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Preface

This thesis is a compilation of my research done during my PhD time at Universidad

de Antioquia. The main focus of research was the study of novel models that account for

neutrino masses and mixing and provide a viable candidate for the DM in the Universe.

For the electroweak extension of the SM based on the SU(3)C ⊗ SU(4)L ⊗ U(1)X

gauge group, several mechanisms for the neutrino mass generation through the tree-level

realization of a dimension five Weinberg-like operator are proposed. For the so called

model F , a three-family model, is found that the mixing matrix and mass hierarchy for

the lightest neutrinos (the SM ones) and the exotic neutrinos (the heavy ones) turns out

to be the same [1].

For the radiative type III seesaw model – a kind of scotogenic model – a collider study

carried out in a simplify scenario, with scalar dark matter. Limits on the fermion triplet

masses are set as a function of the flavor [2].
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Chapter 1.

Introduction

“A person who never made a mistake never tried anything new”

— Albert Einstein

The standard model (SM) of particle physics remains as one of the most successful

theories in Nature. It describes the fundamental interactions (strong and electroweak) of

elementary particles. Despite its triumph, there are both theoretical and experimental

reasons that suggest it is not the ultimate theory. From one side, the solar, atmospheric

and reactor experiments have shown outstanding evidences supporting the neutrino

oscillation phenomena [3–6], implying that neutrinos are massive particles. On the

other hand, the hypothetical presence of an invisible matter which do not interact with

visible matter, the so-called dark matter (DM), in the Universe has been indirectly

known since the observations of galaxy rotation curves in the coma cluster made by F.

Zwicky [7]. These two experimental facts are direct evidences that the SM is incomplete,

and need to be extended. In addition to the neutrino problem and the DM issue,

shortcomings such as the replications of fermions in Nature (why three families?), the

observed matter-antimatter asymmetry in the Universe, fermion masses hierarchies, and

the fact that quadratically divergent corrections to the Higgs boson mass m2
H destabilize

the electroweak scale (naturalness problem), remains as puzzles to be solved.

The understanding of the physics behind neutrino masses and mixing is currently

one of the major focus of research in particle physics today. Among the solutions to the

neutrino problem, one of the simplest is given by the tree level realization of the Weinberg

operator in the SM [8], which gives rise to the well-known type-I [9, 10], type-II [11–14]

and type-III [15] seesaw mechanism, in where, an SU(2) –fermion singlet, scalar triplet

3



4 Introduction

and fermion triplet– are added respectively. The seesaw models are being explored at

the large hadron collider (LHC) [16–21], with exception of the type-I seesaw, in where,

due to the small production cross-section of singlet fermions, makes it difficult to probe

it experimentally.

In order to explain the theoretical and phenomenological inconsistencies of the SM,

its gauge group can also be extended. By extending its color group, and considering

SU(3)C as a low-energy remnant symmetry of a larger group GC , in Ref. [22] it was

shown that in order to reproduce the low-energy phenomenology 1, then, the only possible

choices are GC = SU(k) for k = 4, 5. This extension potentially can account for DM

as a baryon of SU(k − 3) [23]. The top quark forward-backward anomaly is explained

within the framework of an extended color sector [24]. The other possibility relies in

extend the electroweak gauge group, from SU(2)L ⊗ U(1)Y to SU(N)L ⊗ U(1)X [25–29],

for N ∈ {3, 4}. In this extension, the SU(2)L is enlarged to SU(N)L. The new fermion

content is accommodated into different fundamental representations, N or N of SU(N)L.

From a theoretical point of view, such extension can account for the number fermion

generations in nature, when the anomaly cancellation takes place between families and

not family by family as in the SM [28,29]. When N = 3, we end up in the well-known

331 models. Since such models are a carbon copy of the SM, then neutrinos are also

massless. Neutrino masses and mixing has been discussed in 331 models through the

implementation of a type-I like seesaw [30] and the type-II like seesaw mechanism, in

where an additional SU(3)L scalar sextet is added the 331 particle content [31–33]. These

two seesaws arises from the tree level realization of a Weinberg-like operator. To our

knowledge the type-III like seesaw which should correspond to the introduction of an

SU(3)L fermion octet has not been study in the literature. For the electroweak extensions

based on SU(N)L ⊗ U(1)X there is not a systematic classification of the realizations

of the Weinberg operator, neither at the tree level or the loop level, reported in the

literature so far. We carry out a systematic classification of the tree level realization of

Weinberg-like operators that can explain neutrino masses in mixing in the electroweak

extension of the SM based on the SU(3)C ⊗ SU(4)L ⊗ U(1)X [25–29] (341 extension for

short) gauge group. The 341 gauge extension provides an explanation for the charge

quantization [34], allows electroweak unification [27], can account for the muon anomalus

magnetic moment [35,36] and also arises in some little higgs models [37]. In this extension,

neutrinos are massless, and a mechanism for neutrino mass generation is explored through

non-renormalizable dimension five operator (Weinberg-like operator). For one of the

1 Assuming that GC is a simple group which breaks down to SU(3)C by introducing only one colored
Higgs decuplet.
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three-family models 2, the so-called model F , in where, besides the known neutrino, there

is an additional neutral lepton in the lepton multiplet, we explain neutrino masses and

mixing through a type I-like seesaw mechanism and a type II-like seesaw mechanism. For

the latter case, after extending model F with a scalar decuplet, and imposing hierarchies

in the vacuum expectation values (VEVs) of its neutral directions3, the model predicts

that the additional neutral leptons and the lightest SM neutrinos have the same mixing

matrix and mass hierarchy. This model has tree level lepton flavor violation (LFV)

processes, being µ→ 3e the most restrictive, induced by the doubly charged scalar H++
1

and controlled by its Yukawa coupling to the fermion sector, yαβ. The one-loop realization

of the Weinberg-like operator in the SU(N)L ⊗ U(1)X electroweak extension of the SM

has not been explored in a systematic way. However, some implementations already

exist, for instance, in the simplest little higgs model based on 331 gauge symmetry there

exist a mechanism to explain the neutrino masses and mixing through the one-loop level

realization of a Weinberg-like operator [39–41].

In the SM, the Weinberg operator has been explored systematically at the tree level

(the seesaw mechanisms mentioned above), the one-loop level [42] and the two-loop

level [43], such realization gives rise to an infinite set of models that can account for

neutrino masses and mixing. For the one-loop models, after imposing a conserved

Z2 discrete symmetry, and demanding that the particles propagating inside the loop

transforms non-trivially under Z2, and the SM model particles transforms trivially under

the same discrete symmetry, then a finite set of models that can account for both DM and

neutrino masses arise [44]. Among the set of models, the radiative type III seesaw model

(RSIII) [45,46], in where in addition to the SM particle content, a Z2-odd scalar doublet

and at least two SU(2)L Z2-odd fermion triplet are added. Since Z2 is conserved, then

the lightest neutral Z2 particle (LOP) is the DM candidate. When the fermion triplet

is the lightest Z2-odd state, and therefore, their neutral component the DM candidate,

it turns out that in order to account for the observed relic density the fermion triplet

must be very massive ∼ 2.6 GeV [46]. In this scenario, the model can not be tested

at the LHC. We study the scenario when the DM is the lightest neutral component

of the scalar doublet. A collider analysis of the RSIII is carry out in a scenario with

scalar DM, being the neutral component of the fermion triplet the next to the lightest

Z2-odd particle (NLOP). The Z2-odd fermion may be light enough to be produced at the

2A model in which the number of fermion generations in nature is explained through the cancellation
of chiral anomalies between families.

3 Which is done in order to avoid larger mixing between the charged fermions in each multiplet and
satisfy the SM ρ parameter constraint [38].
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LHC. This motivates analyses designed to constrain the RSIII in present LHC searches

and to potentially test their existence in the near future. For suitable choices of the

spectrum, the new Yukawa interactions lead to the decay of the Z2-odd fermions, opening

the possibility to generate collider signals of dileptons plus missing transverse energy

(MET). The RSIII can explain the neutrino masses and mixing and account for the

DM relic density. One of its main features is the richer collider phenomenology with

strong similarities with the minimal supersymmetric standard model (MSSM) [47–49].

The decays of both, RSIII fermion triplets and supersymmetric particles are constrained

by the Z2 symmetry, which leads to cascades to the lightest odd particle (LOP), given

rise to a MET signature. In the framework of simplified model searches at the LHC,

limits for sleptons and electroweakinos in the MSSM have been given for different spectra,

characterized by sleptons being either lighter or heavier than the wino-like charginos and

neutralinos [50–54]. The flavor of the decay leptons is determined by the new physics

(NP) Yukawa couplings, which are related to the neutrino mass operators constrained

by neutrino experiments [55]. A determination of the flavor structure of the final state

is therefore highly relevant. The package CheckMATE [56–58] allows to obtain exclusion

limits on supersymmetric simplified models and NP models based on an increasing

number of ATLAS and CMS analyses. We analyze the exclusion sensitivity as a function

of the flavor space, which is determined by new Yukawa couplings between the Z2-odd

fields and the leptons. Decays with taus in the final state have a much lower exclusion

sensitivity. Currently, only upper limits on stau production cross-sections have been

reported by dedicated analyses for stau production by ATLAS[54] and CMS[59]. However,

taking into account the larger cross-section for pairs of fermion triplets and recasting

those results accordingly may allow to exclude light fermions decaying exclusively into

taus and MET above the LEP exclusion limit [60] up to a lower mass limit of roughly

400 GeV, which allows to establish solid exclusion bounds within the RSIII and full flavor

space allowed by neutrino physics, since final states with taus have the lowest exclusion

sensitivity.

This thesis is organized as follows. In chapter 2 and introduction to the SM and

theories for neutrino masses are reviewed. In chapter 3 a novel mechanism for neutrino

mass generation in the 341 electroweak extension is introduced. In section 3.1, the

341 electroweak extension is reviewed, in the section 3.2 we classified the set of non-

renormalizable effective operator in different models of the 341 extension. A mechanism

for neutrino mass generation in the model F is explore through seesaw-like mechanism in

the section 3.3. In chapter 4 the collider phenomenology for the RSIII is explored. The

model is presented in section 4.1 Constraints on the model and their implications for the
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low DM mass region are analyzed in section 4.2. In section 4.4 the collider phenomenology

and the strategy to set limits on the RSIII is discussed. Numerical results are displayed

in section 4.8 . Finally we summarize our main results in section 5.
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Chapter 2.

Standard Model and Beyond

2.1. Standard Model

The strong, electromagnetic and weak interaction in the SM are described by the

GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y gauge symmetry. Meaning that its lagrangian is

invariant under local transformation of GSM . So far, it is the most compelling and

successful theory in science since its predictions are being confirmed with huge precision

in many different experiments. The particle content of the SM is displayed in table

2.1, grouped into matter particles and force mediator particles. The matter particles

are spin one-half particles (fermions), which are classified into quarks and leptons. In

total there are three generations of matter particles in nature. The first generation of

matter particles are the building blocks of the atoms. The second and third generation

are replications of the first one, but the particles are heavier, and as they decay too

quickly then, they do not form stable bound states. The interactions on the SM are

mediated by the spin one particles (the gauge bosons). All the quarks carry colour charge

(red, green, blue) and interact through the strong force mediated by the gluons. There

are in total eight gluons and they transform as an octet under the color group SU(3)C .

The up-type quarks and the down-type quarks carry an electric charge of +2/3e and

−1/3e respectively. The charged leptons carry electric charge −1e. All electrical charged

particle interact through the electromagnetic force mediated by massless photons with

no electric charge. Each charged lepton have an electrical neutral partner (the neutrino).

All the particles interact through the weak force, which is mediated by the electrically

charge W ± and the neutral Z vector bosons.

9



10 Standard Model and Beyond

(SU(3)C , SU(2)L, U(1)Y ) U(1)Q

Quarks

Qα
L =

(
uα

dα

)
L

uαR

dαR

(3,2, 1/3)

(3̄,1, 4/3)

(3̄,1, 2/3)

(
2/3

−1/3

)
2/3

−1/3

Leptons
LαL =

(
να

lα

)
L

lαR

(1,2,−1)

(1,1,−2)

(
0

−1

)
−1

Higgs H=

(
H+

1

H0
1

)
(1,2,1)

(
1

0

)

Gauge

bosons

Gα
µ

W i
µ

Bµ

(8,1, 0)

(1,3, 0)

(1,1, 0)

0

(0, ± 1)

0

Table 2.1.: The particle content of the SM. The generation index is represented by α and
each up-type quark uα and down-type one dα, carries also color charge.

In the SM, the electroweak sector SU(2)L ⊗ U(1)Y of GSM is a broken symmetry.

When a fundamental scalar transforming as a doublet under SU(2) develops a vacuum

expectation value (VEV) it triggers the spontaneous symmetry breaking. After SU(2)L⊗
U(1)Y is broken a remnant symmetry U(1)Q of electromagnetism remains as an exact

symmetry in nature.

2.1.1. Lagrangian

The most general renormalizable lagrangian reads:

L = −1

4
Fα
µνF

µνα +
{
iΨγµDµΨ + h.c.

}
+

{
ΨY ΦH + h.c.

}
+ |DµH|2 − V (H). (2.1)

In Eq. (2.1), the first term in the first line is the kinetic term for the gauge sector of

the electroweak theory, where α runs over the total number of gauge bosons. Their
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field-strength tensors are given by:

F i
µν = ∂µW

i
ν − ∂νW i

µ + gεjkiW
j
µW

k
ν

fµν = ∂µBν − ∂νBµ, (2.2)

In Eq. (2.2), g is the coupling constant associated to SU(2)L and εjki its structure

constant.

The second part in the first line of Eq. (2.1) is the Dirac lagrangian, it describes the

interactions between matter fields Ψ and the gauge boson fields. The first part in the

second line of Eq. (2.1) is the yukawa sector, it describes the interactions between matter

fields Ψ and the Higgs field H. This part of the lagrangian is the responsible for masses

of the fermions which take place when the electroweak symmetry breaking occurs. The

last part in Eq. (2.1) is the scalar sector, which splits into a kinetic term and a potential

term, and is responsible for the triggering the electroweak symmetry breaking (EWSB).

The covariant derivative Dµ, which appears in the Dirac sector and the Higgs sector is

given by:

Dµ = ∂µ +
ig′

2
BµY +

ig

2
τ lW l

µ, (2.3)

with g′ being the gauge coupling associated to U(1)Y , τ l the set of Pauli matrices,

for l = 1, 2, 3, which are proportional to the generators of SU(2)L and Y the U(1)Y

hypercharge generator.

2.1.2. Electroweak Symmetry Breaking

In the lagrangian in Eq. (2.1), all the fermions and force carriers are massless. A mass

term for the fermion, such as L = mΨΨ breaks the lagrangian invariance under GSM.

Experimentally, fermions and gauge bosons have masses. The way in which their masses

are generated without spoiling the renormalizability of the theory is through the Higgs

mechanism. A scalar doublet H under SU(2)L is added to the fundamental lagrangian

(last term in Eq. (2.1) ). The scalar sector of the lagrangian is:

Lscalar = |DµH|2 − V (H).

=

∣∣∣∣∣(∂µ +
ig′

2
BµY +

ig

2
τ lW l

µ

)
H

∣∣∣∣∣
2

−
[
µ2H†H + λ(H†H)2

]
, (2.4)
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where H, is expressed by:

H =

 G+

1√
2

(v + h+ iG0
I)

 , (2.5)

After the Higgs develops a non-zero vacuum expectation value (VEV), G+ and G0
I are

Goldstone bosons which becomes in the longitudinal degrees of freedom of the W+ and

the Z boson respectively.

