble of MC data, in practice two types of informations
are most relevant: if neutrinos are almost massless particles, the interesting information is the
range of upper limits that could be setan, if instead neutrino masses are sizable, it would be
interesting to know which is the smallest mass value that could be measured with this method.
Accordingly, we have carried out two kinds of estimates: (i) we have evaluated the upper limits
at 95% c.l. that could be put on the neutrino mass from the analysis of the data, im cése
too small to produce any observable delay; (i) we have estimated for which MC input value
of the massn™C a massless neutrino can be rejected with good confidence (at 95% c.l.) in
about 50% of the cases. From the statistical point of view, the two analysis are carried out as
follow:
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(i) mM© = 0: we evaluate the upper limit3, by requiring that

mﬁp mﬁp
/ p(m§|D,I)dm§2 / ﬁ(mﬁlD,I)dm%:QS%, (20)
—00 0

where, according t(), in the second integral the integration region has been restricted to posi-
tive values ofm2. Upper limits form, can be obtained by integrating the corresponding proba-
bility distribution computed from the posterior probability #@¢: p(m|D, I) ~ |m|p(m?|D, I).

(i) mv'\"c > 0: for this case we evaluate the 95% c.l. lower Iimzii%w on the neutrino mass
according to

+0oo +oo

/ p(m%lD,I)dmf: / ﬁ(mf|D,I)dm§=95%, (21)
Miow Miow

and we search for the MC input mass vaiug’©)? = m2,

for which the massless hypothesis is
rejected in 50% of the cases (in@ﬁ)w > 0in half of the tests and%w < 0in the other half). This
last requirement implies that in the limit of a very large number of tes%W) = (mfbest fid —
(Am2) — 0 thus providing an approximate solution for the conditiann?2) = (m?, ., s that
distinguishes a real measurement from an upper limit. In addition, Qimﬁ%st fi — mrznin this
last parameter characterizes the 95% c.l. width of the distribution of the best fit masses when
the true neutrino mass has precisely the vaifg., and therefore it contains all the relevant
information. Note that a reswﬁﬁ)w > 0in (21)is clearly meaningful only i) (m2) that enters
the definition of p(m?|D, I) is dropped, and the integration is carried out over the whole real

axis (in Bayesian language, this simply corresponds to a change in the prior).

In the limit in which non-Gaussian effects are negligible, the meaning fandmﬁqin is
simply that of an estimate of the (95% c.l.) Gaussian width of the distributions, respectively for
the zero mass and for the nonvanishing mass case. Our resuli&afged) show that for each
specific case the average values of these two quantities to a good approximation are the same,
meaning that the intrinsic widths do not change appreciably when the test mass is shifted by
an amount of the order of 1 eV. This result is similar to that obtained (for a different range of
neutrino masses and in a somewhat different statistical context) in[R&fS7]

The results for the four detectors that we have simulated are summarizadle2 The first
three rows (a)—(c) give the results for SK, that is the detector presently in operation with the
largest fiducial volume, for three different SN-earth distances (5, 10 and 15 kpc). Using a simple
model for the Galactic rate of star formatifsB] we have estimated that approximately 95% of
the future Galactic SN are likely to occur between 3 and 17 kpc. This result is not in disagreement
with a recent study of the Galactic distribution of pulsars, based on the Parkes multibeam survey
data[59] from which we have estimated that 93% of the Galactic core collapse SN occurred
between 2 kpc and 18 kpc. Therefore, considering also that the results do not have a strong
dependence on the SN-earth distance (see below) the range of distance 5-15 kpc is sufficient to
characterize the amount of information obtainable from a SN in our Galaxy.

