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Effective weak Hamiltonian for the db =1nonleptonic decays in the six-quark model
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Quantum-chromodynamic corrections and flavor-symmetry-breaking effects are considered in the leading-

logarithmic approximation for the calculation of the db = 1 nonleptonic effective weak Hamiltonian in the context

of the Kobayashi-Maskawa model. It is found that flavor-symmetry breaking is very important for the cases under

consideration here.

I. INTRODUCTION

The discovery of the Y particle' has been inter-
preted as evidence for a new quark flavor, named
the b quark. The simplest way to accommodate
this fifth flavor in the standard SU(2}~ & U(l)
model' is by postulating a sixth quark (the f
quark). The six-quark model, known as the Ko-
bayashi-Maskawa (KM} model, ' ensures proper
Glashow-Iliopoulos-Maiani' (GIM) cancellations
by describing the mixing between quarts by three
Cabibbo-type angles 9„8„and I9„and by a single
phase 6, which results in Cg violations.

Although the search for the t quark has been
fruitless so far, ' and there are already exotic and
nonexotic models in which there is no t flavor, it
is not yet time to abandon the standard KM model.
It could be the case that the mass for the I; quark
is in the range of energy above 30 GeV, and we
will have to wait until the next generation of ac-
celerators before the t quark shows up in the
laboratory. Because such a wait could take sev-
eral years, the best way to establish or to elim-
inate the standard model could be by studying b

decays.
In this paper we calculate the effective weak

Hamiltonian for the Ab = 1 nonleptonic decays in
the context of the KM model, including quantum-
chromodynamics' (QCD) renormalization effects,
when flavor-symmetry breaking (FSB) is con-
sidered. For the b sector the FSB effects enter,
not only via the penguin diagrams in Fig. 1 (as
originally proposed by Shifman, Vainshtein, and
Zakharov' for the strange sector), but they also
enter via the box diagrams in Fig. 2 as proposed
in Ref. 8, and shown in more detail in Appendix A.
The presence of FSB makes the whole scheme
quite involved and complicated, but the calculations
can be carried out in a mathematically well defined
way, giving exact results in the leading-logarithmic
approximation. Calculations analogous to the pre-
sent one have been presented in Ref. 9 for the
strange sector, where FSB effects enter only via
the penguin diagrams, and in Ref. 8 for the Cab-

ibbo-nonsuppressed charm sector, where FSB
effects enter only via the box diagrams.

In the KM model, the current J"„"that couples to
the W' bosons with strength f is

where R is the matrix

R = -S,C2 + S2C

(2)

I

I
gfue

FIG. 1. Lowest-order penguin diagram contributing
to the anomalous dimension of 0;.

C, (&,) = cos &, (sin8,.), f = 1, 2, 2 are the cosines
and sines of the generalized Cabibbo angles, 6 is
a real parameter that allows for CP violations,
andy are Dirac matrices.

The matrix in (2) must be unitary; as a conse-
quence of its unitarity the columns must be ortho-
normal. This orthogonality for the different
columns is the manifestation of the GIM mech-
anism for the different cases under consideration

1981 The American Physical Society



28 EFFECTIVE WEAK HAMII TONIAN FOR THE hb = l. . .

(e} sb=ac=as=1:

H 5
= ~ R ~~R 22 sc ub; (4e)

(f) ss = 0, ab = ac =1:

R2, R,3'&, (4f)

whereR,
&

is the ij element of R in Eq. (2), g/~
= f'/Mvi' is the Fermi weak coupling constant,
M~ is the mass of the intermediate vector boson,
ab cd refers to the color-singlet structure
a,.I'"b, c&I' d& (sum over i and j understood),
and u, d, s, c, 5, and t refer to quark fields.