〈H〉 =

 0
v√
2

 , (2.6)

with v = 246 GeV.

The masses for the fermions are obtained from the yukawa lagrangian once the Higgs

acquieres a non zero VEV. And the masses for the fermions are proportional to the v.

And from the kinetic term of the scalar lagrangian arises in a natural way masses for the

force mediator, the W+ and Z gauge bosons. The photon remains massless.

2.1.3. SM shortcomings

The SM is not expected to be the final description of the fundamental interactions, but

is an effective low-energy manifestation of a more fundamental theory.

• The SM does not incorporate gravitation. A theory which is describe at classical

level by the general theory of relativity. One of the greatest challenges of building

a quantum field theory of gravity is its non-renormalizability. Loop quantum

gravity [61] and string theories [62] stands as attempts to build a quantized theory

of gravity.

• The observed baryon-antibaryon asymmetry can not be explained within the context

of the SM. Physics beyond the SM is require in order to provide an explanation to

the observed phenomena. One possible solution lies in leptogenesis scenarios, in

where the baryon-antibaryon asymmetry is explained through a lepton asymmetry

generated by decays of heavy sterile neutrinos [63].
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• The observation of galaxy rotation curves can not be explained within the context

of the known physics. It can be explained by postulating the existence of a new

type of weakly interacting matter, the so-called dark matter [7].

• There are not a theoretical explanation for the mass hierarchy of known fermions.

• Neutrino mixing and masses are not explain within the framework of the SM.

Therefore a mechanism for neutrino masses is require.

2.2. Minimal models for Neutrino mixing and

masses

In the SM neutrinos are massless due to the absence of right-handed (RH) neutrinos

νR. However, if RH neutrinos (as well as left-handed (LH) antineutrinos νR) exist in

nature, their interaction with matter should be much weaker than the weak interaction

of left-handed neutrinos. As a consequence, they must transform as a singlet under GSM

gauge group. And should have not gauge interaction1. If in addition to the SM particle

content it is assumed the existence of hypothetical new fields (right-handed neutrinos,

a 4th generation of fermions, new scalars etc.), these could play a crucial role in the

neutrino mass generation.

For any Dirac particle ψ, a mass term is given by [64]:

−LDMass = mψψ

= m(ψLψR + ψRψL), (2.7)

where the relation ψ = ψL + ψR, has been used. However, such a term is not invariant

under GSM , and therefore forbidden in the fundamental lagrangian. The SM relies in

the Higgs Mechanism [64] to explain the way as the particles obtain their masses. All

known fermions (except neutrinos) acquire masses after the EWSB takes place:

SU(3)C ⊗ SU(2)L ⊗ U(1)Y
v∼ 246 GeV−→ SU(3)C ⊗ U(1)Q. (2.8)

1They not couple to the weak W ± , Z0, gluons and photon bosons.
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The interaction between fermions and the fundamental scalar, known as the yukawa

interaction is described by the lagrangian:

−LYuk = λψRH
†ψL + h.c, (2.9)

being λ the yukawa coupling that measures the strength of the interaction between

the scalar and the fermion. When the Higgs acquire a VEV, 〈H〉 = v/
√

2, the yukawa

lagrangian takes the form:

−LY uk = λ
v√
2
ψRψL + h.c, (2.10)

Comparing Eq. (2.7) with Eq. (2.10), we find that after the EWSB, the fermion ψ acquire

a mass: mD = (λv)/
√

2. However this mass term require the existence both of the

right-handed and the left-handed components of the fermion field ψ. This mass term is

called a D irac mass term. Many extensions of the SM provides an answer to the neutrino

puzzle as well as many other shortcomings (electroweak hierarchy problem, dark matter,

gauge couplings unification, etc.) just by extending either the fermion or the scalar

particle content. Since a Majorana, ψ, particle can be its own antiparticle, it must have

zero electric charge. This implies that ψc = ψ (with c standing for the charge conjugation

operator), where the phase term has been neglected. The Eq. (2.7) for a Majorana field

looks like:

−LMMass =
1

2
mψcψ + h.c., (2.11)

this is called a M ajorana mass term. At this stage, neutrinos can be either Dirac or

Majorana particles. In order to explain neutrino masses, it is necessary go beyond the

SM. In the next sections we review several mechanisms widely studied, which allow

neutrinos to be massive particles.

2.2.1. Seesaw mechanism

The first attempt to explain the neutrino mixing and masses relies in the idea of extend

the SM particle content adding a RH neutrino NR per lepton generation [9]. The yukawa

lagrangian involving the usual LH doublet LL = (νL, lL)T , the scalar field H = (H+
1 , H

0
1 )T

and the new RH neutrino is expressed by:

−LYuk = λLLH̃NR + h.c, (2.12)



Standard Model and Beyond 15

where H̃ = iτ2H
∗ (being τ2 the second Pauli matrix). After the EWSB, Eq. (2.12) leads

to a Dirac mass term

−LDMass = νLmDNR + h.c, (2.13)

with mD = λv/
√

2. However, a Majorana mass term for NR can also be added,

−LMMass =
1

2
N c
RmRNR + h.c.. (2.14)

Denoting nL = (νL, N
c
R)T , the full lagrangian is written as

LMass = LMMass + LDMass

=
1

2
ncLMnL, (2.15)

where

M =

 0 mD

mT
D mR

 . (2.16)

After diagonalization.

m2,1 =
1

2

(
mR±

√
m2
R + 4m2

D

)
. (2.17)

With m1 and m2 the masses for the lightest neutrino and the heavy neutrino respectively.

Demanding that m1 to be comparable to the charged leptons masses, then, m2 must be

close to the GUT scale, m2∼ 1015 GeV. In this mechanism, the smallness of neutrino

masses is a consequence of the heaviness of the RH neutrinos. Such a mechanism is called

the type I seesaw mechanism. There exist three realizations of the seesaw mechanism at

tree-level [8] which are shown in Fig 2.1. These are based on the fact that two SU(2)

doublets can be decomposed into a singlet and a triplet (2⊗ 2 = 3⊕ 1).

The type I, type II and type III seesaw mechanism are the realizations of the

dimension-five effective Weinberg operator at tree-level [8].

LΛ =
1

2
fαβ

(
LcLαH̃

∗
)(
H̃†LLβ

)
+ h.c., (2.18)
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N N

L

H

L

H

λTνN λνN ∆

L L

H H

λ∆

µ∆

Σ Σ

L

H

L

H

λTνΣ λνΣ

Figure 2.1.: realizations of the seesaw mechanism: Type I (left), Type II (in the middle) and
Type III (right). The exchanged massive particle corresponds to a fermion singlet
NR∼ (1,1, 0), a scalar triplet ∆∼ (1,3,−2) and a fermion triplet Σ∼ (1,3, 0),
respectively.

where fαβ is a coefficient suppressed by an energy scale Λ (associated to the existence of

new heavy fields) and its calculation depends of the degree of realization of the operator

(depending whether the realization is either at tree-level or at loop-level).

In what follows, the seesaw realizations are briefly introduced.

2.2.2. Type I/III Seesaw

Following the Eq. (2.18),

LΛ =
1

2
fαβ

(
LcLαH̃

∗
)(
H̃†LLβ

)
+ h.c.. (2.19)

after the EWSB, the Higgs field acquires a non-zero VEV: 〈H〉 = v/
√

2, and the Weinberg

operator takes the form:

LΛ =
1

2
(Mν)αβνcLνL, (2.20)

with

(Mν)αβ = fαβv
2, (2.21)

that is, a Majorana mass. A simple evaluation shows that, in order to obtain mν < 1 eV,

then (fαβ)−1 > 1015 GeV. However, what is fαβ?; with the aim of giving an answer, let
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us considerer the most general yukawa lagrangian already written in Eq. (2.15) for the

type I seesaw.

−Lyuk = λLLH̃NR +
1

2
N c
RmRNR + h.c. (2.22)

After the EWSB, and in matrix form:

−Lyuk =
1

2

(
νL N c

R

) 0 mD

mT
D mR

 νcL

NR

+ h.c. (2.23)

Now if mD << mR, by block diagonalization we obtain:

MνL ' −mDm
−1
R mT

D,

MNR ' mR. (2.24)

From Eq. (2.21) and Eq. (2.24), we find that fαβ has the form:

fαβ = −1

2

λλT

mR

, (2.25)

It is found that in order to obtain MνL∼ 1 eV, then mR∼ 1015 GeV for yukawa couplings

O(λ)∼ 1. The same procedure should be done for the type III seesaw. By introducing

a fermion triplet ΣR∼ (1,3, 0) to the SM particle content, the most general yukawa

lagrangian involving ΣR and the neutrino takes the form:

−Lyuk = LLλΣ

(−→
Σ .−→τ

)
H̃ +

1

2

−→
ΣcmΣ

−→
Σ + h.c. (2.26)

After the EWSB, the previous equation yields:

−Lyuk =
1

2

(
νL Σc

3

) 0 mD

mT
D mΣ3

νcL
Σ3

+ h.c., (2.27)

with
−→
Σ = (Σ1,Σ2,Σ3). This mechanism leads to the same result obtained for the type

I seesaw after the mass matrix is block diagonalized. Besides, adding a fermion triplet

instead a fermion singlet, yields additional phenomenology. For instance, LFV processes

like Σ± → l± ν.
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2.2.3. Type II Seesaw

Adding a scalar triplet ∆∼ (1,3, 2), to the SM particle content:

∆ =

∆+/
√

2 ∆++

∆0 −∆+/
√

2

 , (2.28)

the relevant lagrangian is written as:

−L∆ =
(
L̃Lλ∆∆LL + h.c.

)
+ V (H,∆), (2.29)

with

V (H,∆) = m2
∆tr{∆∆†}+ (µ∆H̃

†∆†H + h.c.). (2.30)

In order to guarantee lepton number (LN) conservation in Eq. (2.29), we assign LN = −2

to ∆, but this implies the LN is violated explicitly by the µ term in Eq. (2.30). After the

EWSB, and allowing to the scalar triplet to develop a non-vanishing VEV in the neutral

direction 〈∆〉 = v∆, the term relevant for neutrino masses given in Eq. (2.29) acquires

the form:

−LMass = λ∆v∆νcLνL, (2.31)

then

Mν = 2λ∆v∆. (2.32)

From Eq. (2.30), after the two scalars acquire a non-zero VEV and ensuring a minimum

value for V (H,∆) is reach.

v∆ = −µ∆v
2

4m2
∆

, nfor m∆ >> mH . (2.33)

Taking into account the two previous equations, the expression for the neutrino mass

looks like

Mν = −λ∆µ∆v
2

2m2
∆

, (2.34)
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Making a comparison between this result and the outcome from the effective dimension-

five operator in Eq. (2.18) we obtain,

fαβ = −λ∆µ∆

m2
∆

. (2.35)

The type II seesaw has a very rich phenomenology. The existence of the new field ∆,

still undiscovered, modifies the ρ parameter of the SM putting a strong constraint on

the VEV of this new scalar: v∆ ≤ 3 GeV [65]. An interesting feature of this seesaw is

that leads to LFV processes in the charged sector such as µ→ eγ , τ → µγ. In the next

section we provided a very brief introduction to some models in which neutrino obtain

their masses radiatively.

2.3. Radiative Models

In the SM, the charged fermions acquire mass through yukawa interaction, in which the

Higgs boson plays a crucial role, after the EWSB takes place, however, the neutrino

remains massless in the SM. The type I seesaw mechanisms discussed previously lead

naturally to a massive neutrino by the introduction of heavy fields (at the GUT scale)

with masses around 1015 GeV, making these theories very difficult (with rare decays

under special conditions) to be tested in colliders. Neutrino masses, however, could be

originated from a radiative mechanism.

2.3.1. The Zee Model

In order to explain the origin of the neutrino mixing and masses is given by the Zee

model [66], in which the masses are generated at one-loop order. In this model, in

addition to the Higgs field H, two additional scalar fields φ∼ (1,2, 1) and χ(+)∼ (1,1, 2)

are added to the SM particle content. The relevant lagrangian of the Zee model is:

LZee = L̃LαhαβLLβχ
(+) + µχ(+)H†φ̃+ h.c., (2.36)

where only H couples to leptons. In order to ensure LN conservation in the yukawa

sector, the χ(+) carries lepton number −2. The coupling hαβ is antisymmetric due to

the Fermi-Dirac statistic. This latter feature implies a neutrino mass matrix with zeros

in its diagonal entries. Making one species of neutrino massless. The Zee model allows
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LL Lc
L

H+
1

〈φ〉

〈H〉

Figure 2.2.: One-loop diagram in the Zee model.

to generate Majorana mass for the neutrino at one-loop order. The relevant Feynman

diagram is shown in Fig. 2.2. In this model the neutrino mass matrix has the form:

Mν ∼


0 hµe(m

2
µ −m2

e) hτe(m
2
τ −m2

e)

hµe(m
2
µ −m2

e) 0 hτµ(m2
τ −m2

µ)

hτe(m
2
τ −m2

e) hτµ(m2
τ −m2

µ) 0

 . (2.37)

This model lead to LFV processes such as µ→ eγ, τ → eµ. The original version of Zee

model does not match with the experimental data: predicts a maximum value for the

solar neutrino mixing angle θ�(θ12), and does not reproduce the spectrum of neutrino

masses. For these reasons the simplest version of Zee model has been rule out [67].

2.3.2. The Babu model

In this model [68], an electrically charged scalar singlet h(+)∼ (1,1, 2) and a charged

scalar doublet k(++)∼ (1,1, 4), are added to the SM particle content. The most general

lagrangian associated with these new fields read:

LBabu =
(
LcLαfαβLLβh

(+) + LcRαyαβLRβk
(++) + h.c.

)
− V (H, h+, k++), (2.38)
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Figure 2.3.: Two-loop neutrino mass generation in the Babu model.

where the potential term in the scalar sector is given by:

V (H, h+, k++) = µh−h−k++ + h.c. (2.39)

The coupling fαβ is antisymmetric. The trilinear interaction shown in Eq. (2.39) violates

LN by two units. The contribution to the neutrino masses appear at the two-loop level

as it is shown in Fig. 2.3. The neutrino mass matrix has the form:

Mαβ = 8µfαγy
′

γδmγmδIγδ(y†)γβ, (2.40)

with y
′

αβ = ζy
′

αβ, where ζ = 1 for α = β and ζ = 2 for α 6= β, being m(γ,δ) the charged

lepton masses. The term Iγβ is a two-loop integral

Iγδ =

∫
d4p

(2π)4

∫
d4q

(2π)4

1

(p2 −m2
h)

1

(p2 −m2
γ)

1

(q2 −m2
h)

1

(q2 −m2
δ)

1

(p− q)2 −m2
k)
.(2.41)

This integral has been evaluated in Ref. [69]. Since det(Mν) = 0, the model and predicts

one of the neutrinos to remain massless. The Babu model also leads to LFV processes

such as µ→ eee, τ → µµµ which occurs at tree-level via k(++) exchange.

2.3.3. The Ma Model

An interesting model that can account for neutrino mixing and masses and also provides

a DM candidate in the universe is the so-called Radiative Seesaw [70]. In this model an

extra discrete Z2 symmetry is added, and a minimal particle extension : a hypothetical

new scalar doublet and three right-handed neutrinos are added to the SM particle content.

