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THE LATE INTEGRATED SACHS-WOLFE

EFFECT AND ITS DETECTABILITY IN

GALAXY-REDSHIFT SURVEYS

David Ricardo Valencia-Dı́az

Facultad de Ciencias Exactas y Naturales
Instituto de Fı́sica

Advisor: Juan Carlos Muñoz-Cuartas
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Abstract

The Cosmic Microwave Background (CMB) is a microwave radiation

field that permeates the Universe. In principle, this radiation should be

homogeneous, but due to several physical processes, the CMB photons

underwent perturbations that induced the formation of several anisotropies.

The study of some of those CMB anisotropies may lead to evidence of the

existence of the dark energy, which is associated with the current accelerated

expansion of the Universe. In that context, one of those CMB anisotropies

is the late Integrated Sachs-Wolfe (ISW) effect. The ISW is an effect

that the CMB photons experience when they pass through non-stationary

overdense or underdense regions, changing their wavelength and energies.

Such perturbation in the CMB is associated to the evolution in time of the

gravitational potential wells of dark matter structures that form the Large

Scale Structures (LSS) and host the galaxies.

The first aim of this thesis is to study the late ISW effect in cosmologi-

cal simulations in order to find constrains in the temperatures of the maps

of anisotropies due to this late ISW effect, to analyse the mean behaviour

of the temperature fluctuations along the lines of sight and of the cross-

correlation functions and correlation-power spectrum. Three different simu-

lations were used in the first part of this work: a small cubical simulation box

of 400 h−1Mpc and two simulations from the MultiDark project: the Mul-

tiDark 1 (MDR1) and the MultiDark-Planck (MDPL) simulation. The small

simulation and the MDR1 simulation are associated to a ΛCDM -WMAP uni-

verse and the MDPL simulation is associated with a ΛCDM -Planck universe.

The second aim of this thesis is to study the ISW effect induced by the density

field from a redshift galaxy survey such as the Two Micron All-Sky Survey

(2MASS) and compare this signal with the theoretical expectation studied be-

fore. We use the 2MASS Final Release and a Halo-Based Method to infer the

underlying dark matter density field that host the galaxies of such a survey.



This method is implemented thanks to its independence from a galaxy bias.
Once the ISW estimation due to the 2MASS density field is found, compar-
isons between this signal and CMB observations are performed. The 9th year
WMAP ILC map and the Planck SMICA map are used to study the angu-
lar cross-correlation function and correlation-power spectrum between those
CMB surveys and our ISW estimation. The resolutions used allow us also to
study briefly the contribution of the Rees-Sciama effect.

Finally, a brief analysis of the influence in the estimation of the time
derivative of the gravitational potential is performed. As this field may be
computed using an exact solution based on the peculiar velocities or a linear
approximation based on the linear growth of structures, we study the effects
of those approaches in the angular power spectrum.

The numerical and computational methods used to study the late Integrated
Sachs-Wolfe effect in this work are based in the Fourier transform of
different fields, as the density field, the gravitational potential field and
its corresponding time derivative, and the interpolation and numerical
integration of the time derivative of the gravitational potential Φ̇(x). The
methods used to calculate the different fields mentioned above and the maps
obtained after the data processing are shown, as well as the maps of the late
ISW anisotropy from the simulation boxes and from the data infered from
observations.

Although the results obtained in this work using numerical cosmological sim-
ulations are consistent with the theoretical analyses [13] and an ISW signal
is clearly resolved, the results we obtained with the density field infered from
observations do not allow to reassert for a detection of the ISW signal, be-
cause it is too small. This issue may be due to the galaxy survey used, be-
cause this survey only allows to know information of a very local region of
the Universe; so a larger survey must be used in order to find a higher signal
due to more structures. In spite of this, the methods used in this work show
very good and consistent results, and one of the outlooks is to use a larger
galaxy survey to estimate the actual ISW contribution of the structures in our
Universe.
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Introduction

Nowadays, the cosmological model accepted as the standard is the Λ-Cold Dark Mat-
ter ( ΛCDM ) cosmological model. It has been proposed as a model that fits with cos-
mological observations and allow them to be explained in the framework of the general
relativity. In this cosmological model, the Universe is considered as homogeneous and
isotropic (concepts summarized in the so-called cosmological principle) and it is com-
posed of baryonic matter, dark matter, radiation and dark energy. The dark energy is,
nowadays, the dominant component in our Universe [7].