FIG. 2. Lowest-order box diagrams contributing to
the anomalous dimension of 0&.

here.
In the absence of the strong-interaction re-

normalization effects, and according to the %'il-
son-expansion technique, '0 the Lb = 1 Hamiltonian

II. THE &=0, hb =-b,c=1 EFFECTIVE
HAMILTONIAN

When the strong interactions are present, the
Wilson expansion for the Hamiltonian in Eq. (3)
produces different results than the results pre-
sented above. Only at very high energies, and
due to the asymptotic-freedom property of QCD,
do we recover the results in Eq. (4). For the
weak interactions there is a natural threshold
for what high energies mean"; it means ener-
gies in the range ~ & z & M~, i.e., for energies
above M~, the strong interactions are negligible
and the effective weak Hamiltonian for the Ab =1
sector is properly described by Eq. (4).

For energies below M~, the strong-interaction
renormalization effects will change drastically the
weak Hamiltonian. Not only do the operators in
(4) pick up an extra coefficient, but new operators
come into play with coefficients that are calculated
as solutions to renormalization-group equations
(RGE's), i.e.,

has six different pieces:
(a) as = 0, b,b = -ac = 1:

Hwk g+iDi & (5)

H, = — R „R23dg cb;

(h) ac=0, ab =as=1:

H2 = (R +2R i~ su ub + R f~R 2s sc c b

+Rf, R»stiQ);

(c) hc = bs = 0, bb = 1:

(4a}

(4b)

where the expansion in (5} is infinite in principle,
but for short distances it is expected to converge
very rapidly, and only the lowest-dimension oper-
ators O„which do not renormalize away, are of
relevance here. The coefficients A, are functions
of M~, of the subtraction point p. , of the theory,
and for the case of FSB they are also functions of
the heavy quark masses m„m~, m, .

The coefficients A, in Eq. (5) are solutions to
the RGE.

(R*„R,~duub +R f, R„dc cb

+Rf, R»df tb);

H~ = ~ R,2R» such;

(4c)

(4d)

+'Yz+'Yet —'Vo, ~A, = 0,
where p (g) = Sg/8 p. , 5, = (g/m, )am,./8 ii, y& is the
anomalous dimensiori for the weak current, yo,
is the anomalous dimension for the operator 0„
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and g is the strength of the strong interaction.
In this paper we are interested in solutions to

the RGE in the enex'gy range m, &K &m&, where m,
andm& are mass scales of the theory. For a de-
tailed solution to Eq. (6) for such energy ranges
see, for example, Ref. 9 and especially Ref. 12.
Following Ref. 12, let us define

Kf = 1 —2bfg ill Qe/i» 2) ~

K, = 1 —2b, —ln(mmmm, ),
1

K, = 1-2b, — ln(m, /m, ),
K gK2

K, = 1 —2b, ln( M~/ m)f,
K ~KPK3

where

b, = (',-ff, —11)/16ff',

gg, = 3, n, = 4, n3= 5, n4= 6.
As mentioned above, for the energy range K &M~,

the effective weak Hamiltonian for the Es = 0,
6b = —Ac = 1 sec'tol' ls glvell by Eq. (4a).

For K & m„ the HGE must be solved for the in-
terval M~ & K & nz, and the solution at K = M~ must
be matched with Eq. (4a). According to the Ap-
pelquist-Carazzone theorem, " the six quarks are
present in this interval, and according to the RGE
techniques, the operators that renormalize multi-
plicatively are

O+ = ducb+dbcu.

The anomalous dimensions for the weak currents
are zero. The six diagrams in Fig. 2 do contri-
bute to the anomalous dimension for O„but the
penguin diagrams do not enter at all for the sector
under consideration here. After the algebra is
done, the anomalous dimensions for the operators
Op are+p = cpg ~ where

c, = 4/16ff2,

c = —8/16ff2.

0,. = 0 for the six flavors, and

IIeff(K&m ) —a (Q K
e /»e+O K e+/»

) (10)

where a, = Re»R»(G/2W). Notice that in the limit
when K =M~, K, =1 and Eq. (10) reduces to Eq. (4a)
as it should.