Under SU(3)C ⊗ SU(2)L ⊗ U(1)Y ⊗ Z2, the new particle content transforms as:

η = (η+, η0)T ∼ (1,2, 1,−), NRα∼ (1,1, 0,−), (2.42)



22 Standard Model and Beyond
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〈H〉 〈H〉

Figure 2.4.: One-loop neutrino mass generation in the Ma model.

.

The new particles NRα and η are odd under Z2. The remaining particles of the SM are

even under Z2. The relevant lagrangian reads:

LMa = hαβ(ναη
0 − lβη+)NRβ +

1

2
N c
RαMRαβNRβ +

1

2
λ5(H†η)2 + h.c. (2.43)

η can not develop a VEV and as a consequence Z2 remains an unbroken symmetry. This

model has a neutral lightest stable particle (LSP) which plays the role of the DM.

Tiny masses for the neutrinos are generated at one-loop level as it is shown in Fig. 2.4.

The mass matrix takes the form:

(Mν)αβ =
∑
γ

hαγhβγMγ

16π2

[
m2
R

m2
R −M2

γ

ln

(
m2
R

M2
γ

)
− m2

I

m2
I −M2

γ

ln

(
m2
I

M2
γ

)]
, (2.44)

being mR and mI the masses of
√

2Re(η0) and
√

2Im(η0), respectively. The Ma model

is testable at the LHC. Numerically, in order to have neutrino masses mν ∼ 1 eV and

assuming a λ5∼ 10−4 is found that Mγ ∼ 1 TeV. On the other hand, there will be

observable dacays2 such as η(± ) → l(± )N1,2,3.

2Assuming that the mass of the scalar fields are greater than Mγ .



Chapter 3.

Neutrino masses in the

SU(4)L ⊗ U(1)X electroweak

extension of the standard model

In this chapter we explore mechanisms for the neutrino mass generation in an electroweak

extension of the standard model based on SU(3)C ⊗ SU(4)L ⊗ U(1)X gauge group.

3.1. SU(4)L ⊗ U(1)X models

In this section the 3-4-1 electroweak extension is briefly introduced. A full phenomeno-

logical study can be found in references [27,28,71]. We focus in the lepton sector, due

that our aim is to implement higher dimensional effective operators that can account

for the neutrino mass generation at the tree-level. In the electroweak SU(4)L ⊗ U(1)X ,

the electric charge operator is a linear combination of the diagonal generators from the

Cartan subalgebra [72,73].

Q = aT3L +
b√
3
T8L +

c√
6
T15L +XI4, (3.1)

where a = 1 is taken in order to reproduce the SM phenomenology. The TiL are the

generators of SU(4)L, normalized as Tr(TiTj) = δij/2, X is the hypercharge and I4

represents the 4× 4 identity matrix. The coefficients b and c remain as free parameter

that need to be chosen to obtain a model in particular. After demanding models that

include particles without exotic electric charge [72], two different assignments for the

23
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standard model

Table 3.1.: Particle content for models A and B, the α = {1, 2, 3} are the lepton generation
indices, i run over the first two generations of quarks. The numbers in parentheses
refer to the (SU(3)C , SU(4)L, U(1)X) quantum numbers respectively.

Model A Model B

LLα = ( e−, ν0, N0, N ′0 )Lα∼ (1, 4,−1/4),

e+Lα∼ (1, 1, 1),

QiL = ( ui, di, Di, D′i )∼ (3, 4,−1/12),

uciL∼ (3, 1,−2/3), dciL∼ (3, 1, 1/3),

Dc
iL∼ (3, 1, 1/3), D′ciL∼ (3, 1, 1/3),

Q3L = ( d3, u3, U3, U ′3 )∼ (3, 4, 5/12),

uc3L∼ (3, 1,−2/3), dc3L∼ (3, 1, 1/3),

U c3L∼ (3, 1,−2/3), U ′c3L∼ (3, 1,−2/3),

LLα = ( ν0, e− , E−, E′− )Lα∼ (1, 4,−3/4),

e+Lα∼ (1, 1, 1), E+
Lα∼ (1, 1, 1), E′+Lα∼ (1, 1, 1),

QiL = ( di, ui, Ui, U ′i )∼ (3, 4, 5/12),

uciL∼ (3, 1,−2/3), dciL∼ (3, 1, 1/3),

U ciL∼ (3, 1,−2/3), U ′ciL∼ (3, 1,−2/3),

Q3L = ( u3, d3, D3, D′3 )∼ (3, 4,−1/12),

uc3L∼ (3, 1,−2/3), dc3L∼ (3, 1, 1/3),

Dc
3L∼ (3, 1, 1/3), U ′c3L∼ (3, 1, 1/3),

free parameters are allowed. The first one, based on the selection of b = 1 (−1) and

c = 1 (−1) which gives rise to two three-family models, Model A and Model B, and the

other choice for the free parameters is b = 1 (−1) and c = −2 (2) that also gives rise to

two three-family models, Model E and Model F1.

The electroweak gauge boson sector are contained in the SU(4)L adjoint representation.

There are a total of 15 of them, which can be written as:

1

2
λαA

α
µ =


D0

1µ W+
µ K

(b+1)/2
µ X

(3+b+2c)/6
µ

W−
µ D0

2µ K
(b−1)/2
1µ V

(−3+b+2c)/6
µ

K
−(b+1)/2
µ K

−(b−1)/2
1µ D0

3µ Y
−(b−c)/3
µ

X
−(3+b+2c)/6
µ V

(3−b−2c)/6
µ Y

(b−c)/3
µ D0

4µ

 . (3.2)

The Model A and Model B are displayed in table 3.1. The scalar sector for this set of

models is given by:

〈
ΦT

1

〉
=

〈(
φ0

1, φ
−
1 , φ

′−
1 , φ

′′−
1

)〉
= (v, 0, 0, 0) ∼ (1, 4,−3/4) ,〈

ΦT
2

〉
=

〈(
φ+

2 , φ
0
2, φ
′0
2 , φ

′′0
2

)〉
= (0, v′, 0, 0) ∼ (1, 4, 1/4) ,〈

ΦT
3

〉
=

〈(
φ+

3 , φ
0
3, φ
′0
3 , φ

′′0
3

)〉
= (0, 0, V, 0) ∼ (1, 4, 1/4) ,〈

ΦT
4

〉
=

〈(
φ+

4 , φ
0
4, φ
′0
4 , φ

′′0
4

)〉
= (0, 0, 0, V ′) ∼ (1, 4, 1/4) . (3.3)

1The three-family models for the parameter assignments b = −1, c = −1 (b = −1, c = 2) are equivalent
by hypercharge transformation to the models obtained for b = 1, c = 1 (b = 1, c = −2).
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Table 3.2.: Particle content for models E and F, the α = {1, 2, 3} are the lepton generation
indices, i run over the first two generations of quarks. The numbers in parentheses
refer to the (SU(3)C , SU(4)L, U(1)X) quantum numbers respectively.

Model E Model F

LLα = ( e−, ν0, N0, E− )Lα∼ (1, 4,−1/2),

e+Lα∼ (1, 1, 1), E+
Lα∼ (1, 1, 1),

QiL = ( ui, di, Di, Ui )∼ (3, 4, 1/6),

uciL∼ (3, 1,−2/3), dciL∼ (3, 1, 1/3),

U ciL∼ (3, 1,−2/3), Dc
iL∼ (3, 1, 1/3),

Q3L = ( d3, u3, U3, D3 )∼ (3, 4,−1/12),

uc3L∼ (3, 1,−2/3), dc3L∼ (3, 1, 1/3),

U c3L∼ (3, 1,−2/3), Dc
3L∼ (3, 1, 1/3),

LLα = ( ν0, e−, E−, N0 )Lα∼ (1, 4,−1/2),

e+Lα∼ (1, 1, 1), E+
Lα∼ (1, 1, 1),

QiL = ( di, ui, Ui, Di )∼ (3, 4, 1/6),

uciL∼ (3, 1,−2/3), dciL∼ (3, 1, 1/3),

U ciL∼ (3, 1,−2/3), Dc
iL∼ (3, 1, 1/3),

Q3L = ( u3, d3, D3, U3 )∼ (3, 4, 1/6),

uc3L∼ (3, 1,−2/3), dc3L∼ (3, 1, 1/3),

Dc
3L∼ (3, 1, 1/3), U c3L∼ (3, 1,−2/3),

The Model E and Model F are displayed in table 3.2. The scalar sector for this set of

models is given by:〈
ΦT

1

〉
=

〈(
φ0

1, φ
+
1 , φ

′+
1 , φ

′0
1

)〉
= (v, 0, 0, 0) ∼

(
1, 4, 1/2

)
,〈

ΦT
2

〉
=

〈(
φ−2 , φ

0
2, φ
′0
2 , φ

′−
2

)〉
= (0, v′, 0, 0) ∼

(
1, 4,−1/2

)
,〈

ΦT
3

〉
=

〈(
φ−3 , φ

0
3, φ
′0
3 , φ

′−
3

)〉
= (0, 0, V, 0) ∼

(
1, 4,−1/2

)
,〈

ΦT
4

〉
=

〈(
φ0

4, φ
+
4 , φ

′+
4 , φ

′0
4

)〉
= (0, 0, 0, V ′) ∼

(
1, 4, 1/2

)
. (3.4)

The pattern of the electroweak symmetry breaking (EWSB) goes as follows

SU(4)L ⊗ U(1)X
V ′−→ SU(3)L ⊗ U(1)X′

V−→ SU(2)L ⊗ U(1)Y
v,v′−−→ U(1)Q, (3.5)

where V ′∼V � v′∼ v, and v′2 + v2 = v2
SM ≡ (246 GeV)2.

3.2. Dimension 5 effective operator

Neutrinos may acquire masses after the introduction of non-renormalizable2 dimension-five

operators defined as:

L5 =
O5

Λ
, O5 = {LcLαΦ?

iΦ
†
jLLβ, L

c
LαΦiΦ

?†
j LLβ}, (3.6)

2Operators of energy dimension greater than four in the lagrangian of the theory.
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being α and β lepton generation indices and i, j index in the number of scalar 4-plets.

In Eq. (3.6), Λ represent the cutoff scale where new physics is expected. The operator

given in Eq. (3.6) is the generalization of the Weinberg operator [8] for SU(4)L ⊗ U(1)X .

Depending on the way as the fields transforms under SU(4)L⊗U(1)X , different tree-level

realizations of the operator are allowed.

Table 3.3.: Scenarios for the operator defined in Eq. (3.6): In the left part, the (4(4), XL(Φ))
notation represents the way as the fields (either LLα or Φi) transforms under
SU(4)L ⊗ U(1)X . The effective operator is allowed if it is gauge invariant.

LLα Φk OI5 = LcLαΦ?
iΦ
†
jLLβ OII5 = LcLαΦiΦ

?†
j LLβ

(4, XL) (4, XΦ) 4⊗ 4⊗ 4⊗ 4 ⊃ 1, 2XL − 2XΦ = 0 4⊗ 4⊗ 4⊗ 4 ⊃ 1, 2XL + 2XΦ = 0

(4, XL) (4, XΦ) 4⊗ 4⊗ 4⊗ 4 ⊃ 1, 2XL − 2XΦ = 0 4⊗ 4⊗ 4⊗ 4 ⊃ 1, 2XL + 2XΦ = 0

(4, XL) (4, XΦ) 4⊗ 4⊗ 4⊗ 4 ⊃ 1, 2XL − 2XΦ = 0 4⊗ 4⊗ 4⊗ 4 ⊃ 1, 2XL + 2XΦ = 0

(4, XL) (4, XΦ) 4⊗ 4⊗ 4⊗ 4 ⊃ 1, 2XL − 2XΦ = 0 4⊗ 4⊗ 4⊗ 4 ⊃ 1, 2XL + 2XΦ = 0

For any set of fields (Φ, LL), transforming in a general way under SU(4)L ⊗ U(1)X ,

different theoretical realizations of the operators are displayed in table 3.3. In order to

allow such an operators into an effective lagrangian, we must garanteed that the product

of the irreducible representations contain the SU(4) singlet and be hyperchargeless. Since

for SU(N), N ⊗N = [(N2 +N)/2]S + [(N2−N)/2]A and N ⊗N? = [N2− 1]Adjoint + [1],

there are only two possible main topologies for the tree-level realization of the Weinberg

operator. From Eq. (3.6), if the intermediate particle is a scalar, it can transform as

10S and 15Adjoint
3 under SU(4)L, on the other hand if it is a fermion, it can transform

as 1A, and 15Adjoint under SU(4)L
4. In Figure 3.1 are displayed all the possible tree

level realization of the effective Weinberg operator in the SU(4)L ⊗ U(1)X electroweak

extension. The theory reduces to a canonical seesaw, a type II-like seesaw, and a type

III-like seesaw in where, for SU(4)L a -fermion singlet, scalar decuplet and fermion

15-plet - are included respectively.

To our knowledge the 3-4-1 extension with a fermion singlet (canonical seesaw

mechanism) has been implemented [74], as well as with a scalar decuplet [26,75], but the

fermion 15-plet has not been proposed in the literature yet. Those new particles in case of

be added should have hypercharge values that does not spoil the anomaly free structure

3The scalar singlet does not gives rise to neutrino masses.
4 The fermion sextet is also a possible realization of the Weinger operator, however is not allowed

because after their introduction it does not give rise to neutrino masses, instead is an additional
term that contribute to the masses of the charges leptons.
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N,Σ

LLα
LLβ

Φi Φj

Φi Φj

∆,Ω

LLα LLβ

Figure 3.1.: Topologies of the Weinberg-like effective operator. On the left hand side the
intermediate particle could be an SU(4) fermion singlet NR∼ (1, 0), and a fermion
15-plet Σ∼ (15, 0). On the right hand side the intermediate particles could be
an SU(4) scalar decuplet ∆∼ (10, X∆) and a scalar 15-plet Ω∼ (15, XΩ).

of the model. That is why any new fermion content should have zero hypercharge or be a

vector-like particle under SU(4)L. In the next subsections, we display the set of effective

Weinberg-like operators that can be built in the four models presented in section 3.1.

3.2.1. Model A

In this model there are a total of 9 operators, which are given by:

O5 =
{
LcLαΦ2Φ?†

2 LLβ, LcLαΦ2Φ?†
3 LLβ, LcLαΦ3Φ?†

2 LLβ,

LcLαΦ2Φ?†
4 LLβ, LcLαΦ4Φ?†

2 LLβ, LcLαΦ3Φ?†
3 LLβ,

LcLαΦ3Φ?†
4 LLβ, LcLαΦ4Φ?†

3 LLβ, LcLαΦ4Φ?†
4 LLβ

}
. (3.7)

For this model we have:

1. ΦkΦ
?†
k ⇒ 4 ⊗ 4 = 6A ⊕ 10S, therefore a 10S scalar is allowed as the intermediate

particle. The 6A is not allowed because of its statistic.

2. Φ?†
k LLβ ⇒ 4⊗ 4 = 1⊕ 15Adjoint, then either a fermion singlet or a fermion 15-plet

are allowed as intermediate particles.

The operators defined in Eq. (3.7) have two topologies at the tree-level, one in which

the intermediate particle is a fermion, either singlet NR∼ (1, 1, 0) or 15-plet Σ∼ (1, 15, 0),

and the other one in which the intermediate particle is a scalar decuplet ∆∼ (1, 10, 1/2).

