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Calculation of surface stress for fcc transition metals
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Using the density functional theory, formulated within the framework of the exact muffin-tin orbitals
method, we have calculated the surface stress for the (111) free surfaces of tHeafudt &l transition metals.
Good agreement is obtained with the availadleinitio data for Pd, Ir, and Au, while for Pt we predict a
surface stress, which is about 33% lower compared to former theoretical results. The present surface stress
values for the 4 and & fcc metals show the typical trend characteristic for the cohesive or surface energies
of d series.
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I. INTRODUCTION
O0E= 2 O'ij(r)5€ijdr, (1)

The surface stress and the surface energy play basic roles !
in understanding and modeling phenomena taking place owhere oj;(r) stands for the stress tensor at point
solid surfaces. One of the most important driving forces of=(X,y,2). Using a slab geometry and assuming periodicity
surface reconstruction, for instance, is the surface stresH) directionsx andy we have
Nonzero surface stress arises when the two-dimensional sur- die
face layer energetically favors a different lattice constant SE=A E 7ij(2) 8€;;dz. 2
compared to that in the bulk. By definition, the surface stress —di2 i

is negative or compressive when the surface layer tends tQerez s perpendicular to the surface of the slelistands for
expand, and positive or tensile when a smaller lattice conthe thickness of the slat, is the surface area, and the(z)

stant is preferred. ' are the components of the “slab” stress tensor introduced as
Although different techniques have been developed to

measure the changes of the surface stress when the surface is 1

exposed to adsorbates, or when it undergoes 7ij(2)= KJ' oij(r)dxdy. )
reconstructiort;? it is not yet possible to determine the abso- ) .

lute value of the surface stress experimentally with acceptThe surface stress tensor is defihéom 7;;(2) by

able accuracy-® The same applies for the surface free en-

ergy, and therefore it is of increasing importance that Ti(s):f [Tij(z)_’Ti(-b)]dZ, (4)
substantial progress be achieved in first principles calcula- . .

H —13 .
tions for the surface enerfjand the surface stres%. wherer{?) denotes the value of the “slab” stress tensor in the

The aim of this work is to present a uniform and efficient j,k region, i.e., far from the surface. In terms of the surface

method 'to calculate surface stress and to apply it to the desegs tensou-i(-s), Eqg. (2) can be separated into two parts,
termination of the surface stress ¢@tl1) surface facets for Viz. !
fcc 4d and & transition metals. In the first part of the paper

we briefly review the theory of the surface stress tensor, the . b © )
employedab initio total energy method, and the most rel- OE=28E+SE®=2A% 7{95¢; +AdY, 7 de;; .

evant numerical details of our calculations. In the second N N (5)

part we present and discuss our results, and compare them to

former ab initio and available experimental data. In the casel'he factor 2 arises from the two surface facets of the slab.
of Pt we obtain significantly smaller surface stress valued hus knowing the change of the bulk and the slab energy, we
compared to some of the earlier calculations. We find that irfan deriveSE'® related to thede;; change of the deforma-
our calculation the surface stress exhibits similar trends foHOn tensor, 1.e.,

Rh, Pd, Ag and for Ir, Pt, Au as the surface energy or the bulk

cohesive energy for the late transition metals. 6E‘S)=l[6E— SE®]=AD 9 Sei; (6)
2 ij "
and
Il. SURFACE STRESS
: 1 9E®
The change of the total energy of a system duringdfe A= ) 7)
change of the deformation tensor is given by A e
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Using the relatiorE(®=Ay, wherey is the surface energy layer distance, is kept fixed. For this distortion the deforma-
defined as the reversible work per unit area to create a sution tensor has the form
face, we can write

0
1 (9Ay_ dy

(8)=_ =vS: + ——
1 A (?Gij ')/5” (9&'”' ’