For K&m~, the RGE must be solved in the in-
tervalm, &K&m, and the solution at K =ra,

'
must

be matched with Eq. (10). The situation here is
very similar to the case above; the only difference
is that only five flavors are present (the f quark
is too heavy and does not enter into the solution
to the RGE according to the Appelquist-Carazzone

theorem"). Because of this 6, = —Bg2/16ff2, 5,.
= zero for i + t. Thus, up to this point we have

c' =-4/16ff',
(12)

He"f (K & m, ) = a,-(~O + e '/'O, ),
where

c /SO4 c /2I3 c'/2&2
4 3 3

If the subtraction point g, is in the neighborhood
of m„ then the Hamiltonian in Eq. (13) is the final
expression we were looking for. But if p. o«m„
then one more interval must be considered:
m, &K & p, For this interval

5, =6»= 5, = —Bg /16ff,

the anomalous dimensions for both currents axe
zero. For the operator dumb only the diagram in
Fig. 1(f) contributes, and for the operator dbcu
the diagram in Fig. 1(d) does. For this interval
the operators O, do not renormalize multipli-
catively, the mixing matrix being

The final expression for the Hamiltonian is

Heff(K &m)=a (Q K 2»&K e /2»2
1 4 3

+ O K
c +2/»eK c+/2»2)

+ 4 3

So far the FSB effects have not been present and
the Hamiltonian in Eq. (11) coincides with pre-
vious calculated values. "

For K & nz„ the RGE must be solved in the in-
terval m~ & K & m, . Here the FSB effects are pre-
sent via the box diagrams, and only the diagrams
in Figs. 2(a), 2(d), and 2(f) contribute to the ano-
malous dimension for 0,. The fact that the other
three diagrams in Flg. 2 do not contr1bute Is ex-
plained in Ref. 8 and also in the Appendix at the
end of this paper. In this interval. only four quarks
are present,

bf = 6»= —Bg /16ff2,

5, = zero for i&t, b.
y„-„=0 because both quarks, d and u, are light, but
y-, »

= g /12ff' because, for the interval under con-
sideration here, one of the quarks is heavy and
the other one is light. Again 0, renormalize
multiplicatively, their anomalous dimensions
being
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IH. THE dc=0, hb =As=1 EFFECTIVE
HAMILTONIAN

For this sector the FSB effects enter via the
box and the penguin diagrams. For the energy
raIlge K &M~ the effective weak Hamiltonian is
given by Eg. (4b). Using the property R,*,R»
+ RfqR» +RssR» = 0, we can write

G
H, = ~ R»*R»(suub -sccb}

+R fP»(suub -st tb)

=a,(o., +o, )+a,'(o„+o, ),
where

0„=suub a sbuu —(u -q},

am =-GR )~R»/2W,

a2= GR)~Raj2-W.

For the interval e &m„ the situation here is
similar to the situation in the same interval of the
previous section. The operators O„and O„re-
normalize multiplicatively and the effective weak
Hamiltonian is

H' (»&m ) =»" "4(a20„+a20g.)

+» '-/ '4(a20, +a20, }, (16)

where c, are as given in Eq. (9).
For» &m~, let us divide Hq in Eq. (16) into three

pieces.

H2, -a2($ p'btt + $2stF——b),

(» e~/2540 +» c-/2d40 )

H2, —-a2($(Fbi+ 82suub) y

H,'"(» & p, ,}= a,(0 [-', e (1+ 2»,'/" ~)

+-',e '"(1-» ' '&)]

+ O, [-',e(1-»;~'~)

+ —', e '/'(2+», '+'i)]], (14)

where c = 3/16»'.
In order to get numerical results, let us use the

following set of parameters: g'Q, }/4s = 1,M~
= 100 geV, m, = 30 GeV, m~ = 5 GeV, m, = 2 GeV,
and p. 0=1 GeV. For this particular set of param-
eters we have

H;ff = a, (1.600 + 0.810+) for»&y, o snd po«m, , ,

H (» & tn, = p. ,) = a,(1.670 + O.VVO+) .