Based on the observations of the Cosmic Microwave Background Radiation and those
of the recession velocity of the galaxies, the accepted origin of the Universe is a singularity
with a subsecuent expansion of the space-time metric of the Universe, called The Big
Bang. After this space-time metric expansion, vacuum quantum fluctuations occured
from which large amounts of matter and anti-matter were created. Both parts annihilated
creating photons, and due to the large amount of energy and high temperatures, matter
(such as protons, electrons, and so on) and radiation were tightly coupled. With the
expansion of the Universe, the temperature decreases and matter and radiation were able
to decouple, allowing radiation to travel free in the Universe, filling it completely in an
isotropical way. This isotropic radiation field contains a lot of information about the initial
conditions of the Universe at the time were matter and radiation decoupled [7].

Although initially this thermal bath, called Cosmic Microwave Background (CMB),
was isotropic in the whole Universe, it underwent perturbations in its spatial distribution
due to effects as the Baryonic Accoustic Oscillations (BAO) before the surface of last

scattering, generating what is known as the primordial anisotropies in the CMB. Those
anisotropies are temperature fluctuations in the CMB that deviate from the mean tem-
perature of a black-body that the CMB photons must have. Furthermore, this surface of

last scattering is considered as the set of points in the space at a certain distance, such
that today we receive the photons from the CMB that were scattered by the last time at
decoupling epoch [7].
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Apart from this primordial anisotropies in the CMB generated before and in the sur-

face of last scattering, there exist another kind of anisotropies. Time after some important

phenomena occured in the Universe such as the inflationary epoch, the decoupling time

and the collapse of dark matter, then the first protogalaxies and galaxies were formed in-

side dark matter haloes. With the formation of those objects, the Large-Scale Structures

(LSS) that we observe in the Universe began to take shape. Photons from CMB began to

undergo perturbations due to the interaction with such matter structures, generating the

late anisotropies of the CMB. Those late anisotropies have a lower signal amplitude when

compared with the amplitud of the primordial ones, making the late anisotropies more

difficult to be detected [10].

In the study of the CMB anisotropies it is possible to find evidences that allow to

study the nature of the cosmological constant [2], [16]. This cosmological constant is

introduced in Einstein’s field equations, and observations of the accelerated expansion

of the Universe fit very well with this model. In the ΛCDM cosmological model, the

cosmological constant is associated with the Dark Energy (DE).

One of late anisotropies of the CMB is due to the late Integrated Sachs-Wolfe (ISW)

Effect. This is an effect that CMB photons underwent when they pass through overdense

regions (associated with the LSS) or underdense regions (also called voids), generating a

change in the wavelength and in the energy of those photons. Those perturbations in the

CMB are due to to temporal evolution of the gravitational potential wells of Dark Matter

that form the LSS and host the galaxies. This time evolution may be associated to the

accelerated expansion of the Universe, due to the presence of Dark Energy. The ISW

effect, as a late anisotropy, has a lower signal than the primordial anisotropies, making it

also difficult to be detected [10].

To date, authors have tried to detect the ISW effect when searching correlations be-

tween the CMB maps and the matter density field maps in the Universe, which are related

with the local gravitational potential wells. As the primordial anisotropies are not corre-

lated with the matter density field at the present time, it is possible to find the weak corre-

lations associated to the late ISW and the density field [10]. Works from diverse groups of

authors have tried to find such correlations between CMB maps and matter density field

maps, with detection significances between 2-3σ [5], [10], using the data from the Wilkin-

son Microwave Anisotropy Probe (WMAP) survey and samples of galaxy surveys such

as the Sloan Digital Sky Survey (SDSS). Results found by those authors are consistent

with the standard cosmological model, in spite of its low significance [27]. Furthermore,

using techniques to obtain 3-dimensional projections of the density field, instead of the

2-dimensional density profiles, it has been achieved a significance of around 4.4σ in the

2
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detection, being the largest significance related with the ISW effect found until now [12].

Even in a recent study, the same group of authors using data from the same SDSS survey

have shown that there is no evidence of cold or hot spots in the scale of degrees, associated

with large structure as supervoids or superclusters; although they found, based on simu-

lations, that the measurement of the ISW effect is a factor of ∼ 2.1 above the expected

measurement in a ΛCDM universe [13]. On the other hand, some authors have found an-

ticorrelations between the CMB maps (from WMAP survey) and a catalogue with more

than 1.5 million galaxies from the SDSS, rejecting the ΛCDM model [32]. Other authors

have even rejected the hypothesis of the existence of the late ISW effect, when using

photometric measurements in galaxy-redshift surveys such as the Two Micron All-Sky

Survey (2MASS) [9].