In order to fit all the experimental neutrino oscillation parameters, at least three right-

handed neutrinos ( three fermion 15-plet ) per lepton generation or an scalar decuplet

must be added.
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3.2.2. Model B

For this model the operator is unique and is given by:

O5 =
{
LcLαΦ?

1Φ†1LLβ
}
. (3.8)

1. Φ?
kΦ
†
k ⇒ 4 ⊗ 4 = 6A ⊕ 10S, therefore a 10S scalar is allowed as the intermediate

particle, the 6A is forbidden due to its statistic.

2. Φ†kLLβ ⇒ 4⊗ 4 = 1⊕ 15Adjoint, then either a fermion singlet or a fermion 15-plet

are allowed as intermediate particles.

The operators given in Eq. (3.8) has two topologies at tree level, one in which the

intermediate particle is a fermion, either singlet NR∼ (1, 1, 0) or 15-plet Σ∼ (1, 15, 0),

and the other one in which the intermediate particle is a scalar decuplet ∆∼ (1, 10, 3/2).

Again, to fit all the experimental neutrino oscillation parameters, at least one right-

handed neutrino (15-plet fermion) per lepton generation or an scalar decuplet must be

included.

3.2.3. Model E

For this model there are 4 operators, which are given by:

O5 =
{
LcLαΦ?

2Φ†2LLβ, LcLαΦ?
2Φ†3LLβ, LcLαΦ?

3Φ†2LLβ, LcLαΦ?
3Φ†3LLβ

}
. (3.9)

1. Φ?
kΦ
†
k ⇒ 4⊗ 4 = 6A ⊕ 10S, then a 10S scalar is allowed as the intermediate particle,

the 6A is not allowed because its statistic.

2. Φ†kLLβ ⇒ 4⊗ 4 = 1⊕ 15Adjoint, then either a fermion singlet or a fermion 15-plet

are allowed as intermediate particles.

Again, each of the previous operators have two topologies at tree level, one in which

the intermediate particle is a fermion either singlet NR∼ (1, 1, 0) or 15-plet Σ∼ (1, 15, 0),

and the other one in which the intermediate particle is a scalar decuplet ∆∼ (1, 10, 1). In

order to fit all the experimental neutrino oscillation parameters, at least two right-handed

neutrinos ( two fermion 15-plet ) per lepton generation or an scalar decuplet must be

added.
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3.2.4. Model F

For this model there are 4 operators, which are given by:

O5 =
{
LcLαΦ1Φ?†

1 LLβ, LcLαΦ1Φ?†
4 LLβ, LcLαΦ4Φ?†

1 LLβ, LcLαΦ4Φ?†
4 LLβ

}
. (3.10)

1. ΦkΦ
?†
k ⇒ 4⊗ 4 = 6A ⊕ 10S, then a 10S scalar is allowed as the intermediate particle,

the 6A is not allowed because of its statistic.

2. Φ?†
k LLβ ⇒ 4⊗ 4 = 1⊕ 15Adjoint, then either a fermion singlet or a fermion 15-plet

are allowed as intermediate particles.

The operators given in Eq. (3.10) have two topologies at tree level, one in which the

intermediate particle is a fermion either singlet NR∼ (1, 1, 0) or 15-plet Σ∼ (1, 15, 0),

and the other one in which the intermediate particle is a scalar decuplet ∆∼ (1, 10, 1).

Neutrino oscillation parameters are explained after the model is extended with two right-

handed neutrinos (or two fermion 15-plets) per lepton generation or a scalar decuplet.

To address neutrino masses and mixing, models with fermion singlets [74,76] as well

as with scalar decuplets have been constructed [75]. In particular, in Ref. [77] not new

particles were introduced, instead the 10S scalar representation was built using the

fundamental representation of the scalar fields content in SU(4)L. Scalar decuplets also

have been used to provide masses for the charged leptons in 3-4-1 models [78]. In the

next section we study the neutrino mass generation and mixing in the model F , extending

with a fermion singlets, and a scalar decuplet.

3.3. Neutrino masses in Model F

In order to explain neutrino masses and mixing in the 3-4-1 electroweak extension, we

explore the tree-level realization of the Weinberg-like operator in the model F introduced5

in table 3.2.

5The same can be done for all the models, following the general classification given in chapter 3.2.
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3.3.1. Canonical Seesaw Mechanism

The model F is extended with two right-handed neutrinosN1Ri∼ (1, 1, 0) andN2Ri∼ (1, 1, 0),

being i the generation index. At least three generations of {N1Ri, N2Ri} are needed in

order explain the neutrino masses. The most general Yukawa lagrangian for the neutral

lepton sector, including the new fields reads:

−Lyuk =

[
λαi1 LLαΦ1N1Ri + λαj2 LLαΦ1N2Rj + λαi3 LLαΦ4N1Ri

+ λαj4 LLαΦ4N2Rj + h.c

]
+

1

2
M1NC

1RiN1Ri +
1

2
M2NC

2RjN2Rj

+

[
µNC

1RiN2Rj + h.c

]
, (3.11)

where λαil ; for l ∈ {1, 2, 3, 4} and i ∈ {1, 2}, are 3× k Yukawa matrix entries; k, the

number of right-handed neutrinos per lepton generation, M1 and M2 are 3× 3 Majorana

mass matrices for the right-handed neutrinos and are assumed to be diagonal without

loss of generality. The mixing term µ, is in general, allowed by the gauge symmetry.

After the electroweak symmetry breaking (EWSB), Eq. (3.11) becomes:

−Lyuk =
(
νLα NLα NC

1Ri NC
2Ri

)
M


νLα

NLα

N1Ri

N2Ri

 , (3.12)

with:

M =


0 0 vλ1 vλ2

0 0 V ′λ3 V ′λ4

vλ†1 V ′λ†3 M1 µ

vλ†2 V ′λ†4 µ M2

 ≡


0 0 m1D m2D

0 0 m3D m4D

m†1D m†3D M1 µ

m†2D m†4D µ M2

 ≡
06× 6 MD

M †
D MR

 .(3.13)

The mass matrix given in Eq. (3.13) can not be diagonalized exactly. However for

simplicity and illustrative purposes we set all element of matrix µ to be zero. In this

model, the smallness of active neutrinos is due to the heavyness of the right-handed

neutrinos as happens in the SM with the type I seesaw mechanism. In the limit

{M1,M2} >> {m1D,m2D,m3D,m4D}, the mass matrix in Eq. (3.13) can be diagonalized
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by blocks in an approximately way, and the masses for the lightest and heaviest neutrinos

takes the form:

Mlight = −M−1
R MDM

†
D +O(M−2

R ) ≈ −

α β

γ δ

 , (3.14)

Mheavy = MR +O(M−1
R ) ≈

M1 0

0 M2

 , (3.15)

where

α = M−1
1 [m1Dm

†
1D +m2Dm

†
2D] ,

β = M−1
1 [m1Dm

†
3D +m2Dm

†
4D] ,

γ = M−1
2 [m3Dm

†
1D +m4Dm

†
2D] ≡M−1

2 β†M1 ,

δ = M−1
2 [m3Dm

†
3D +m4Dm

†
4D] . (3.16)

From Eq. (3.14), the lightest neutrino spectrum in the physical basis is obtained as:

Mlight
diag = U †MlightU , (3.17)

being U a 6× 6 matrix which mixed the lightest neutrinos [79]:

U
6× 6

=

N 3× 3
S

3× 3

T
3× 3

V
3× 3

 . (3.18)

From the experimental side, oscillations between the three active SM neutrinos and exotic

neutrinos have not yet being observed [80], implying that new neutral leptons, if they

exist, must be heavy, mNL > 1 eV. As a consequence, the mixing matrices S
3× 3

and T
3× 3

in Eq. (3.18) will be suppressed. As pointed out [79], the current experimental limits on

neutrinos oscillation experiments are not able to put stringent constraints in any of the

new physics (NP) parameters given inside Eq. (3.18); however, a future generation of

neutrino experiments will open the window for the exploration of neutrino oscillation

parameters as well as CP-violation in the lepton sector [81]. The lepton flavor violation

(LFV) processes such as µ→ eγ can take place in this model at one loop level, however

a full study on LFV is beyond scope of this chapter. The lightest active SM neutrinos
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acquire masses through the canonical seesaw mechanism, as happens for the SM. Based

on the above observations, the mixing matrix in Eq. (3.18) is approximately diagonal6,

and the masses for the lightest SM neutrinos takes the form:

Mdiag
ν̂L

≈ N †MνLN ,

Mdiag
ν̂L

≈ U †PMNSM
−1
1 [m1Dm

†
1D]UPMNS , (3.19)

with UPMNS, the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix [82] and Mdiag
ν̂L

=

diag(mν1,mν2,mν3). The masses for the lightest sterile neutrinos7 reads,

Mdiag

N̂L
≈ V †MNLV ,

Mdiag

N̂L
≈ V †M−1

2 [m4Dm
†
4D]V † , (3.20)

with Mdiag

N̂L
= diag(mN1,mN2,mN3). The Eq. (3.19) and Eq. (3.20) were obtained after

demanding λ1 � λ2 and λ4 � λ3. Under these assumptions the two neutrino sectors

are uncorrelated. The masses for the SM neutrinos are fully determined by M1, λ1 and

UPMNS.

3.3.2. Type II-like Seesaw Mechanism

The model F displayed in table 3.2 is extended with a scalar decuplet ∆∼ (1, 10, 1). The

most general lagrangian for the neutral leptons is given by:

− Lyuk = yαβL̃CLα∆LLβ + h.c. , (3.21)

where, yαβ is a symmetric mixing matrix, L̃CL = LCL iσ ≡ (−eC , νC ,−NC , EC), being

σ = T2L + T14L =
1

2


0 −i 0 0

i 0 0 0

0 0 0 −i
0 0 i 0

 . (3.22)

6There are not mixing between the sterile neutrinos and the SM ones.
7 Neutral lepton with no ordinary weak interactions except those induced by mixing.
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The scalar decuplet contains ten degrees of freedom, using a canonical kinetic term; those

can be parametrized as:

∆ =


∆+

11 ∆++
12 ∆++

13 ∆+
14

∆0
21 ∆+

22 ∆+
23 ∆0

24

∆0
31 ∆+

32 ∆+
33 ∆0

34

∆+
41 ∆++

42 ∆++
43 ∆+

44

 ≡


1√
2
H+

1 H++
1

1√
2
H++

2
1√
2
H+

3

H0
1 − 1√

2
H+

1 − 1√
2
H+

2
1√
2
H0

3

− 1√
2
H0

3
1√
2
H+

3 − 1√
2
ω+ −κ0

1√
2
H+

2 − 1√
2
H++

2 ρ++ 1√
2
ω+

 . (3.23)

After EWSB, the neutral components of the decuplet develop a VEV and the lagrangian

in Eq. (3.21) becomes:

− Lyuk = yαβ

(
νcLα〈H0

1 〉 νLβ +
1√
2
νcLα〈H0

3 〉NLβ

+
1√
2
N c
Lα〈H0

3 〉νLβ + N c
Lα〈κ0〉NLβ

)
+ h.c

=
(
νcLα N c

Lα

)
M

 νLβ

NLβ

 , (3.24)

with

M =

 yαβ〈H0
1 〉 1√

2
yαβ〈H0

3 〉
1√
2
yαβ〈H0

3 〉 yαβ〈κ0〉

 , (3.25)

with α and β being lepton generation indices. We demand 〈H0
3 〉 < 1 GeV, in order to

avoid e−E large mixing. The scalar decuplet will modified the tree-level ρ parameter [38].

ρtree ' 1− 2〈H0
1 〉2

v2 + v′2 + 〈H0
1 〉2

. (3.26)

Since, ρexp = 1.00040± 0.00024 [65], in order to satisfy the ρ constraint, 〈H0
1 〉 ≤ 1.5 GeV.

Notice that 〈κ0〉 is not constrained by ρ. Assuming {〈H0
1 〉, 〈H0

3 〉} < 〈κ0〉, the neutrino

masses for the lightest SM neutrinos and the heavy ones at second order in perturbative

diagonalization takes the form:

MLight = yαβ〈H0
1 〉 −

〈H0
3 〉2
〈κ0〉 y

−1
αβyαβy

†
αβ , (3.27)

MHeavy = yαβ〈κ0〉+
〈H0

3 〉2
〈κ0〉 y

−1
αβyαβy

†
αβ . (3.28)
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In the limit 〈H0
3 〉 � 〈κ0〉, the Eq. (3.27) and Eq. (3.28) are diagonalized by the same

UPMNS mixing matrix 8.

Mdiag
ν = U †PMNSMLightUPMNS = 〈H0

1 〉 U †PMNS Y UPMNS , (3.29)

Mdiag
N = U †PMNSMHeavyUPMNS = 〈κ0〉 U †PMNS Y UPMNS , (3.30)

where leptonic indices has been suppressed in matrix Y. Since both matrices; MHeavy

andMLight are diagonalized by the same matrix, then the heavy neutral leptons (exotics)

and the lightest (SM ones) has the same mass hierarchy. Therefore,

Mdiag
Ni =

〈κ0〉
〈H0

1 〉
Mdiag

νi ,
mN1 0 0

0 mN2 0

0 0 mN3

 =
〈κ0〉
〈H0

1 〉


mν1 0 0

0 mν2 0

0 0 mν3

 . (3.31)

Using the data from neutrino oscillation [80], the lightest of the sterile neutrino satisfies

MN1 > 1 eV. From this we derived the next constraints on the VEV of the scalar decuplet.

〈κ0〉 > 1 eV〈H0
1 〉

mν1

(3.32)

Assuming for instance mν1 '
√

∆m2
12 ' 8.717× 10−3 eV, which is the maximum possible

value for mν1 in the normal hierarchy (NH) scenario[55], then 〈κ0〉 > 114.707 〈H0
1 〉, is a

lower bound on 〈κ0〉 derived from neutrino physics. In this model, LFV processes such

as µ−→ e+e−e−, τ−→ e+e−e−, τ−→µ+µ−µ− are mediated by H++
1 at the tree-level.

These processes are controlled by yαβ and also depends of the new scalar sector spectrum.

BR(µ−→ e+e−e−) ≈ Γ(µ−→ e+e−e−)

Γ(µ−→ e+νµνe)
,

=
1

(MH++
1

)4G2
F

|yµe|2|yee|2 . (3.33)

BR(µ−→ e+e−e−) is constrained [83] to satisfy BR(µ−→ e+e−e−) < 1.0× 10−12, which

is the most severe limit. In figure 3.2 is displayed the BR(µ−→ e+e−e−) as a function of

yee. The vertical dashed line are the points with yukawa couplings of order ∼ 4π, which

8The same conclusion is draw for Eq. (3.27) and Eq. (3.28) forcing yαβ to be real, assumption which is
not general, and only will be valid for a real UPMNS.
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Figure 3.2.: BR(µ−→ e+e−e−) as a function of yee. The vertical dashed line represent the
point where couplings of order ∼ 4π are expected, and the horizontal dashed line
is the upper limit for BR(µ−→ e+e−e−) process.

represents the perturbative limit. To the left of that line neutrino masses and mixing

are explained. The points with yee > 4π are ruled out by perturbativity. The horizontal

dashed line represents the upper limit on BR(µ−→ e+e−e−), above that limit the points

are ruled out. All the points in the plot were obtained performing a scan of the following

parameters in the range

100 GeV < mH++
1

< 100 TeV ,

10−9 GeV < 〈H0
1 〉 < 1.5 GeV ,

10−9 GeV < 〈H0
3 〉 < 1 GeV ,

10−7 < yαβ < 2× 101 .