€ 0
T (8) €ij= 0 e 0]. 9)
0 0 O
where dy/de;; is the residual surface stress. This is the
Shuttleworth equation, expressing that the surface stress ia this case the energy changés and SE(® are given as a
the reversible work per area to stretch the surface elasticallyunction ofe. First we calculate the total energies of slab and
It is apparent from the definitions that the surface stresgulk systems for several differeatvalues, and next, in order
and surface energy are of different natures. In the case ab minimize the numerical noises, fit a polynomial to the
stable solids the free energy of a surface is always positivesalculated mesh points, i.e., we make the approximation
otherwise the solid would gain energy by fragmentation. The
surface stress, on the other hand, can either be positive or N 2
negative. We note that for a liquid, the surface free energy OE=CotCretCoe™t . (10
and the surface stress are equal due to the fact that in thj h ‘ o8 is d ined by the i
case the surface energy does not change when the surface‘%us' the sfuLaceI st;cre q bISIk etermined by the linear co-
strained, i.e.,dy/de;;=0. These two quantities are fre- efficients of the slab and bulk energies, viz.

quently referred to by the common name “surface tension.”

_ (b)
c,—c¢
A9 = o

11
Ill. METHOD OF TOTAL ENERGY CALCULATION 2A

Our calculations are based on the density functional

theory!® The Kohn-Sham equatiotsare solved using the In the present surface stress calculation the EMTO simu-
recently developed exact muffin-tin orbital¢EMTO) lations have been performed for unreconstructed, ideal fcc

method. The original formulation of the exact muffin-tin or- (111 surfaces. The surfaces have been modeled by a super-
bitals theory can be found in Refs. 16,17, while the self-Cell geometry with 12 layers consisting of 8 atomic and 4
consistent implementation of the theory, within the spherical@cuum layers, describing the vacuum region. In order to test
cell approximation, is given in Refs. 18,19. Therefore herdhe Iayer convergence of the total energies, in some cases we
we outline only the most important details of the method. have increased the number of layers up to 18. The volumes
The EMTO theory is an improved screened Korringa-Of the und|sfcorted superce!ls have bggn fixed by separate
Kohn-RostokerKKR) method, where the one-electron po- Pulk calculations, and the linear coefficients from E40)
tential is represented by optimized overlapping muffin-tinhave been determined using five deformations 0.0,
(OOMT) potential. This potential ensures a more accurate™0-01, and=0.02. The area of 2the two-dimensional unit
description of the full potential compared to the conventionalcell on (111) surface i&=(y3/4)aj,, wherea, denotes the
spherically symmetric potentials. For the OOMT potential, theoretical equilibrium lattice constant.
the one-electron states and thus the one-electron kinetic en- In the self-consistent EMTO total energy calculations the
ergies are calculated exactly within the frame of the densit@ne-electron equations have been solved within the scalar-
functional theory. As an output of the EMTO calculation, we relativistic and soft-core approximations. The Green's func-
determine the self-consistent Green’s function of the systerion has been calculated for 32 complex energy points dis-
and the complete, nonspherically symmetric charge densityfibuted exponentially on a semicircle. We have used k73
This density is normalized within space filling, nonoverlap- Points in the irreducible part of the two-dimensional hexago-
ping cells centered around each lattice site, and it is continu?@l Brillouin-zone. The total charge density has been ex-
ous and continuously differentiable in all spafeln the panded in spherical harmonics, including terms ud @
EMTO method the total kinetic energy is given by the Kohn- =10, and the shape function components have been trun-
Sham kinetic energy obtained from the one-electron equacated aty,,,=30. For the exchange-correlation term we have
tions. The Coulomb part of the total energy and theused the local density approximatighDA),?* which has
exchange-correlation energy functional are evaluated fronproved accurate for nonmagnetic late transition métals.
the total density using the full charge density and shape func- The calculation of the surface stress is illustrated in Fig. 1
tional techniques, as described in, e.g., Refs. 18,20. for Pt at the equilibrium volumew,) and at a slightly
smaller volume, to show the effect of volume change on the
energy curves. We can see from the figure that at the equi-
librium volume the bulk total energy curve has a minimum at
The surface stress tensor of the f@d1) surface is calcu- €=0 (i.e., c(lb):O), while the slab energy has a minimum at
lated using Eq(6). We carry out supercell calculations with <0 (i.e., c;>0), exhibiting a tensile surface stress. Note,
slab geometry, and during the “stretching” deformation we that forw<w,, the bulk and slab minima are shifted, but the
elongate the lattice vectors lying in the surface planesby difference between the slopes of the energy curves is not
while the third lattice vector, which determines the layer-significantly altered.