By those exposed reasons, the detectability of the ISW effect has been a great chal-

lenge, because even the same group of authors using the same data set have obtained

different and somewhat contradictory results. Besides and in general, there is no full cri-

terion about the detection of the ISW effect. Even when comparing the ISW effect signal

from observations with the expected values from ΛCDM model using mock catalogues,

the obtained analysis from observational data show a signal above the expected value. In

our case, we found a somewhat opposite results, because the possible detection from our

observational data sample is below the theoretical expectation we computed from cosmo-

logical simulations. These fact leads to more confusion in the topic of the ISW detection.

A possible explanation about such systematic errors is the so-called galaxy bias. This

galaxy bias in an observational sample is obtained when comparing the clustering of ob-

served galaxies with the clustering of dark matter. The dark matter’s clustering is inferred

from cosmological simulations and depends on the cosmological model that was used

[21], becoming the galaxy bias in an important parameter in the model and in turn, of

great importance in the detection of the ISW effect.

Since direct observation of small anisotropies in the CMB temperature due to the ISW

effect is so complicated, the search of this effect has been concentrated, as mentioned be-

fore, in find correlations between CMB temperature maps and matter density field maps,

which account from the local gravitational potential fields. With the purpose of perform

such a study, it is necessary to understand basic concepts such as the standard cosmo-

logical model, the CMB and its anisotropies and the formation of the LSS.In this work

we focus on the aformentioned problems about the existence of the ISW effect, its de-

tectability from observational data and we treat the question about the inconsistencies in

the ISW signal amplitude between theoretical ΛCDM expectation and the signal that may
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be obtained from observations. Those three problems will be boarded while asking some

questions:

• The largest structures in our Universe are considered to evolve in a linear way.

Is this linear approximation in a ΛCDM universe responsible of the temperature

fluctuation associated to the ISW effect? Or should it be necessary to use a more

detailed and exact model of the evolution of such largest structures?

• In computational cosmology it is necessary to use the concept of Mass-Assignment

Schemes (MAS) in order to smooth the dark-matter density fields and interpolate

their values on a grid. May the use of a MAS in cosmological simulations have

a kind of spurious contribution in the estimated temperature fluctuation associated

with ISW effect?

• Is it indeed possible to find an ISW signal in a ΛCDM universe?

• The small-scale analogous of the ISW effect is the so called Rees-Sciama effect,

in which photons would be perturbed due to local and small gravitational potential

wells. So, is it possible to detect the ISW and Rees-Sciama effects in galaxy redshift

surveys as 2MASS when cross-correlating with CMB maps?

This work is organized in the following way. In chapter 1, the theoretical basis to

understand the origin of the ISW effect are exposed. The chapter 2 is comprised by a

study focused on the description of our work methods and their application on cosmolog-

ical simulations. As the density field is the base field of our work, a MAS will be used

to estimate this field and then, compute other important fields such as the gravitational

potential and its time derivative. Furthermore, the linearity or non-linearity on the evolu-

tion of the structures are also taken into account in this chapter in order to conclude about

the existence of a temperature fluctuation due to ISW in ΛCDM universes. In chapter 3,

we show the estimation of the ISW effect using the fields obtained in chapter 2 as raw

material. Again, the linear and non-linear models for the structure evolution will play

an important role in the answering of the previous questions, alongside with the possi-

ble effects that mass-assignment schemes would have on the estimation of this effect. In

chapter 4, we describe the method used to infer the underlying dark-matter density field

from 2MASS galaxy survey. As in observations of LSS it is mandatory to assume a linear

evolution of structures, we study the ISW contribution from this 2MASS density field

constrained to this approximation. In this chapter, cross-correlations and angular power

spectra between the 2MASS-induced ISW effect and CMB surveys such as WMAP and

4
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Planck are analysed. In chapter 5 the discussion about the linearity and non-linearity
is boarded again. Some analysis about the effect of each approximation and the com-
parison with observational CMB surveys through angular power spectra are perfomed in
this chapter. Finally, chapter 6 contains a summary of the main results through a brief
discussion in order to draw conclusions of the present work.
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CHAPTER

1
Theoretical Framework

This chapter will describe the theoretical framework in which the origin of the late

Integrated Sachs-Wolfe effect is based. A brief introduction about the standard ΛCDM

cosmological model and the formation of structures will be discussed first. Then, a more

deep description on the Cosmic Microwave Background Radiation and its anisotropies in

the concordance model will be studied, alongside with the late ISW effect.

1.1 Cosmological Context and ΛCDM Cosmological
Model
Nowadays, the accepted as standard cosmological model is the Λ-Cold Dark Matter cos-

mological model also known as ΛCDM standard model. In this model, the Universe

is composed of radiation, baryonic matter, Dark Matter (DM) and Dark Energy (DE). At

present, such dark energy dominates over the other components and governs the dynamics

of the Universe [7], [23]. DE is also associated to the cosmological constant of the Ein-

stein’s field equations and is interpreted as an entity with constant energy density which

composes the major contribution to the total energy density of the Universe. Moreover,

observations of the structure at larger scales in our Universe fit very well to a cosmological

model of the Universe that includes such cosmological constant.