c+/204 + c»/204
a~ =&4

ce-/254 + c-/254S2= &4 K4

If hadrons are made mostly of valenc'e quarks,
H2, is not important in the &b=l sector, and it
will not be considered here further, ' however, &2,
has to be considered in the decays for the t quark.
Let us call H2, the induced Hamiltonian via pen-
guin diagrams in the t sector, from the &5 = 1
effective nonleptonic weak Hamiltonian. As a
matter of fact, there are also induced Hamil-
tonians in the 5 sector from the &a=1 and &s=1
effective Hamiltonians. Such pieces are not con-
sidered here. In the energy range m, &~ &m„&2,
renormalizes multiplicatively, and no penguin
diagrams are involved due to the GIM cancellation
between the u and c quark. The effective Hamil-
tonian for H2~ will have the form

H s(»&m ) a (» c+/2g4g»g/2530
C+

+» c /2'» c /2a30

03=Kb(gu+dd+Ws+Vc+bb},

04 x(ufo'+ dE-—+sz+ cv + bb)b,

0& ——W(R'u'+d d'+3"s'+V'c'+b'b'},

Og ——Ã, b/(R/u, '+ d/d, '+ b/s, '+ c/c,'+ b/b, '),

(16)

where the current q'q' refers to the right-handed
structure qy (1-ys)q. The mixing matrix for
0, ~ ~ ~ 08 is given by (81) in Appendix B.

After the algebra is done we have for H2, the
following expression:

2 6

H 2»(» &m~} = a2 g Q $,R „K,R,/0/,
ga$ js Jul

where R is given by Eq. (83), K, is the six-com-
ponent column vector

Fj/f6' y3
2

j' 7

and V, is given by Eq. (82). A numerical evalua-
tion of the coefficients gives

For H2„ the GIM cancellation between the f and
I quark is not effective any longer, and the FSB
effects enter via the penguin diagrams. For the
renormalization of H2, let us define, following
Ref. 9, the six operators:

0(——rbSrg,

02 =ggggg,



WILLIAM A. PONCE

H (~&m,) =a,(1.4S9O, +O. S2Oo,.)
+ a2(-0. 2390) + 2.22202 + 0.02003

-0.047O4 + 0.01405 —0.0560))

(2o)

for the set of parameters quoted in the former
section.

For tc&m„we solve the RGE for the operators
in &2, and II2, in the energy range m, &a &m, . For
H2~, the GIM cancellation between the u and c
quarks is still in effect and no penguin diagrams
are involved, but the FSB effects are present via
the box diagrams, due to the fact that in the four
quark operators there is one heavy quark (the b

quark) and three light quarks. Still O„renor-
malize multiplicatively, but their anomalous di-
mensions are the c,' of Eq. (12). So we have

H2~s(a &m, ) = a2(eO, + e '"O„), (21)

where e is as defined in Eq. (13).
For the renormalization of H2, in the energy

range m, &g &nz„ it is convenient to decompose
it in two pieces:

2 6

H;,',(&&m,) =a2Z E (sR '„ffP'-,O.,',
f~ )~i

2 6 6

Hff(y &m~) =a2 QQ $,R ', )K(R()8),
l= i~& ju3

where

0( = FbQQy 02 = sQQb j

O3 =Fb(Ru+2d+Xs+cc),

O4
——Y(uu+ dd+ ss + ce)b,

O5 ——sb(u'u'+ d'd'+ 7's'+ c 'c'),

presence of the penguin diagrams, operators
Ol 06 mix t riangu lar ly with 07 ~

The mixing matrix for the operators Ol 07
is given by (85), and we get for the effective
Hamiltonian

H;"(~ &m, )

2 6 7

=a2 Q Q Q $,R '„K~R. ,,R', , 'K,'R,',O,', (24)
r=l g, j=l s, t=l

where R' is given by Eq. (87) and K,' is defined as

~r ~ P'rs/ 16' I

2

where V,' is presented in (86). The numerical
evaluation of the Hamiltonians in (21) and (22)
gives

H; (/c &m, ) =a, (1.6690 +0.7740 )

+a&(-0.4430,'+ 2.3160,'+ 0.0370,'

-0.08404+ 0.0250,' —0.10506'

-0.0498,'+ 0.0258,' —0.0698,'),

(25)

where we have used

r 2 r 1 r07 = 3~3- 3~a+ ~6

Again, if f0=m„ then Eq. (25) is the final ex-
pression we are looking for. However, if p.,«m„
then the interval m, &I(: & p, must be considered.
For this interval 0 do not renormalize multipli-
catively any longer, and the penguin cancellation
between the u and c quark is no longer effective
(c is a heavy quark now). H» and H„, must be
treated on the same basis.