Comparing rows (a) and (b) ifable 2 we see that the sensitivity to the neutrino mass does
not vary in going from 10 to 5 kpc. As is explained [®7], the approximate independence of
the limits from the SN-earth distance holds for a certain class of statistical analysis, but might
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Table 2

Results for the fits to the neutrino mass at Super-Kamiokande, Super-Kamiokande plus KamLAND, and at the proposed
detectors Hyper-Kamiokande and LENA. The results for SN model 1 are given in columns 2—4 and the results for SN
model 2 in columns 5-7. The number of detected neutrino events for different detectors and different SN-earth distances
are given in columns 2 and 5. The 95% c.l. upper limits that could be put,ofor a vanishing MC neutrino mass are

given in columns 3 and 6. The smaller MC neutrino mass values for which in 50% of the runs the 95% c.l. lower limit
m|gyw remains above zero are given in columns 4 and 7

Detector Model 1 Model 2

N.events 10%) siup(eV) (/m2, (€V) N.events(10%) syp(eV) /m2, (eV)

(a) SK (10 kpc) 10 11 11 5.9 12 12
(b) SK (5 kpc) 400 12 12 237 12 12
(c) SK (15 kpc) 4 14 15 26 17 18
(d) SK+KL (10 kpc) 104 11 10 6.1 12 12
(e) HK (10 kpc) 170 ® 0.6 100 Q6 0.6
(f) LENA (10 kpc) 126 10 10 75 10 11
(9) SK reference % 0.9 10 - - -

not hold in general. Within the present approach it holds as long as the total number of events
remains large, and it can be easily understood in terms of naive scaling of the sensitivity with
the square root of the available statistics. Since the delay in the arrival times increases linearly
with the time of flight, see Eq(1), the sensitivity to the neutrino mass square scales with the
distanceL flew by the neutrinos, and since the square root of the number of events detected
decreases (geometrically) agll the approximate independence of the sensitivity from the SN-
earth distance follows. However, when we compare the 10 kpc with the 15 kpc results in row (c)
we see that this does not hold anymore. This is because the efficiency of the method relies mainly
on the large statistics and starts decreasing if the total number of events is reduced too much. We
see that for model 2 the reduction in the number of events results in a loss of sensitivity and
yields looser limits, while for model 1, whose harder spectrum still ensures a sufficiently large
number of events, this effect is less important. Clearly this can be related only to a breakdown of
the scaling law of the sensitivity with the number of events. With a decrease in the statistics, the
uncertainties in the fits to the spectrum start becoming important since the estimates of the time
dependent spectral functions become not enough accurate. This implies that the likelihood does
not describe anymore with sufficient precision the spectral characteristics of the data, and this
represents an additional source of loss of sensitivity. If the statistics falls below say, 1000 events,
fluctuations in the fits to the spectrum become too large, and we cannot expect anymore that the
method will perform well. Luckily, in the case of a large volume detectors like SK and for a SN
in our Galaxy, we are always within the range in which the efficiency of the method is optimal,
but it should be stressed that its applicability is in fact restricted to these cases. For example,
the (unlikely) occurrence of another SN in the nearby Large Magellanic Cloud would yield only
about 400 events in SK, and even in a megaton detector, no more than a couple of dozens of
events can be expected for a SN, e.g., in Andromeda. In these cases the study of the SN signal
would require a different method, better suited for the analysis of sparse data. It is possible that
a full bi-dimensional (in energy and time) maximum likelihood analysis, in spite of the fact that
it will need to rely on some model-dependent assumptions about the time dependence of the
neutrino spectrum, could still yield interesting limits.

The second operative detector that we have considered is KamL&BIDAs we have ex-
plained above, our method is not well suited to analyze the few hundreds of events expected in
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Table 3
The averages of the best-fit valueﬁfzit> and of the one standard deviation dispersions of the posterior probabilities
(ostat), over two sets of 40 samples generated with SN models 1 and 2, and fitted in turn with the flux modelg@®f Eqs.