All the points in figure 3.2 satisfy the neutrino mixing and masses constraints [55] at

2σ9. On the other hand, notice that model F account for neutrino masses and mixing

extending it with two fermion 15−plet per lepton generation. Since the fermion 15-plet

mixes with the charged 4-plet leptons, then tree-level LFV processes mediated by the

neutral gauge bosons ( Z, Z ′ and Z ′′) are present. The model will also have restrictions

coming from colliders constraints on heavy exotic leptons. This model is very interesting,

9 We only consider the case for the NH scenario.
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its phenomenology is more richer than the two other realizations shown before, but is

beyond scope this work and will be considered in a future work.



Chapter 4.

Radiative Type III seesaw and its

colliders phenomenology

In this chapter we carry out a collider analysis in the Radiative seesaw model (RSIII), a

scotogenic model in where an SU(2) scalar doublet and a fermion triplet, both colorless,

and transforming non-trivially under an exact Z2 discrete symmetry are added to the

standard model (SM). This model provides a natural Dark Matter (DM) candidate for

the Universe and also account for the neutrino masses and mixing. Since the fermion

triplets have gauge interactions, they may be copiously produced at the LHC. Exclusion

as a function of the flavor is obtained for the RSIII for regions in the parameter space

that agrees with dark matter relic density constraint and neutrino oscillation.

4.1. The model

In this section we introduce the model RSIII [44–46], an extension of the SM with an

additional complex scalar doublet of SU(2), Φ, and nΣ ≥ 2 generations of vector fermion

triplets of SU(2), Σk, k = 1, . . . , nΣ. The quantum numbers of the scalar and leptonic

sector of the model are given in table 4.1. The new particles are odd under an exact

Z2 discrete symmetry, forcing the lightest Z2-odd particle to be stable, and thus a natural

DM candidate. This symmetry also prevents neutrino masses from being generated by

the tree-level Type-III seesaw mechanism [15]. Neutrino masses are generated at the

one-loop level [70] via their interactions with the neutral components of Σk, the Majorana

37



38 Radiative Type III seesaw and its colliders phenomenology

Table 4.1.: Gauge, Z2 and spin quantum numbers of the particle content of the RSIII entering
LNP, Eq. (4.2). Here α and k denote, respectively, the lepton flavor and NP
fermion index.

SU(2)L U(1)Y Z2 S

ΦSM 2 1 + 0

Φ 2 1 − 0

Lα 2 −1 + 1/2

Σk 3 0 − 1/2

fermions Σ0
k, and the neutral components of Φ, φ0. Therefore, the Z2 symmetry plays a

crucial role linking DM to the neutrino mass generation1.

4.1.1. Lagrangian

The most general renormalizable Lagrangian of the RSIII reads

LRSIII = LSM + LNP , (4.1)

with [46]

LNP = iTr
[
Σ /DΣ

]
− 1

2
Tr
[
ΣMΣΣc + ΣcM∗

ΣΣ
]
−
(
YkαΦ̃†ΣkLα + h.c.

)
+ (DµΦ)†(DµΦ)− VNP (Φ,ΦSM) , (4.2)

with α = e, µ, τ . Here the trace runs over the SU(2) indices, the mass matrix MΣ

(but not the NP yukawa couplings Y ) is assumed to be flavor diagonal, D denotes the

covariant derivative, L are the left-handed lepton doublets, and ΦSM is the SM scalar

doublet. Whenever possible the flavor indices have been suppressed. The NP scalar

1It is worth mentioning that the evolution of the model parameters via the renormalization group
equations may induce a non-zero vacuum expectation value for φ0 at high scales, leading to the
spontaneous breaking of the Z2 symmetry. This situation, that indeed occurs in the minimal
scotogenic model [84], may be naturally avoided extending the model with a Z2-even real scalar-
triplet, as shown in [85] in the context of the scotogenic model where a fermion singlet is replaced
by a fermion triplet [86]. This solution, where the evolution of the couplings of the scalar sector is
modified by the extension of the scalar sector, is fully applicable to our case.
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potential is given by

VNP (Φ,ΦSM) = µ2
2Φ†Φ + λ2(Φ†Φ)2 + λ3(Φ†SMΦSM)(Φ†Φ)

+ λ4(Φ†SMΦ)(Φ†ΦSM) +
λ5

2

[
(Φ†SMΦ)2 + h.c.

]
, (4.3)

with all the scalar couplings λi real.

The scalar fields are given by

Φ =

 H+

1√
2

(H0 + iA0)

 , ΦSM =

 G+

1√
2

(v + h+ iG0
I)

 , (4.4)

where G0
I and G+ the Goldstone bosons of the SM, 〈ΦSM〉 =

(
0, v/

√
2
)T

with v =

246 GeV. The masses for the NP scalars can be obtained from Eq. (4.3):

m2
H ± = µ2

2 +
λ3

2
v2 ,

m2
H0 = µ2

2 +
(λ3 + λ4 + λ5)

2
v2 ,

m2
A0 = µ2

2 +
(λ3 + λ4 − λ5)

2
v2 . (4.5)

where H0 and A0 denote the neutral scalar and pseudoscalar components of the Z2-

odd scalar, and H ± its charged components. The Higgs mass is fixed to its current

experimental value measured by ATLAS and CMS, mh = 125.09± 0.24 GeV [87].

The mass ordered Z2-odd fermion fields, triplets of SU(2)L, can be written as [46]

Σk =

Σ0
k/
√

2 Σ+
k

Σ−k −Σ0
k/
√

2

 . (4.6)

At tree level the masses for the neutral and charged Z2-odd fermion triplets Σk are

degenerated within each generation. At one loop the mass splitting between the charged

and neutral components of Σk can be computed with the general formula given in

Ref. [88], resulting in a mass splitting of between ∆mloop ≈ 152 MeV for small mΣ0
k
, and

∆mmax
loop = α2MW sin2(θW/2) = 166± 1 MeV, its asymptotic value for large mΣ0

k
. This

mass difference is small enough to neglect decays of the charged fermion to the neutral

one and a virtual W boson.
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Since our analysis is not sensitive to the CP properties of the model we assume,

without loss of generality, that the CP -even scalar H0 is lighter than the CP -odd A0.

Therefore, H0 is stable and the natural DM candidate. A convenient set of parameters to

describe the full model are the masses of the unknown scalar spectrum {mH0 ,mA0 ,mH ± },
the self-couplings λ2, λL ≡ λH0 = (λ3 + λ4 + λ5)/2, nΣ×nΣ complex yukawa couplings

Ykα, and the nΣ masses for the neutral components of the fermion triplet mΣ0
k
.

4.1.2. Neutrino Mass Generation

In this model the neutrino masses arise at one-loop via their interaction with the Z2-odd

fermions and scalars [45]. The corresponding Feynman diagram is displayed in Fig. 4.1.

The neutrino mass matrix reads

(Mν)αβ =

nΣ∑
k=1

YkαYkβΛk =

nΣ∑
k=1

[
Y TΛY

]
αβ

, α, β = 1, 2, 3 ,

Λk =
mΣ0

k

32π2

[
m2
H0

m2
H0 −m2

Σ0
k

ln

(
m2
H0

m2
Σ0
k

)
− m2

A0

m2
A0 −m2

Σ0
k

ln

(
m2
A0

m2
Σ0
k

)]
, (4.7)

where Λk are the entries of the diagonal matrix Λ. The special case nΣ = 2 leads to

a singular neutrino mass matrix with one vanishing eigenvalue. The physical neutrino

masses are obtained diagonalising Eq.(4.7) with the Pontecorvo-Maki-Nakagawa-Sakata

neutrino mixing matrix UPMNS [82] (see Ref. [89] for its standard parametrization):

UT
PMNSMνUPMNS = diag(mνe ,mνµ ,mντ ) ≡Mdiag

ν . (4.8)

Using the Casas-Ibarra parametrization procedure[90] we express the yukawa coupling

matrix in terms of the new physics mass parameters included in Λk (4.7), and the

experimental neutrino data:

Y =
√

Λ
−1
R

√
M ′diag

ν U †PMNS , (4.9)

where R is an arbitrary nΣ× 3 orthogonal matrix connecting Z2-odd fermion and

lepton flavor space and M ′diag
ν = diag(mν1 ,mν2 ,mν3). If nΣ > 2 and the lightest neutrino

is allowed to vary in its full experimentally allowed range both hierarchies cover almost
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Σ0
kν̂i ν̂j

φ0φ0

〈ΦSM〉 〈ΦSM〉

Figure 4.1.: One-loop neutrino mass generation in the RSIII via the exchange of a Z2-odd
neutral scalar φ0 = H0, A0 and a Z2-odd fermion Σ0

k. The neutrino interaction
eigenstates are denote by ν̂α and ν̂β.

the whole range of normalized yukawa couplings, as can be observed in Fig. 4.2, where

solutions of Eq. (4.9) with real R are shown in flavor space for the normal (NH) and

inverse (IH) hierarchies. Here Ŷα ≡ Ŷ1α = Y1α/
√∑

α=e,µ,τ |Y1α|2 denote the normalized

yukawa couplings and the color shows the logarithmically averaged mass of lightest

neutrino mass in each hierarchy. These solutions have been obtained for Σ±k masses

of 500, 1500, and 2500 GeV. However, qualitatively similar solutions are obtained for

different fermion masses. For our numerical analysis we will assume nΣ = 3 and a normal

hierarchy for the neutrino masses.
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|Ŷe|2 |Ŷµ|2
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Figure 4.2.: Normal (NH) and inverse (IH) hierarchy solutions in flavor space (visualized
as described in [91]). For every set of normalized yukawa couplings squared
|Ŷα|2, α = e, µ, τ , the lightest neutrino mass mνk of the obtained solutions is
averaged logarithmically.

4.1.3. Lepton Flavor Violation (LFV)

The LFV processes such as µ−→ e−γ vanish in the SM but arise in the RSIII at the

one-loop via the LFV yukawa interactions with the Z2-odd scalars (4.2) shown in Fig. 4.3.
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The analytic expression for Br(µ−→ e−γ) is given by

Br(µ−→ e−γ) =
3αemBr(µ

−→ e−νµνe)

256π2G2
F

×
∣∣∣∣∣
nΣ∑
k=1

Y ∗kµYke

{
1

m2
H ±

F2

(
m2

Σ0
k

m2
H ±

)
− 1

m2
Σ±k

[
F2

(
m2
H0

m2
Σ±k

)
+ F2

(
m2
A0

m2
Σ±k

)]}∣∣∣∣∣
2

,

(4.10)

with GF the Fermi constant and

F2(x) =
1− 6x+ 3x2 + 2x3 − 6x2 log x

6(x− 1)4
. (4.11)

This expression can be trivially generalized to τ−→µ−γ and τ−→ e−γ.

µ− Σ0
k e−

H−

γ

µ− φ0 e−

Σ−
k

γ

Figure 4.3.: Feynman diagrams contributing to µ−→ e−γ. Here φ0 = H0, A0. Not shown
are the self-energy corrections leading to electron-muon mixing.

4.1.4. Dark matter

The case of fermionic DM has been studied in [45,46]. The DM candidate is the neutral

component of the lightest NP fermion triplet. Since its electroweak couplings to gauge

bosons are unsuppressed, the Z2-odd fermions need to be heavier than 2.6 TeV [46] in

order to suppress the DM annihilation cross-section before freeze-out and thus allow for

the correct relic density. Therefore, one does not expect significant phenomenological

signatures at the LHC.

The scalar sector, on the other hand, allows for lighter DM. Since it has the same

field content and couplings to the SM as the Inert Higgs Doublet Model [92], its phe-

nomenology is also very similar. Scalar DM is viable both at around the electroweak

scale, the “low mass region”, as well as above 500 GeV [93]. We focus our analysis in the

phenomenologically more interesting low mass region for DM. In this region the dominant
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annihilation channels are bb̄, mainly via the exchange of a Higgs boson in s-channel, and

annihilation to gauge boson pairs for very small λL, or above the W+W− threshold.

4.2. Model Constraints

The RSIII model is constrained by direct and indirect searches for DM, colliders and

electroweak precision observables. In this section we review the implication of these

constraints on the parameter space of the model.

4.2.1. Theory constraints

The following conditions are obtained requiring that the scalar potential is bounded

from below [94]: λ1,2 > 0, λ3 + λ4 − |λ5|+ 2
√
λ1λ2 > 0 and λ3 + 2

√
λ1λ2 > 0. Requiring

perturbativity sets bounds on the scalar couplings, |λi| < 8π, for i = 1, . . . , 5. However,

tree-level unitarity constraints[95,96] set stronger bounds on these couplings (see Ref.[96]).

4.2.2. Electroweak precision observables

The contribution to the oblique parameters S, T , U from the Z2-odd scalar sector have

been computed for the IDM in Refs. [97–99]. The contribution to S, T and U from the

Z2-odd fermions, a triplet of SU(2)L, vanish. As in the case of pure gauginos in the

MSSM, they cannot contribute to operators with SU(2)L-breaking quantum numbers,

see e.g., [100–102]. The SM best fit obtained in [103] with a reference SM defined fixing

mt,ref = 173 GeV and MH,ref = 125 GeV is

S̄ = 0.05± 0.11, T̄ = 0.09± 0.13, Ū = 0.01± 0.11,

ρST = +0.90, ρSU = −0.59, ρTU = −0.83 , (4.12)

from which the correlation matrix is computed.

4.2.3. Collider constraints

LEP sets limits on the masses of all charged particles which can be directly produced,

as well as on particles produced as their decay products. These limits can be easily



44 Radiative Type III seesaw and its colliders phenomenology

reinterpreted for the new scalars and fermions of the RSIII. The decays of gauge bosons

into Z2-odd pairs are excluded by their invisible width measurements [89], leading to the

constraints mH0,A0 +mH ± > MW , mA0 +mH0 > MZ , 2mH ± > MZ , mΣ0
1

+mΣ±1
> MW

and 2mΣ±1
> MZ . Since the Z2-odd fermions couple to gauge bosons with the same

couplings as the gauginos we can apply the bounds on direct chargino searches at LEP

II mΣ±1
> 103.5 GeV [60,104–107]. Direct chargino searches at LEP II can also be

reinterpreted for the search of charged scalars [108], leading to mH ± > 70 GeV. The

direct LEP search limits for associated scalar and gauge boson do not apply here due to

the existence of the Z2 symmetry. We use the bounds obtained in [109]

max(mA0 ,mH0) >∼ 100 GeV or |mA0 −mH0| < 8 GeV . (4.13)

The bound on the heavier neutral scalar varies between 100 GeV and 110 GeV as a function

of the lightest scalar mass (see Fig. 7 of Ref.[109]). We require max(mA0 ,mH0) > 110 GeV.

The small allowed region for min(mA0 ,mH0) ≥ mW and |mA0 −mH0| > 8 GeV which we

exclude does not significantly affect our analysis.

The LHC sets bounds on the invisible and diphoton Higgs decays. If any of the

channels h→H0H0, A0A0, are open, they should satisfy the constraint on the upper

limit for the invisible decay of the Higgs boson [110]∑
Φ0=H0,A0

Br(h→Φ0Φ0) < Brmax(h→ inv.) = 0.13 . (4.14)

This upper limit is expected to be reduced by half at the future Run-II of the LHC [111].