For this interval the following six operators
are needed:

O6 = Kgb'(ugu + dg d + Xgs( +c)c() &

~3 = 6)4 ='Fbbb, ~5 = Ebb'b', &6 = F,b~b~b,'. .
Because H2„has three heavy quarks now, it

does not renormalize any further. For the re-
normalization of II~,„the operator basic Olp 02&

03 Og 0 06 and 0,' must be considered, where

0,"=sbuu, 0,"=snub,

0," =sb(uu+dd+ss),

0," = sb(u'u'+d'd'+ s's'),
0 =s b ( . u. ud+. d s+.s.).6 j j j j j j j

(26)

= —,'sX'bbz~b+ —,'sX~bb'X~b'. (23)

For the quark operators in Eqs. (22) and (23) only
the b flavor is heavy for the energy range under
consideration here. Because 0,' has three heavy
quarks, its anomalous dimension is zero and it
does not mix with the other operators. Unfor-
tunately in the analysis we can not separate 0,'
from the other six operators, because due to the

One operator such as 0,"=s(uu+dd+ ss)b is not
needed here because 04' =-0,"+0,"+0,". Again
0," has three heavy flavors and its anomalous
dimension is zero, but it mixes triangularly with
the other five operators due to the penguin dia-
grams.

The mixing matrix for 0," ~ ~ ~ 0," is given by
M" in (BS), and the anomalous dimension vector
is proportional to V" in (89). For the renormal-
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ization of H» let us divide it into two pieces:
He2f. (x &m, ) =a, [sbau(e "'- e)

+sahib(e "'+6)],
H;s(v &m, ) =-a,[sbcc(& "'—&)

+ sccb(6 + 6)] .

Because II„has three heavy quarks now, it
does not renormalize any further. For the re-
normalization of H», the FSB effects enter via
the box and the penguin diagrams simultaneously.
After the algebra is done we get

grt ~ V~ /16%' 51
1 (28)

I

„. / means i,j runs over 1,2, 3, 5, 6, 7 (4 ex
eluded), and I/", is given by (B9). For the renor-
malization of H„, in Eq. (24), several things must
be done. First, 0',. must be decomposed in 0',.'

+8", , where 8'f' are operators containing three
heavy quarks in the interval m, &x & i10 (as for ex-
ample sbcc, sccb, etc.). Second, Oe must be
eliminated in favor of 0,", 0,", and 0,". Finally,
for the remaining operators make the replace-
ment

Hee(& & + )
—a (+-1/2 e) g II» 1 Jfsiltts Olt

f, f
I

+ (~-1/2 + ~) Itll 1 Ifltlt » Oll
i f) j

(27)

where It" is given by (B10), and K1' is defined by

where the parameters are defined as in (27) and

(28) above. The final analytic expression gets
prohibitively large. I.et us quote only the final
numerical results for H», and H„,:

Hmes(x & go) = -01 (1.164a~+ 0.602a~) + 02 (2.598a2+ 2.380a~) —03 (0.039am+0. 072am)

+ 0,"(0.020a, +0.038am) —06 (0.070a, + 0.191am) +sbcc(0 914a +. 0.052a')

—sccb(2.504a~+ 0.128am) +sbc'c'(0. 020a~+ 0.039am} s,b,c/c—&(0..0.61a~+ 0.149a')

—sbbb(0 041a, +. 0.079a~/)+sbb'b'(0. 020a2+0.040a~) -s1b/5,'.b', (0.061a2+0.134a2} . (29)

IV. THE OTHER SECTORS

For the renormalization of the other four sec-
tors in Eq. (4), most of the equations derived in
the last two sections may be used.