and (7) The input MC neutrino mass 'm]')"c = leV, the SN distance is 10 kpc and the samples correspond to the
combined data from the SK and KamLAND detectors
Model Fit with Eq.(6) Fit with Eq. (7)
(m,) — (mMC)2 (ostad (m#,) — (mMC)2 (ostat
SN model 1 +0.05 Q72 -0.19 074
SN model 2 +0.23 098 +0.28 076

this detector. Therefore, in order to understand how the sensitivity of scintillator detectors like
KamLAND or LVD [60], that are characterized by a lower threshold, better energy resolution,
but sensibly lower statistics than SK, stands to the sensitivity of a large volume @extemkov
detector, we have carried out a joint analysis of the combined SK and KamLAND data. The cor-
responding results are given in row (d). Note that such a combined analysis can be consistently
done since SK and KamLAND are located in the same site, and therefore possible earth-matter
effects will modify in precisely the same way the two neutrino signals (we have also assumed
the same clock for both the detectors). Comparing the results of the combined analysis with row
(a) for SK alone, we see that the sensitivity is completely determined by SK, meaning that the
better energy resolution and lower threshold of KamLAND cannot compete with the SK much
larger statistics. The results for two of the most interesting proposed detectors, the megaton wa-
ter Cerenkov HK[34] and the multi-kiloton scintillator detector LENA (Low Energy Neutrino
Astrophysics)36] are given in rows (e) and (f). We can see that a megaton detector will be able
to reach a sensitivity about a factor of two better than SK, while a scintillator detector with a
fiducial volume of the order of SK, would only slightly improve on SK sensitivity.

As we have discussed at the end of the previous section, our statistical procedure is affected by
a certain number of systematic errors, and these could result in biased estimates of the neutrino
mass values or of the upper limits. We will now show that the systematic uncertainty, whether it
originates from the effects we have discussed above or from some other even more subtle mech-
anism, is indeed negligible when compared to the statistical fluctuatioratlie 3we give the
average of the best fit values of the neutrino mass (referred to an input MC mass squaré)of 1 eV
together with the average of the one standard deviation statistical errors, for the interesting case
of a SN at 10 kpc and the combined SK plus KamLAND data. The two rows refer to the two
SN models we have been studying in the paper. Two different sets of 40 signals have been fit-
ted in turn with the two analytical flux models of Eq$) and (7)(see alsd-ig. 1). This test
represents an attempt to estimate possible systematic effects in the procedure, independently of
the particular MC simulation of a SN and of the flux model used for the fit. We see that each
single entry in the second and fourth columns is completely compatible with the statistical fluc-
tuations given in the third and fifth columns. A slight positive bias might be present in the fits to
model 2; however, the statistical error is by far the dominant source of uncertainty. Therefore, for
all practical purposes the systematic uncertainties can be neglected, and the statistical procedure
can be considered to a good approximation as unbiased. We believe that the method that we have
proposed represents an improvement with respect to previous techniques, both in sensitivity and
for what concerns the independence from particular astrophysical assumptions. It is natural to
ask if anything better could be done to measure neutrino masses from a SN neutrino signal. In
the attempt to answer this question, we have performed the following test; we have produced
neutrino samples using as inputs to our MC instead than numerical fluxes and spectra, the simple
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flux model(6) with a suitable choice of the relevant parameters. For the time varying spectrum
we have used aa-distribution with the (harder) average energy profiles giveRim 2(b). We

have then performed our usual set of fits to the neutrino mass (assuming the SK detector) but we
have held the values of the flux shape parameters fixed at the values used in the MC (only the flux
onset parameter must be left free to ensure a correct fitting procedure) and we have also used
the same time profile for the spectrum. This simulates the ideal (and unrealistic) situation where
the full time-energy dependence of the signal at the source is known, and the only relevant free
parameter is the neutrino mass. The results of this test are given in the last Taén2 that

should be compared with the first row. We see that only a minor improvement is achieved with
respect to the realistic situation. This allows us to conclude that the sensitivity to neutrino masses
of the detectors presently in operation is very likely bounded to values not much below 1 eV, and
also that not much sensitivity is lost in the procedure of marginalizing the nuisance flux parame-
ters. Future large volume detectors will indeed reach a sensitivity sizeably better. However, they
will not be competitive with the next generation of tritiypadecay[{38] and neutrinoless double

B decay experiment8], or with future high precision cosmological measurem¢its
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