For the diphoton channel, the signal strength Rγγ measures the ratio of the observed

diphoton production cross section relative to the SM expectation [112]:

Rγγ =
σ(pp→h→ γγ)RSIII

σ(pp→h→ γγ)SM
=
σ(pp→h→ γγ)IDM

σ(pp→h→ γγ)SM
≈ [Br(h→ γγ)

]IDM

[Br(h→ γγ)
]SM

. (4.15)

This relation holds since the Z2-odd fermions do not interact with the SM Higgs bo-

son. The signal strength relative to the Standard Model expectation is measured by

ATLAS [113] and CMS [114],

RATLAS
γγ = 1.15± +0.27

−0.25 , RCMS
γγ = 1.12± +0.25

−0.23 . (4.16)
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4.2.4. Flavor constraints

An analysis of LFV in the RSIII has been carried out in Ref. [46] for the case of fermionic

DM, where bounds on the yukawa couplings have been derived. The results from a recent

analysis of LFV processes in the minimal scotogenic model for fermion DM masses of

up to 3 TeV [115] can be extended to the RSIII. These bounds, however, do not directly

apply for our case, with significantly lighter NP fermions. In our model the yukawa

couplings, which are obtained from the neutrino masses, turn out to be at most of order

O(10−4) if we choose the orthogonal matrix R of Eq. (4.9) to be real. In this case

the LFV bounds do not further constrain the available parameter space. On the other

hand, if R is allowed to be complex, much larger values of the yukawa couplings can be

obtained and the µ+→ e+γ and τ →µγ bounds [116,117] restrict their largest values, of

approximately 1 (0.5) for the electron yukawa in the normal (inverted) hierarchy, and of

order of a few for the muon and tau yukawa couplings.

4.2.5. Dark Matter constraints

The DM relic density measured by Planck [118] 2 in units of the critical density and the

normalized Hubble constant h is Ωexp.
DMh

2 = 0.1197± 0.0022 at 68% confidence level (CL).

Allowing for other unknown sources for DM this measurement only imposes a upper

bound on the NP contribution to ΩDMh
2. In the numerical analysis we require that

the relic density lies within a 2σ uncertainty of the measured central value, ΩDMh
2 =

0.1197± 0.0044. Whenever we relax this constraint to allow for additional DM sources

we only require that ΩDMh
2 < 0.1241.

With respect to direct DM searches, we use the 90% CL upper bound of the spin-

independent DM-nucleon cross section σmax
SI given by LUX [119]. Allowing for an under-

abundance of DM this bound is rescaled as

σSI < ξ−1
DMσ

max
SI , (4.17)

with ξDM = ΩDM/Ω
exp.
DM < 1 the ratio of the DM relic density of our model and the

experimental central value obtained by Planck [118]. The lower DM density leads to

a smaller sensitivity for direct detection and consequently to a larger upper limit on

2We have used the result for Planck TT+lowP of Ref. [118]. A tighter bound is given for Planck
TT,TE,EE+lowP, which does not significantly alter our analysis.
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the spin-independent DM-nucleon cross section. Here one assumes that all remaining

unknown sources of DM do not contribute to the direct detection signal.

For indirect DM searches, we use the 95% CL upper bound of the thermally averaged

cross-section obtained by Fermi-LAT [120] for dwarf spheroidal galaxies with the 6-year

Pass-8 Limit. In order to account for the different annihilation channels of our DM

candidate we normalize the corresponding bounds for 〈σv〉X , with X = bb̄,WW,ZZ, hh,

and select the strongest one. Allowing for an underabundance of DM this bound is

rescaled as

〈σv〉X < ξ−2
DM〈σv〉max . (4.18)

4.3. Scalar sector

As already discussed in the introduction, the scalar sectors of the RSIII and the

IDM [92,97,121–126] are the same, with the addition of yukawa couplings to the Z2-odd

fermions and leptons. Therefore, the RSIII allows for a suitable scalar DM candidate

satisfying all model constraints in two regions: the low energy region, with a DM mass

below the W gauge boson mass, and the high energy region, with scalar masses above

500 GeV. We focus on the first region, where direct production of the Z2-odd fermions

with large cross-sections is possible. We consider DM masses up to 120 GeV for the low

mass region in order to assess the LHC expectations in the region where the DM relic

density is less than the one measured by Planck. It should be noted, however, that in

our numerical analysis of Sec. 4.8 we only consider scenarios where the DM relic density

corresponds to the observed value measured by the Planck collaboration [118].

The constraints from electroweak precision observables (EWPO) strongly restrict

the masses of the heavier scalars. The χ-square for three degrees of freedom, χ2
3, is

obtained from the difference between the oblique parameters S, T and U , computed

following Refs. [97–99,103], and their best fit point from EWPO for the SM, Eq. (4.12).

In Fig. 4.4 we show, for mH0 between 45 GeV and 80 GeV, the allowed regions at 68%

(green), 95% (yellow) and 99% (red) CL in the (mA0 − mH ± ), (mH ± − mH0) plane,

corresponding, respectively, to χ2
3 ≤ 3.506, χ2

3 ≤ 7.815, and χ2
3 ≤ 11.345. The two

remaining free parameters of the scalar sector, λ2 and λL, have no effect on the oblique

parameters. Contours of constant mA0 −mH0 are shown as dotted lines. The gray area

in Fig. 4.4 corresponds to mH0 > mA0 , for which H0 is not the DM candidate. The
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Figure 4.4.: EWPO constraints in the (mH+−mH0),(mA0−mH0) plane. The regions allowed
at 68% (green), 95% (yellow) and 99% (red) CL have been obtained from the new
physics contributions to the oblique parameters S, T, U . The dashed line delimits
from below the region which allows for the correct scalar DM relic density in the
RSIII. All shown points correspond to scenarios which satisfy the constraints
of Sec. 4.2 for mH0 < 80 GeV. The gray area corresponds to mH0 > mA0 , the
dotted lines are contours of constant mA0 −mH0 .

stronger constraints come from T , which depends on the differences of masses between

charged and neutral scalars, and S, which is sensitive to the difference of the neutral

scalar masses. The dependence on mH0 is weak but can be observed as a small overlap

between the different CL regions in the low mass region. It should be noted that the

contribution from the parameter U is often neglected, fixing U = 0 and evaluating the

EWPO constraints with two degrees of freedom. In our case setting U = 0 leads to

slightly narrower 68%, 95%, 99% CL allowed regions. The difference of the two choices

is due to the fact that, while the central value of U and the contribution from the IDM to

U are small, the correlation between the oblique parameters S, T and U is large (4.12).

In the allowed region where A0 and H ± decouple, with mA0 ,mH ± � mH0 , the heavy

scalars are nearly degenerate. The upper bound on mA0 −mH0 and mH ± −mH0 , of

roughly 650 GeV, follows from the perturbativity constraints given in Sec. 4.2.1. In the

region delimited to the left by a dashed line, the correct relic density can be obtained in

the low mass DM regime, which excludes scenarios with small mass splittings between

the DM candidate and the heavier scalars (see also the discussion on Fig. 4.5). Scenarios

with mA0 −mH0 between roughly 8 GeV and 30 GeV are further restricted by the LEP

constraints on the second lightest neutral scalar, Eq. (4.13), within the range of DM

masses considered here. In our analysis we have set conservatively mA0 > 110 GeV.
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For DM masses above 80 GeV the allowed range increases. For instance, for mH0 =

1 TeV and mH ± ≈ mH0 , the EWPO constrain mA0 −mH ± ≈ mA0 −mH0
<∼ 110 GeV

at 95% CL instead of approximately <∼ 50 GeV as in the low DM mass case. Requiring

in addition for mH0 > 500 GeV that these scenarios satisfy the measured relic density

leads to mA0 −mH0
<∼ 12 GeV and mH ± −mH0

<∼ 8 GeV.

The constraints on the scalar sector from the thermal relic density measurements,

direct and indirect detection, as well as the LHC, are analyzed performing a scan of the

following parameters in the range

45 GeV < mH0 < 120 GeV ,

110 GeV < mA0 < 700 GeV, or 0 < mA0 −mH0 < 8 GeV ,

70 GeV < mH ± < 700 GeV,

10−5 < |λL| < |λL|max , (4.19)

and fixed λ2 = 0.1. The value of λ2 is irrelevant for our study, as long as it fulfills the

theory constraints. We have computed the spin-independent DM-nucleon cross section

σSI , the thermal averaged annihilation cross-section 〈σv〉 (4.18), and Rγγ (4.15) with the

IDM model of micrOMEGAs (v4.1.8) [127]. We have confirmed these results comparing

σSI and 〈σv〉 with Ref. [93], and Rγγ following the treatment carried out in Ref. [128].

We also impose the EWPO, perturbativity of Sec. 4.2. The choice of parameters also

satisfies the LEP collider constraints [109]. The value of |λL|max depends on the specific

parameter point and is obtained from the perturbative unitarity constraint. All values

of mA0 and mH ± are below their perturbativity limit. The fermion sector has no effect

on the DM observables due to the smallness of the yukawa couplings3, not larger than

O(10−4).

The result of the scan of parameters is shown in Fig. 4.5 in the relic density versus

DM mass plane. Scenarios which fulfill all constraints are shown as green, dark green

and light green dots. Dark green (light green) dots represent scenarios in which the main

annihilation channel before freeze-out is the co-annihilation between A0 and H0 (H ± and

3 We have restricted our analysis to the case of real orthogonal matrix R (4.9). The solutions with large
yukawa couplings obtained allowing R to be complex are highly fine-tuned [129]. The compatibility
with the neutrino oscillation data[55], achieved through Eq. (4.9), receives large higher order radiative
corrections [130] which spoil the fine-tuning obtained at leading order. It is worth noticing that,
while new DM annihilation channels may become significant, allowing for new lighter scalar DM
solutions, the experimental signatures from heavier Z2-odd fermion decays should not significantly
modify our phenomenological analyisis, as can be inferred from SUSY searches.
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Figure 4.5.: Constraints of the scalar sector of the RSIII in the ΩDMh
2,mH0 plane. Green

points satisfy all constraints of Sec. 4.2. Dark green (light green) points represent
scenarios with mA0 −mH0 < 8 GeV (mH ± −mH0 < 12 GeV), in which A0–H0

(H ± –H0) co-annihilation is the dominant annihilation channel before freeze-
out. The upper bound on the invisible Higgs decay width from the LHC (black
curve) gives a lower bound on mH0 except for the dark green points (H0–A0

co-annihilation scenarios). The remaining scenarios are excluded by Planck relic
density measurement (light blue), LUX direct detection searches (yellow), Fermi-
LAT indirect detection searches (red), LHC Higgs decay to photons (purple). The
bound for the invisible Higgs decay for a naive projection at the LHC Run-II (ILC
expected sensitivity) is shown as a dashed (dotted) black curve. The horizontal
lines represent the 2σ band on the measured relic density. A vertical dashed gray
line shows the threshold of Higgs decay to DM pairs.

H0), defined here by mA0 −mH0 < 8 GeV (mH ± −mH0 < 12 GeV). The mass difference

between the coannihilating scalars is small enough to avoid the Boltzmann suppression

before freeze-out. As this mass splitting increases, the annihilation cross-section decreases,

leading to a larger relic density. For instance, at low mH0 the A0–H0 co-annihilation

scenarios have a lower limit in ΩDMh
2 when the splitting vanishes, and an upper limit

when it reaches its maximum value of 8 GeV, implying that for low DM masses the

coannihilation mechanism is too efficient to allow for the observed relic density. The dark

green dots in the light green region for mH0 ≈ 70 GeV correspond to scenarios where both
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heavier scalars coannihilate with H0. For larger values of ΩDMh
2 both co-annihilation

regions overlap but the dark dots cover the light ones. Similarly, the green dots cover

the light and dark ones where those regions overlap.

Scenarios excluded by the upper bound on the relic density measurement by Planck[118],

Sec. 4.2.5, are shown in light blue. Scenarios with a smaller value of ΩDMh
2 are not

excluded but lead to an underabundance of DM which cannot fully account for the

DM content of the Universe. In that case the direct detection upper bound on the

spin independent cross-section σmax
SI is rescaled with ξ−1

DM as in Eq. (4.17) to take into

account the smaller DM flux on the detector. Analogously, the indirect detection upper

bound on the thermally averaged cross-section is rescaled with ξ−2
DM as in Eq. (4.18).

The upper bound on the relic density excludes scenarios without an efficient mechanism

of annihilation before freeze-out. These scenarios are characterized by a large splitting

between H0 and the heavier scalars, suppressing the co-annihilation channels, and, for

mH0 < MW a small DM–Higgs coupling λL, suppressing the Higgs exchange channel,

while for mH0 ≈ MW , by λL∼O(−0.1), leading to a destructive interference between

different annihilation channels to gauge bosons. Also shown are the maximum and

minimum allowed values for the relic density as measured by Planck at 95% CL level if

one requires that the model fully explains the DM content of the Universe.

The strongest constraint from the LHC comes from the present bound on the invisible

branching ratio of the Higgs boson, shown as a black solid line, which sets a lower mass

limit for H0 whenever the Higgs-portal is the main DM annihilation channel. For ξDM = 1

this bound excludes mH0 < 53 GeV. For ξDM < 1 it excludes scenarios with masses

of up to mh/2, unless the H0–A0 co-annihilation channel contributes significantly to

the total annihilation before freeze-out. In the later case, corresponding to the band

of dark green points in the light DM mass region, the DM-Higgs boson coupling λL

is small enough to restrict the invisible Higgs decay, while the co-annihilation channel

ensures that the Planck upper limit on the relic density is fulfilled. Also shown as a

black dashed line is the future projection of the upper limit on the invisible decay of

the Higgs boson at Run-II of the LHC assuming a future limit for the invisible Higgs

decays BrLHC13(h→ inv.) < 0.065 [111], and as a black dot-dashed line the corresponding

prospect for the ILC with
√
s = 1 TeV and 1 ab−1 [131], BrILC(h→ inv.) < 0.0026.

Scenarios allowed by Planck upper limit but excluded by the direct detection con-

straints from LUX[119] are shown in yellow. The lower sensitivity to the spin independent

cross-section resulting when the relic density is smaller than the experimental measured

value, obtained rescaling the upper limit with the factor the ξ−1
DM , reduces the excluded
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region significantly. The direct detection limit also depends on variations on the local

DM density, which would have to be included in the factor ξDM . It is interesting that,

for ΩDM = Ωexp.
DM , the lower bound on mH0 from LUX is only slightly stronger than

that from the invisible Higgs decay. For ΩDM = Ωexp.
DM LUX also sets the upper limit

mH0 < 74 GeV, corresponding to scenarios with λL ≈ −0.012. Larger values of mH0

require larger values of |λL| in order to obtain the correct relic density, increasing the

spin independent cross-section above the LUX bound. Allowing for DM underabundance

LUX constrains regions of parameter space up to mH0 = 120 GeV. For mH0 > 110 GeV

and λL 6= 0 the Higgs pair-production channel becomes a relevant annihilation channel,

further reducing the relic density and relaxing the constraints due to the rescaling of the

bounds.

The indirect detection constraint from Fermi-LAT [120], shown in red, does not

exclude any region of parameter space allowed by the relic density upper limit [118] after

we rescale the thermally averaged cross-section by ξ−2
DM . A small region with ΩDM ≈ Ωexp.

DM

and mH0
>∼ mh/2, in the funnel region, is only allowed if the splitting between A0 and

H0 is small and the co-annihilation channel opens up before freeze-out.