(i) The tabb = t1s =-hc = I sector. For this sector
we may write Eq. (4d) as

He(tc &M~) =a4(Oe +Oe,),
where

G
a4 =

2 R,*2R,3

0&~=such+ sbcu .

The analysis for this sector follows exactly that
of Sec. II, and Eqs. (10), (ll), (13), and (14)
follow exactly just by changing H, -H4, a, -a„
0~ 04 .

(ii) The ab = M = hs = 1 sector. For this sector
we may write Eq. (4e) as

(HMx &) = a, (0, +0„),
where

6
ae 2~ 13- 22

05, = scub + shue .
Here the situation is slightly different from the
case presented in Sec. II because the original
currents are j,=g7b and 8;=sc (instead of Z, =cb
and J;=du of Sec. II). The present current struc-
ture gives different anomalous dimensions for the
weak currents in the interval nz, &x & po, compared
with the analysis presented for this interval in
Sec. II. Because for the other intervals, nothing
changes; Eqs. (10), (ll), and (13) follow exactly
just by changing H1 H5 a1 as 0 05,.

For the interval m, &v & p.o, the operators 0„
renormalize multiplicatively, in contrast to 0,
which do not. So, instead of one equation such as
(14), we have

H;e(~ & t10) =a, (e'0, +e' '/'0„),
where

=ex - 1, c =-1j37T

(iii) The bs=O, ah=bc=l sector. For this
sector we may write Eq. (4f) as
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H, (a&M') =a,(0~+0~),
where

G
~6 ~21 132

and

O~ =dclb + dbQc .

The situation here is entirely analogous to the
case presented just above, so the effective Ham-
iltonians are given by Eps. (10), (11), and (13)

pla g +1 +6~ +1 ~6, and 0, 06„and
by Eq. (30) by replacing H, -H„a, -a„and
O„O~.

(iv) The &c=&s=0, &b= 1 sector. For this
sector we may write the Hamiltonian H, in (4c)
as

H(K&M„) = a,(0~, +0~ ) +a,'(0„,+0„),
. where

0,„=duub + dbuu —(u q)—,
G G

~3 ~21+33 ~3 +31~332 2

Here the penguin diagrams are present again,
and the analysis for this sector follows exactly
that of Sec. III, just by making the appropriate
changes of subscripts and of quark fields in the
operator basis. As a matter of fact, Egs. (16),
(17), and (21) follow exactly just by changing
H2-H» g2- a» g2'- a3', and O„-O&,. Equations
(19), (20), (24), (25), (27), and (29) also follow
by changing H2-H„a, -a„a2'- a3', and the re-
placement of the s quark field, in all the places
where it occurs in all the operators, for the d
quark field.

V. CONCLUSIONS

In this paper we have calculated the effective
weak Hamiltonian for the nonleptonic 45 =1 de-
cays in the context of the KM model, including
@CD corrections and FSB effects. The induced
Hamiltonian in the b sector from the &p =1 and
&s =1 effective weak Hamiltonian are not consid-
ered here, nor are possible magnetic moment
terms proportional to quark mass es . As can be
seen from the analysis, the FSB effects are very
important here.

The final expressions we get are very strongly
Cabibbo dependent, especially the expressions
where penguin diagrams are involved in the deri-
vations . For this reason, it is very diff icult to
predict, just by looking at the Hamiltonian, the
favored channels in the decays of 5-flavored
particles. A better knowledge of the three Cabib-

bo-type angles, as well as of some other param-
eters in the theory, must be acquired before
final conclusions may be reached.
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APPENDIX A

In calculating the diagrams in Figs. 1 and 2,
we encounter a typical. integral of the form

d4~ 1 1
(2m)4 8 (~-P)' ' (Al)

where a' runs over p, & z'&~, P is the four-mo-
mentum of one of the quarks in an external leg
such that P'=m2, and A is some gauge-invariant
cutoff. If yn «p, , then we can write

1 1 K p m
(A2)

and the integral in (Al) can be evaluated as a
series, where the leading term is a leading log-
arithm, proportional to In(A/p), and the other
terms do not include logarithms at all.