IV. NUMERICAL DETAILS
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FIG. 1. Total slab and bulk energies for Pt as a function of the
deformation parameter defined in Ef) for the fcd111) surface, at FIG. 2. Surface stress for the fdd1) surface of 4 transition
the equilibrium radiusveq and 0.99v,,. metals. The present EMTO result for Pd is compared to LCAO
value from Ref. 13. The FP-LMTO resultRef. 1] for the (100)
V. RESULTS AND DISCUSSION facets are included for reference.

The present surface stress results for the (111) surfaces 6t e_>§pe22mental values can be attributed to poor vacuum
the fcc 4d and & transition metals, together with the former conditions; but also to the surface and bulk reconstruction

e ; . . . driven by size effect$®?* Note, however, the good agree-
ab initio theoretical data, are listed in Table ! and p'OFted "N ment bet)\//veen the present theoretical results a?nd the%ata for
Figs. 2 and 3. For completeness, we also included in tablg, ' A optained in experiments involving particles with
the available experimental surface stress data and the Cacha'Iatively large mean sizés.
lated surface energies. For Pd the 16% relative difference between the present

The experimental surface stress values have been detgfz,e and Feibelman’s resuft, obtained using the linear
mined from the observed contraction of the metal particle$ombination of atomic orbitalLCAO) method, is satisfac-
with diameters 1.4-5 nrRef. 3 for Pd, 3-17.8 nnfRef. 4 tory. In the case of Ir and Au the agreement with former
and~3 nm(Ref. 9 for Ag, 1.9-12.2 nn{Ref. 6 and 3—-40  theoretical values is also very good. The relative differences
nm (Ref. 7) for Pt, and 3.5-12.5 nrtRef. 8 and 3-40 nm  between our and the pseudopotential results by Needs and
(Ref. 7 for Au. Except for Pd, where the measured value isMansfield® are 6 and 8%, respectively. However, for Pt
high by about a factor of 2 compared with tlad initto  we have found a large discrepancy between the present
results, the experimental values show a significant scatteringMTO value and the pseudopotentfl® and LCAO (Ref.
around the theoretical data. The discrepancy between diffett3) results.

TABLE I. Surface energy and surface stress values for the (111) surface facets ofl fand4 =
transition metals calculated by the exact muffin-tin orbitals method. For comparison we have included the
available full potential and experimental results.

EMTO Full-potential Experimental
Metal  y(meV/IA?)  r(meVIA2)  y(meV/A?) r(meV/A?) 7(meV/A?)
Rh 200 242 158
Pd 141 193 102 230° 375+56°
Ag 85 109 761 88 3999
Ir 256 312 204 331° _ _
Pt 188 234 137 392" 350°,370% 161", 240+ 44/, 275+ 62!
Au 105 160 78 173° 73),192+44"' 199+62'
8 MTO, Methfesselet al. (Ref. 28. fWassermanet al. (Ref. 4.
BLCAO, Feibelman(Ref. 13. 9Berry (Ref. 5.
‘Pseudopotential, Needs and MansfigRef. 10. _hWassermanmet al. (Ref. 6.
dPseudopotentiaI, Boisveet al. (Ref. 25. fSoIIiard et al. (Ref. 7).
®Lamberet al. (Ref. 3. IMays et al. (Ref. 8.
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0.5 r r T TABLE Il. The change in the total number of electrota and
o in the number ofd electronsAny for the top layer of the (111)
\\\\\\ surfaces of fcc 4 and & transition metals relative to the bulk
04 RO . values.
°s ] \\\
> | g N Metal An Ang
@03y “~ 1 Rh ~0.15 0.06
o RN Pd -0.12 0.08
)
o o2 @—@(1)EMTO AN l Ag -0.12 0.03
Q C(111) FP-LMTO(1
3 - _.:111; PP(1) @ Ir —0.15 0.05
= -
S o1 1 Pt -0.11 0.06
@ W(111) PPR) Au ~0.10 0.02
<> —-<>(100) FP-LMTO(2)
0.0 L L L