Once all DM constraints are imposed the LHC measurement of the ratio of the observed

diphoton production cross section relative to the SM expectation [112] constrains a small

region of the parameters with mH0
>∼ 114 GeV and a very small value of relic density.

For 120 GeV < mH0 < 500 GeV, where the model leads to an underabundance of

DM, the Higgs diphoton decay restricts a small region in relic density versus DM mass

plane with very small relic density, corresponding to large λL and light H ± .

4.4. Phenomenology

In this section we analyze the phenomenological implications of the constraints on our

model given in Sec. 4.1 in order to select representative benchmark scenarios for LHC

searches.

Although the Z2-odd fermion sector of the RSIII has the same gauge quantum numbers

as the Type III Seesaw model [15], the limits obtained for the latter by ATLAS [21] and

CMS [132,133] cannot be interpreted as limits in our model due to its Z2 symmetry,

which forbids the decay of the Z2-odd fermions to SM particles.
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Figure 4.6.: The left panel (a) shows the main production channel for pair Σ−1 Σ+
1 at the

LHC. The right panel (b) shows the main decay channels of Σ±1 to DM. Here q
denotes quarks of the first generation and `α = e, µ, τ .

The main production channel of lighter Z2-odd fermions at the LHC is shown in

Fig. 4.6a. At the LHC gauginos are produced via the s-channel exchange of a gauge

boson and via t-channel exchange of a left-handed squark. Since the gauge structure of

the Z2-odd fermions and that of charginos and neutralinos in the pure gaugino limit is

the same, their gauge couplings are also equal. Therefore, the production cross-section of

Z2-odd fermions at the LHC can be obtained from that of charginos and neutralinos in

the pure gaugino limit with decoupled sfermions, where the t-channel can be neglected.

For large values of the supersymmetric Higgsino parameter µ we have checked that the

Higgsino component of the chargino is negligible and that the results are independent

of its value. We restrict our analysis to the lightest family, Σ1, for which one obtains

the largest production cross-section of Z2-odd fermion pairs, pp→Σ+
i Σ−i , i = 1, . . . , nΣ.

Our conclusions should be easily extended to the heavier Z2-odd fermions. Notice that

two-body decays from the heavier Z2-odd fermions to the lighter ones are forbidden

because the mixing mass matrix MΣ is diagonal.

At tree level the Z2-odd fermions decay via yukawa interactions to a Z2-odd scalar

and lepton. The yukawa couplings are obtained varying the free neutrino parameters

and applying the Casas-Ibarra prescription, Eq. (4.9). In the simplest scenario only H0

is lighter than the fermion, with the heavier scalars A0 and H ± decoupled and nearly

degenerate. In this case, shown in Fig. 4.6b, both fermions decay exclusively to a lepton

and the DM candidate,

Σ±1 → `±α H
0 (`α = e, µ, τ) , (4.20)

resulting in final state dileptons plus MET. This channel is expected to be the “best

case scenario” for Z2-odd fermion searches at the LHC. Neglecting the lepton masses

the branching ratios for the decay of the Z2-odd lepton are proportional to the absolute
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square of the normalized yukawa couplings,

Bα ≡ Br(Σ±1 → `αH
0) = |Ŷα|2 . (4.21)

The Z2-odd fermion pair-production channel with the largest production cross-section

is Σ0
1Σ±1 . However, Σ0

1 decays exclusively to the invisible final state ναH
0, leading to a

final state with only one charged lepton and will not be considered here. Notice that

in the Type III Seesaw model, which has the same fermionic content, the decay chains

are different due to the absence of a discrete symmetry, leading to different collider

signatures [20].

If more than one scalar is lighter than the Z2-odd fermion, new decay channels to

unstable particles open up,

Σ±1 → `±α A
0, Σ±1 → νβH

± , (`α = e, µ, τ ; νβ = νe, νµ, ντ ) , (4.22)

followed by the secondary decays

A0→H0Z, H ± →H0W ± , (4.23)

as well as the subleading decays A0→H ±W ∓ or H ± →A0W ± . The gauge boson of

the secondary decays may be on-shell or virtual, depending on the mass spectrum. In

addition, the Σ±1 Σ0
1 production channel may lead to final states with at least two leptons,

of either opposite sign or same sign,

pp→Σ±1 Σ0
1, Σ±1 → `±α A

0/H0, Σ0
1→ `∓β H

± (`α, `β = e, µ, τ) , (4.24)

followed by the secondary decays of Eq. (4.23). Not shown in (4.24) are the decays to a

neutrino and a scalar. The partial decay width of the decays of Eq. (4.24) is given by

Γ(Σ1→ `βΦ0) =
|Y1β|2
64π

(m2
Σ1
−m2

Φ0)2

m3
Σ1

, Φ0 = H0, A0 , (4.25)

Γ(Σ0
1→ `±β H

∓ ) =
|Y1β|2
32π

(m2
Σ1
−m2

H ± )2

m3
Σ1

. (4.26)

If all scalars are lighter than Σ±1 and nearly degenerate the branching ratios for Σ±1
decaying to H0, A0 and H ± tend to the asymptotic values 1/4, 1/4 and 1/2, respectively.
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4.5. Collider limits

Processes with electroweak pair-production and decay of Z2-odd particles at colliders,

and in particular at the LHC, have been extensively studied in the framework of super-

symmetry. Those searches can be interpreted in the framework of the RSIII to constrain

this model. The pair-produced Z2-odd particles cascade further to the LOP, leaving

similar collider signatures as those searched for. The most convenient way to analyze

those results are simplified model spectra analyses, where limits on the production

cross-sections for NP searches are given as a function of the spectrum.

We focus on a set of benchmark scenarios with well defined decay topologies and

compare these results to LHC searches for supersymmetric processes. The simplest

decay topology is that in which both Z2-odd fermions decay to the DM candidate,

Eq. (4.20), leading to a collider signature of hard opposite sign leptons plus MET.

Both slepton and chargino pair-production and decay can lead to similar final state

topologies. Pair-production of left-handed sleptons, where each slepton decays further

to the lightest neutralino and a lepton of the first two families, pp→ ˜̀
L

˜̀
L→ `± `∓ χ̃0

1χ̃
0
1,

with ` = e, µ and χ̃0
1 the lightest neutralino, leads to a collider signature of OSSF leptons

plus MET. The case of stau production will be considered separately. In the RSIII

the flavor structure for the final leptons is in general different. In the special e-philic

or mu-philic cases, where the lightest Z2-odd fermions decay exclusively to electrons

or muons, respectively, we can extrapolate the observed exclusion limit by ATLAS for

left-handed slepton pair-production [50] assuming that the detection efficiency of the most

sensitive SR remains constant up to higher mass scales. Taking into account the larger

production cross-section for the fermions one can estimate the lower mass exclusion limit

mΣ±1
> 630 GeV. In chargino pair-production, each chargino decays to a lepton and

a slepton, which decays further to a secondary lepton and a neutralino. This process

may lead to leptons of different flavor but the final state has two additional neutrinos

and in general softer leptons, depending on the chosen intermediate slepton masses.

Experimental signatures of dileptons plus MET are also obtained in chargino-neutralino

production decaying further via sleptons, pp→ χ̃±1 χ̃
0
2→ `± `′+`′−χ̃0

1χ̃
0
1, when one of the

final leptons is not detected. In this case both same flavor and opposite flavor leptons

are expected[50].

Among the several high energy physics tools have been developed which allow to

reinterpret the results from the experimental collaborations at the LHC we have chosen

the package CheckMATE [56–58], which allows to obtain exclusion limits on simplified
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models of NP based on an increasing number of ATLAS and CMS analyses. This package

applies to the events generated by the user the same selection cuts as in each of the

included analyses by the experimental collaborations using the fast detector simulator

DELPHES [134]. Subsequently, making use of the CLs prescription [135,136] on the

most sensitive SR, it establishes whether a given point under evaluation is ruled out

or not based on the data given by the collaborations in their published analyses. The

implementation of the model in HEP tools is described in more detail in Sec. 4.7. The most

accurate exclusion results are expected for processes with the same production and decay

topologies, as well as similar production cross-sections, as those in the supersymmetric

searches reported in the included experimental analyses. Notice that the cuts in the

experimental analyses have been optimized for the mass range where the exclusion limits

are found.

If more than one NP scalar is lighter than the produced fermions, additional decay

channels open up, Eqs. (4.22)-(4.24), for which there is no analogous supersymmetric

process with similar decay topologies. The heavier scalars decay further, dominantly

to a gauge boson and the DM candidate. This secondary decay leads to large hadronic

activity and is not expected to improve the exclusion sensitivity in any of the processes

included in CheckMATE . Most of the events with the additional topologies should not pass

the selection cuts of the LHC analyses, which are optimized to reject additional hadronic

activity. Therefore, the number of selected events should decrease as the branching ratios

of the new decay channels increase. It is then natural to define a “best case scenario”,

where the Z2-odd fermions are the NLOP and all other NP particles are heavier, and

a “worst case scenario”, where all NP scalars are light and nearly degenerate. In the

latter case the branching ratio of Σ+
1 to the heavier scalars approaches 75%. It should

be noticed, however, that a minimal mass splitting with the DM candidate is necessary

in order to avoid a very large contribution of the co-annihilation channel in the early

Universe.

In the intermediate case, in which the decay A0 and H ± are kinematically open

but significantly heavier than H0, the decay to the DM candidate will be enhanced

with respect to the other channels. Since the mass splitting of the two heavier scalars

is strongly bounded by EWPO the above mentioned cases cover most of the allowed

parameter space.

Within each of the benchmark scenarios discussed, the decay to leptons of the first

two families has the highest sensitivity. The case when the Z2-odd fermions decay

predominantly to taus, which have small branching ratios to leptons, is not expected to
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lead to a significant exclusion in our analysis with CheckMATE , for which no experimental

analyses have yet been included in this package. This case will be considered separately,

reinterpreting the stau search analysis reported in Ref. [54].

In more realistic scenarios, f.i. in cases where the decay process involves several final

state topologies, only the SR with the largest expected sensitivity is considered. It is

possible, however, to combine those SRs and improve the exclusion limits using the CLs

method [135,136].

4.6. Combination strategy

In each of the decay channels, defined by their experimental signature of hard e+e−,

µ+µ−, and e±µ∓ plus MET, we identify the most sensitive SR. Since the flavor of the

leptons depends on the unknown yukawa couplings a realistic analysis should allow for

its whole range. In the range of masses we are considering this SR turns out to be

SR–mT2,110 of Ref. [50], except for mΣ± ≈ 350 GeV, where SR–mT2,110 and SR–mT2,90

have similar sensitivities. We have chosen to use only the former SR. The eventual small

loss in sensitivity can be regarded as conservative.

Assuming that the three dileptonic channels are uncorrelated, and thus statistically

independent, we combine these channels using the CLs method [135,136], taking into

account for the uncertainty on the background as in Ref.[137]. Details about our imple-

mentation of the CLs method are given in Appendix A. We neglect the uncertainty on

the signal since it is much smaller and therefore its effect should be subleading. The

uncertainty due to the statistics of the Monte Carlo simulations has been ignored, as

it can be eventually reduced with larger samples [20]. The combination is expected to

lead to stronger exclusion limits whenever more than one channel contributes to the final

dileptons. It should be noticed that we cannot combine the decay channels with decays

to taus.4

4.7. Implementation of the model in Heptools

The model has been implemented in the Mathematica package FeynRules (v2.0) [138]

where the derivation of the complete set of Feynman rules from the Lagrangian given

4 The charged leptons in the final state used in the SRs of of Ref. [50] are either electrons or muons.
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in Eq. (4.1) are performed. The model files obtained from FeynRules are exported to

micrOMEGAs (v4.1.8) [127] where DM observables are evaluated. The model is then

exported in the Universal FeynRules Output (UFO) format to the parton-level Monte

Carlo (MC) generator MadGraph (v5.2.2.3) [139]. The signal events are generated at
√
s = 8 TeV, without cuts in the run cards, where a total of 30K of events per point in

the parameter space is simulated. The MC samples incorporate the NNLO [140] parton

distribution functions (PDF). MadGraph is interfaced with Phythia (v6.4) [141], which

simulates the parton showering and hadronization. In order to evaluate the production

cross-section pp→Σ+
i Σ−i , i = 1, 2, 3, we compute the chargino pair-production in the

pure gaugino limit with a modified version of prospino [142], at next to the leading order

(NLO) in αs, where we have set to zero the chargino-quark-squark couplings in order to

eliminate the t-channel contribution. Finally the signal samples and their corresponding

NLO cross-sections are passed to CheckMATE (v1.1.15) [56–58], where the samples pass

thought a fast detector simulator DELPHES (v3.0)[134], which uses FastJet [143] with

the anti-kT algorithm [58] for particle reconstruction.

4.8. Numerical results

We define two benchmark scenarios which satisfy all constraints discussed in Sec. 4.2, the

“best case scenario” (SB), with decoupled heavier scalars, and the “worst case scenario”

(SW), with nearly degenerate scalars,

SB : mH0 = 70 GeV, mH ± = 700 GeV, mA0 = 700 GeV ,

SW : mH0 = 60.2 GeV, mH ± = 70.4 GeV, mA0 = 110.0 GeV . (4.27)

The DM relic density lies within the measured range by Planck [118], ΩDMh
2 =

0.1197± 0.0044. The mass of the lightest Z2-odd charged fermion varies between its

LEP lower limit, Eq. (4.13), and 700 GeV. The two heavier Z2-odd fermion triplets,

which are not phenomenologically relevant, are set to 1.5 TeV and 2.5 TeV, respectively.

Since the yukawa couplings of the Z2-odd fields are related to the underlying mechanism

of neutrino mass generation, a realistic phenomenological analysis of the RSIII should

also study the flavor structure of the model. We define the following extreme cases for

the normalized yukawa couplings to the lightest Z2-odd fermions: e-phobic (Ŷ1 = 0),

mu-phobic (Ŷ2 = 0), e-mu-symmetric (Ŷ1 = Ŷ2 ≤ 1/
√

2), and tau-philic (Ŷ1 ≈ 1), which

should be regarded as simplified models in flavor space.
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4.9. Best case scenario

Within our benchmark scenario with decoupled heavier scalars, SB, we have generated

random parameter-sets for which the neutrino constraints are satisfied, and where the

lightest Z2-odd fermion mass, mΣ±1
, lies within the allowed range. The most relevant

parameters are mΣ±1
, which determines the production cross-section at the LHC, and

the normalized yukawa couplings of the triplet fermions, Ŷα, with α = 1, 2, 3, which fully

determine the tree-level branching ratios B`, with ` = e, µ τ .

The implementation of our model in high energy physics tools has been described in

Sec. 4.7. For each parameter-set we generated events for our process at 8 TeV center

of mass energy, pp→Σ+
1 Σ−1 followed by Σ±1 →H0`± . We obtain with CheckMATE the

exclusion CL in each of the three most sensitive SRs, SR–mT2,110 in the channels e+e−,

µ+µ−, e±µ∓ plus MET, as well as the number of background, observed and signal events

which pass all the cuts of that experimental search [50]. With the latter we compute

the combined exclusion confidence level with the C Ls method described in Sec. 4.6. For

e-philic and mu-philic scenarios we have checked that both methods are consistent within

the numerical uncertainties, which in the C Ls method strongly depends on the numerical

integration and on the background uncertainty.

We focus on regions of parameter space for which the exclusion CL lies above 90%.