If A»m» p, the series expansion in (A2) does
not converge, and instead of that expansion we
must use

1 1
(» P)' (x' + m-') (a' +m') . (A3)

Upon calculating the integral in (Al) as a series,
by using (A3), we get for the leading term an
expression proportional to ln(A/m), that is in-
dependent of p. due to the fact that yg + p =m.

Because in calculating the anomalous dimension
for the different operatorswe look for the coeffic-
ient of -In(du') after evaluating the integral in
(Al), we may conclude that, when m «p, , the
integral (Al) contributes to said anomalous
dimension, but when m» p it does not contribute.

APPENDIX B

In this section we present the mixing matrices,
their eigenvalues, their eigenvectors, and the
procedure followed in order to diagonalize them,
for the different sets of operators which appear in
Sec. III.

The transpose of the mixing matrix for 0, 0,
ls
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-1 3 0 0 0 0

3 —1 0 0 Q 0

0 1 11 RR 0

0 11. P 0

0 1 k 5.

This matrix is the transpose of Eq. (A7) in Ref. '

9 (notice that there is a misprint in the fifth

row for thi.s matrix in the above-mentioned refer-
ence).

The eigenvalues for (Bl) are given by the six-
component vector

V=(2, —4, —6.8954,

—3.2429, 1.1166, 3.1327).

These eigenvalues are related to the anomalous
dimension of the linear combination of operators
Oi ' 06 that renormallze multiplicatively

In order to diagonalize M, given by (Bl), we
need the following matrix:

1
3 0

0

0 0 1

0 0 —1.1556

—1.3888 0.2190 4.1010

0.0962 0.1967
(B3)

0 0 0.1776 0.0864

0 0 1.5219 2.9386 —1.1845

—0.3675

The rows in (B3) are the eigenvectors for (Bl),
i.e., they define the linear combination of opera-
tors 0; that renormalize multiplicatively with
anomalous dimensions V, . The diagonalization
of M is described by

0

1
2

1
2

13.
i8 iS o -9 o

0 & 0

0 0 0 0 0

0 0 0 0 0

. (B6)

(R ) f MfgR Qf 6$$Vg I

l, k=i

l..

9

Q
— R

—9 2
—9 0

3 g 0

0 K 0
where R" stands for the transpose of (B3).

For the operators 0,' ~ 0,' in the energy
range nz, & ~&m„ the transpose of the mixing
matrix is

The eigenvalues for (B5) are
V' = (1, —2, 0.5699, 2. 1020,

—3.2382, —1.4893, 0). (B6)

The matrix R', the rows of which are the eigenvectors for M', is

0 0

2 2

0.4985 4.6064 —1.7235 —1.6962

~'= 0 0 0.3010

0 0 5.1593 —6.9218

—0.4473 0.4623 1.0230

12.7532 —3.4632

(B7)

0 0 —4 8267 3 9285 0 5619 —2.2518

0 0 0

For the operators 0, , 0,", 0, , 0,", 0,", and 0," in the energy range m, & ~& p., the transpose of the
mixing matrix is
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J 7 ~ 02 6 6

13. 02 6 6

0 ~ ~ 0

0 J„2 J.
9

0 J. 2
3 3 2

0 & —: 0

Q
w

1 0

2
Q3

1 03

—3 0

1 0

(Bs)

The eigenvalues for (B8) are

V" = (1, 1.7915, —1.7412, 0.5564, —3.3289, 0).

The matrix R", the rows of which are the eigenvectors for M", is

(a9)

0 0

10.0929 —10.0929

]. .4109 —0.4324 0.4012 0.9351

—0 ' 6115 —1.4143 2.3615 (a10)

—0.0830 0.0830 0.2542

0.4467 —0.4467 —0.1189 0.0672

0

—0.3663 —0.3040

—0.2319
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