approximately unchange@lightly increases The obtained
Ir Pt Au changes in the total number of electrons and in the number of
FIG. 3. Surface stress for the fdd 1) surface facets ofGtran-  d €lectrons for fcc 4 and 5 metals are shown in Table II.
sition metals. The present EMTO and full-potential res@i@- [N the spirit of the above model for cohesion, this means that
LMTO(1)] are compared to earli@b initio data: PPL) and PR2) in the surface layer the repulsive pressure contribution of the
are the pseudopotential results from Refs. 10 and 25, respectivel§. P electrons is reduced and the unchanged attractivand
The full-potential resultgRef. 11 [FP-LMTO(2)] for the (100)  contribution results in a tensile surface stress. We mention
facets are included for reference. that this picture is different from that by Fiorentiat al,™
who have found that the number dflectrons, and thus, for
In order to test the accuracy of the present surface streggte transition metals, the number of nonbondihgrbitals is
values, in addition to the above EMTO calculation, we havereduced in the surface layer, resulting in a tensile surface
also carried out an independent full potential linear muffin-stress.
tin 0rb|ta|S(FP'LMTO) calculation for Pt. Details about the The above Simp|e bond picture exp|ains the present trend
employed FP-LMTO method can be found in Refs. 26,27. Ingbtained for the surface stress, see Figs. 2 and 3. Moreover,
the FP-LMTO calculation we have used exactly the sameye find that the theoretical surface stress values for different
supercell and total energy functional as in the case of th@urface facets show similar behavior in terms of the number
EMTO. The obtained surface stress for Pt is 240 meV//A of d electrons. This is illustrated in Figs. 2 and 3, where we
which is in complete agreement with our EMTO result of compared the EMTO surface stress results for the (111) fac-

234 meV/R. ets to the FP-LMTO results for the (100) surface facéts.
In both EMTO and FP-LMTO calculations the relaxations

of the surface layers were neglected. Using the EMTO
method we investigated the top layer relaxation of the (111)
surfaces of late d transition metals. The calculated changes Using the EMTO total energy method we have calculated
in the interlayer distances are of order of 1%, in good agreethe surface stress on the (111) surface of fct ahd =
ment with former theoretical finding8.The effect of surface  transition metals. For Pt an additional full potential calcula-
relaxation on the surface energies is found to be around 5%ions confirms the high accuracy of the present theoretical
Therefore, we estimate that the errors in the preabrihitio  results. We find that the general agreement between the
surface stress values due to the neglect of the relaxatiorBMTO results and the former theoretical data is reasonable.
should be below 10%. The obtained trend of the surface stress follows the charac-
To understand the nature and the physical background agristic behavior of the surface energy of the transition met-

surface stress in transition metals, we return to the simplels, in good accordance the simple picture of the cohesion in
picture of cohesioff in bulk transition metals. According to transition metals.

this model the equilibrium value of the bond length arises
from the balance of the repulsive pressure of the nearly free
electronlikes, p electrons, and the attractive pressure contri-
bution of the more localized electrons. The latter contribu- This work was supported by the research Project No.
tion exhibits the well-known parabolic trend throughout the OTKA T035043 of the Hungarian Scientific Research Fund,
transition series. This simple qualitative picture was verifiedthe Hungarian Academy of Science and the EC Center of
by ab initio calculations’® where the partial pressure contri- Excellence prograniGrant No. ICA1-CT-2000-70029 The
butions had been expressed in terms of the band structuf@wedish Research Council, the Swedish Foundation for Stra-
parameters using the pressure formula. If we look at the sutegic Research and The Royal Swedish Academy of Sciences
face layer of our fcc (111) transition metal slabs, we canare also acknowledged for financial support. The computer
generally say that the total number of electrons is reducedimulations were done at the Hungarian and Swedish Na-
relative to the bulk, but the number dfelectrons remains tional Supercomputer Centers.
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