In Fig. 4.7 we show the 95% CL exclusion contours in the Be,Bµ plane (panel a) and in

the Aeµ, (Be − Bµ) plane (panel b), with Aeµ = (Be − Bµ)/(Be + Bµ). The contours

in the 95% exclusion CL have been obtained fitting Aeµ as a function of (Be + Bµ)

with a quartic polynomial. The regions above the corresponding curves are excluded.

Changing the order of the fitted polynomial we conclude that the uncertainty in these

fits turns out to be larger for Aeµ = ± 1. As expected, for a given fermion mass the

strongest exclusion is obtained for the mu-phobic case, with Aeµ = 1, followed by the

mu-philic case, with Aeµ = −1. In the e, µ symmetric case, with Aeµ = 0 and Be = Bµ,

the exclusion sensitivity is reduced since only half of the events without taus lead to

OSSF leptons, which fall into the most sensitive SRs, while the other half of those

events lead to OSDF leptons. Shown as a star is the flavor symmetric case, in which all

three branching ratios are equal. As the branching ratios to taus increase, the exclusion

sensitivity decreases, since most of these events are lost in the analysis, resulting in a

smaller fermion mass exclusion. F.i., for Bτ = 1− Be − Bµ ≈ 0.85, ATLAS [50] excludes

mΣ±1
<∼ 350 GeV, corresponding to the mΣ± = 350 GeV contour on the lower part of

Fig. 4.7b. It should be noted that these results alone do not constitute solid lower mass
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Figure 4.7.: Contours of constant mΣ+
1

for the present LHC exclusion sensitivity of the RSIII

in the Be,Bµ plane (a) and Aeµ, (Be + Bµ) plane (b), for mH0 = 70 GeV and
mH ± ≈ mA0 > mΣ±1

. The flavor symmetric scenario with Be = Bµ = Bτ is

shown with a star. The shaded triangle in (a) is not physical. Both figures
show the same results. In (b) the area above each contour is excluded for the
corresponding NP fermion mass.

limits for the fermions (as a function of their yukawa couplings) since the experimental

analysis does not cover the region with compressed spectra. We target the parameter

region with small Z2-odd fermion masses at the end of this section reinterpreting a

search for electroweak supersymmetric searches in the regions of compressed spectra. For

consistency we have checked the exclusion limits obtained with CheckMATE for small

Z2-odd fermion-scalar mass splitting, where most decay leptons fail to have sufficient

pT to pass the experimental cuts. Here we set mH0 = 70 GeV as in SB. In the most

sensitive e-philic case we can exclude mΣ1 > 135 GeV, i.e. with a mass splitting larger

than 65 GeV, while for Bτ = 0.85, Be = 0.15 this mass limit increases to mΣ1 > 155 GeV.

Similar results are obtained for the e-phobic case.

The results obtained from Fig. 4.7 for Aeµ = −1, Aeµ = 0, and Aeµ = 1 are shown

in Fig. 4.8, where Be − Bµ is plotted as a function of mΣ±1
. One observes that in the

e-mu-symmetric case, corresponding to Aeµ = 0, the mass limit is reduced by up to

50 GeV for large masses, down to approximately 20 GeV for the smaller masses. In the

mu-phobic case we obtain the highest exclusion sensitivity, excluding masses of Σ1 of

up to approximately 660 GeV. Recently ATLAS has performed a dedicated analysis [54]

to target compressed spectra, as well as decays with final tau leptons The bounds on

sleptons can be reinterpreted in our model in the e-philic, mu-philic and tau-philic limits
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Figure 4.8.: Present LHC exclusion sensitivity in the mΣ+
1
, (Be+Bµ) plane for mH0 = 70 GeV

and mH ± ≈ mA0 > mΣ±1
, in the mu-phobic (red), e-phobic (blue) and e-mu-

symmetric (green) scenarios. The flavor symmetric scenario with Be = Bµ = Bτ
is shown with a star. The region above each curve is excluded.

taking the larger production cross-sections of the Z2-odd fermions into account, since

both the stau decay, τ̃1→ τ−χ̃0
1 and Σ−1 → τ−H0, lead to the same experimental signature.

In the DM region relevant for our study, with mχ̃0
1

between 50 and 70 GeV, the bounds

on direct stau production are not yet strong enough to reach the exclusion level. However,

rescaling the cross-section, one can safely exclude mΣ±1
between the LEP bound of

103.5 GeV and 300 GeV, as shown in Fig. 4.9 for mH0 = 60 GeV and mH0 = 80 GeV.

For smaller mH0 these limits are stronger, allowing to extrapolate our results to the whole

scalar mass range. Assuming that the excluded cross-section for mΣ±1
= 300 GeV can

be extrapolated to higher masses, implying that the sensitivity of this analysis remains

constant, this limit can be extended to exclude fermion masses below approximately

400 GeV. Note that there is also a CMS [59] analysis with an even better exclusion limits

in tau lepton, however for a direct comparison the ATLAS analysis was easier for the

recasting. The CMS present the result for m0
χ = 1 GeV, instead ATLAS present the

exclusion limit for several values of m0
χ, among them, a few ones, corresponding to a H0

in the low mass DM regime.

For sleptons of the first two generations the slepton exclusion sensitivity is significantly

stronger, allowing to exclude significant regions of parameter space [54]. Therefore, we

can safely extend the limits obtained for the tau-philic case to the most general flavor

structure. We conclude that all light Z2-odd fermion masses not covered by our previous
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Figure 4.9.: NLO production cross-section for charged Z2-odd fermion pairs at the LHC
with 8 TeV center of mass energy (blue line) as a function of the fermion mass.
The corresponding 95% CL exclusion limits for the tau-philic case, when they
decay exclusively to a tau and the DM scalar, are shown for mH0 = 60 GeV (red
line, black dots) and 80 GeV (yellow line, white dots). The limits have been
obtained from those derived in [54] for stau pair-production. Also shown is the
LEP lower bound on mΣ±1

.

analysis with CheckMATE can be excluded, so that the exclusion limits obtained in

Fig. 4.8 are solid lower mass exclusion limits for our simplified model scenario.

4.10. Worst case scenario

The “worst case scenario” (SW), Eq. (4.27), has been chosen such that the heavier scalars

are lighter than the produced Z2-odd fermions, opening additional production and decay

channels at the LHC. For a sufficiently large mass splitting between the fermion triplet

and the scalars the branching ratios to the two neutral scalars approach 25%, and that

of the charged scalar, the remaining 50%. For instance, for mΣ±1
= 350 GeV one obtains

∑
`=e,µ,τ

Br(Σ±1 → `±H0 | A0 | H ± ) = 0.253 | 0.234 | 0.512 , (4.28)

i.e. very close to the asymptotic values.
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“worst case scenario” of Eq. (4.27). The dots correspond to the e-philic case
Ŷe = 1 (red), mu-philic case Ŷµ = 1 (blue). The dashed lines simply connect
the dots. Masses for which 1− CL < 0.05 are excluded.

Adding to the previously considered decay chain (4.20) the new decay chains of the

Z2-odd fermions, Eqs. (4.22,4.23), could in principle lead to new significant experimental

signatures. In our analysis with CheckMATE , however, those channels also lead to

additional hadronic activity in the final state. We observed that the experimental cuts

are effective in excluding most of these events, resulting in only a small number of

new signal events from those channels. The overall effect on the exclusion CL is small,

increasing the excluded mass by less of 20 GeV, while the computational effort turns

out to be very large. Therefore we have neglected the new decay channels, resulting in a

slightly smaller exclusion sensitivity, and only consider the decay to the DM candidate

as in the “best case scenario”.

We focus here on the e-philic and mu-philic cases of scenario SW , where the exclusion

CL can be obtained directly from CheckMATE . In Fig. 4.10 we show the exclusion CL

obtained with CheckMATE varying mΣ±1
between 340 and 400 GeV. Only one scenario

for each fermion mass has been computed here. We observe that, retaining only around

25% of the events, the masses of between 360 GeV for the mu-philic case, and 380 GeV

for the e-philic case.



Chapter 5.

Conclusions

In order to account for the direct phenomenological inconsistencies which shown that

the standard model (SM) is not the final theory in Nature, we exploit the realizations

of the Weinberg operator in the SM, at the one-loop level and in the SU(4)L ⊗ U(1)X

electroweak extension of the SM, at the tree level. For the latter case, mechanisms for

neutrino mass generation is explored through the tree level realization of a Weinberg

like operator in the SU(4)L ⊗ U(1)X extension. For four three-family models (models in

which number fermion generations in Nature is explained) a systematic classification of

the tree level realization of a Weinberg like operator is done. Two main topologies arises,

one in which the intermediate particle is a fermion, either singlet or 15-plet of SU(4)L

and a second one in which the intermediate particle is a scalar, either a decuplet or a

15-plet of SU(4)L. For the so-called model F the canonical seesaw mechanism and the

type-II like seesaw mechanism are implemented. For the latter, in the limit in which 〈H0
3 〉

is small, the model predicts that the mixing matrix of the lightest neutrinos (the SM

ones) and the heaviest neutrinos is exactly the same. Implying also that the mass ordered

of the neutrinos in both sectors is exactly the same. In the SM, the one loop realization

of the Weinberg operator led to an infinite set of models. By imposing that the particles

propagating inside the loop transform non-trivially under a Z2 discrete symmetry, while

all the other SM particle transforms trivially, then the lightest electrically neutral particle

charge under Z2 is a natural DM candidate. From the set of potential models that

posses a viable DM candidate as well as provide a correct description for the neutrino

oscillation phenomena, the radiative type III seesaw model (RSIII) stands as one that

also posses interesting LHC signatures worth of being explored. We have explored the

RSIII, a scotogenic model in which an additional scalar doublet and at least two fermion

triplets of SU(2)L, odd under a conserved Z2 global symmetry, are added to the SM.

This model has a natural DM candidate, the LOP, and radiatively generates the neutrino
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masses by an effective Weinberg operator. We have focused in the low mass scalar DM

region, where the LOP is a viable DM candidate satisfying all present theoretical and

experimental constraints. In this region of parameter space the Z2-odd fermion triplets

can have masses above the LEP limit for wino-like charginos, potentially leading to new

physics signatures at the LHC. In order to set solid exclusion limits on the model we

identify two extreme scenarios, a “best case scenario” where only the DM candidate is

lighter than the fermion triplet, and a “worst case scenario” where all scalars are light.

In the former, the decay process has simple decay topologies, which have been already

studied in simplified model spectra analyses of supersymmetric searches at the LHC. In

the latter, new decay channels open up, leading to longer decay chains and more complex

experimental signatures. These two benchmark scenarios can be regarded as limiting

cases, with “intermediate scenarios”, where the heavier scalar masses lie in-between those

values, leading to exclusion limits which lie within the two extreme cases. For these

scenarios we have analyzed the present theoretical and experimental constraints.

We reinterpret a set of experimental searches for supersymmetric particles at the LHC

by ATLAS within the framework of the RSIII with help of the package CheckMATE. In

order to do this we implemented the model in high energy physics tools and generated the

NP events which are then processed further by CheckMATE. The process with the most

sensitive signature turns out to be pair-production of charged NP fermions, decaying each

to the DM candidate and an electron or a muon. The resulting experimental signature,

opposite sign dileptons plus MET, is also obtained in two supersymmetric processes:

slepton pair-production decaying to the LSP and a lepton, or chargino-neutralino pair-

production decaying subsequently via intermediate sleptons, where one of the charged

leptons is lost in the detector. The fermion triplets decay via Yukawa couplings to a

lepton and a scalar. Since these Yukawa couplings are intrinsically related to the neutrino

mass matrix, a determination of the flavor structure of the final state would allow to

directly study neutrino properties at colliders. It is therefore highly relevant to obtain

exclusion limits as a function of the flavor structure of the final state. We have expressed

those limits as a function of the branching ratio of the charged Z2-odd fermion to the

DM candidate plus an electron or a muon. In the “best case scenario”, with decoupled

heavy scalars, the strongest limits on the Z2-odd fermion triplets are obtained in the

e-philic case, for which we exclude masses below roughly 660 GeV. This limit is reduced

to 640 GeV and 570 GeV, in, respectively, the mu-philic and e-mu symmetric cases. One

should notice that our results are subject to uncertainties of the Monte Carlo simulations

of the analysis which may be reduced with higher statistics. For light NP fermions,

below roughly 150 GeV, the dilepton searches included in CheckMATE fail to exclude
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our model. In order to obtain solid lower limits on the Z2-odd fermion masses we recast

an analysis by ATLAS [54] for searches in the compressed mass spectra region. The

experimental results included in CheckMATE are not sensitive to final state taus, which

mostly generate hadron activity excluded in their cut-based analyses. We recast the

results of [54] for tau searches, taking into account the larger cross-sections for fermion

pair-production, to obtain a lower mass limit of around 400 GeV for fermion triplets in

the tau-philic case. In the “worst case scenario” we have obtained limits both including

only the primary decays to the DM candidate, and including all channels. The results

in both cases are consistent with each other, with a slight gain in exclusion sensitivity

in latter case, albeit at the price of a huge increase in computational effort. We have

therefore restricted our analysis to the former case. The branching ratios are reduced by

a factor of almost four, reducing the sensitivity to the level of slepton searches. In the

e-philic and mu-philic cases we can exclude fermion triplet masses below roughly 380 and

360 GeV, respectively. As in the “best case scenario”, the lower mass region is excluding

by a recast of the compressed spectra analysis [54]. For the tau-philic case no limits can

yet be set. The LHC exclusion limits obtained in flavor space on our scotogenic model,

the RSIII, should be easily extended to all NP models with NLOP fermions in the adjoint

representation of SU(2)L decaying to a scalar DM candidate and a lepton.
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Appendix A.

CLs method

The exclusion limits for N experimental channels were obtained combining them with

the CLs method defined in Ref. [135,136]. The leading uncertainties coming from the

background is convoluted with the individual channel likelihoods L(nk; sk + bk) and

L(nk; bk) for the signal plus background and background hypotheses, respectively, with a

Gaussian distribution with standard deviation σbk ,

〈L(nk; sk + bk)〉 =
1√

2πσbk

∫ ∞
0

db′k exp

(
−(b′k − bk)2

2σ2
bk

)
e−(sk+b′k)(sk + b′k)

nk

nk!
, (A.1)

with 〈L(nk; bk)〉 defined analogously. Here nk, sk and bk denote, respectively, the number

of events, the expected signal events, and the corresponding background events in each

channel.

The likelihood ratio test-statistics function is given by

Q =
N∏
i=1

(
e−(si+bi)(si + bi)

ni/ni!

e−bibnii /ni!

)
= e−stot

N∏
i=1

(
1 +

si
bi

)ni
, (A.2)

with stot =
∑Nn

k sk. The observed likelihood ratio test statisticsQobs is defined analogously

setting ni = nobs
i , the observed number of events reported in the experimental analyses.

The test statistics function Q should also be averaged by the Gaussian distribution. To

simplify the numerical evaluation we average logQ as in Eq. (A.1)

Q̄ ≡ exp(〈logQ〉) . (A.3)
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The confidence level for exclusion CL = 1− CLs is given by

CLs =
CLs+b
CLb

, (A.4)

with

CLs+b =
∑

Q̄<Q̄obs

N∏
k=1

〈L(nk; sk + bk)〉 , (A.5)

CLb =
∑

Q̄<Q̄obs

N∏
k=1

〈L(nk; bk)〉 . (A.6)
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