The current cosmological model is justified in the observations that show an homo-

geneous and isotropic universe at large scales, with a flat geometry and which dynamics

is ruled by the relation that exists between the components of the Universe [7], [23].
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In general, an homogeneous and isotropic universe is well described by a Friedmann-

Lemaı̂tre-Robertson-Walker (FLRW) metric [7]:

ds2 = −c2dt2 + a2(t)

(
dx2

1− k x2
+ x2dθ2 + x2 sin2 θdφ2

)
, (1.1)

where a(t) is the scale factor that accounts for the expansion of the Universe, while x

is the comoving position, i.e. the position on a coordinate system that moves with the

Hubble flow. The dynamics of such Universe is studied through the Friedmann equations,

which are obtained from this metric and the Einstein’s equations:

ȧ2 + kc2

a2
=

8πGρ+ Λc2

3
, (1.2)

ä

a
= −4πG

3

(
ρ+

3P

c2
+

Λc2

3

)
. (1.3)

The first equation may be rewritten as

H2

H2
0

= Ωra
−4 + Ωma

−3 + Ωka
−2 + ΩΛ, (1.4)

where H(t) = ȧ/a is the Hubble parameter and each Ωi as the density parameter asso-

ciated with each of the constituents of the Universe that contribute to the stress-energy

tensor: radiation (i = r), matter (i = m), space-time curvature (i = k), and cosmo-

logical constant (i = Λ). These density parameters allow to relate the density of each

constituent at a certain time t with the critical density of the universe at the same time,

i.e., Ωi = ρi(t)/ρc(t) with ρc(t) = 3H2(t)
8πG

. Those equations could be considered as the

basis of cosmology.

1.2 Formation of Structures
The ΛCDM model assumes that the structures we observe today in the Universe grew

from perturbations in the density field in a hierarchical way, i.e. that the first structures to

be formed were the small ones and through gravitational interactions and mergers of these

small structures, the bigger ones were formed [26]. In general, it is possible to define a

density contrast function, that allows to measure the density of matter ρ(x) in a certain

position relative to the mean density ρ of the whole Universe:

δ(x) =
ρ(x)− ρ

ρ
. (1.5)
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The Large-Scale Structures (LSS) come from overdensities in the dark matter’s den-
sity field, generated by primordial fluctuations in such field allowing the formation of the
gravitational potential wells called dark matter haloes. In those haloes, baryonic mat-
ter collapses gravitationally and the first stars and protogalaxies may be formed. Those
objects evolve through collisions in a hierarchical formation scenario to form larger struc-
tures [26], [23]. The evolution of the density field (measured from the density contrast)
can be obtained from the equation of conservation of mass, the Euler’s equation and the
Poisson’s equation [23]:

dρ(r, t)

dt
+∇ · [ρ(r, t)v] = 0, (1.6)

dv

dt
+ (v · ∇)v = −∇P

ρ
−∇Φ, (1.7)

∇2Φ = 4πGρ, (1.8)

where Equation 1.6 is the continuity equation, in which ρ represents the density in a
certain point r, and v is the peculiar velocity of the density distribution at this point.
Equation 1.7 is the Euler’s equation for the motion of an element of a fluid; here P is
the pressure and Φ is the gravitational potential. Finally, Equation 1.8 is the gravitational
Poisson’s equation.

Manipulating those equations in a perturbative approach using Equation 1.5 and as-
suming that perturbations are linear while using comoving coordinates (i.e., passing from
physical coordinates r to comoving ones with the relation r = ax), it is possible to obtain
the following set of equations:

dδ

dt
= −1

a
∇ · δu, (1.9)

du

dt
+
ȧ

a
= −∇δP

aρ
− 1

a
∇δΦ, (1.10)

∇2δΦ = 4πGa2δρ, (1.11)

where Equation 1.9 is the perturbed continuity equation in which δ is the density contrast
from Equation 1.5 and u is the perturbed peculiar velocity. Equation 1.10 is the perturbed
Euler’s equation, in which ρ is the unperturbed density. Equation 1.11 is the perturbed
Poisson’s equation with δΦ as the perturbation in the gravitational potential. It is worth
to remember that those last three equations are described in a background space-time that
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is expanding, but as they are in a comoving coordinate system, this expansion does not
affect the coordinates theirselves; the expansion is described in the scale factor a. With
those last three equations, it is possible to find a general equation that describes the time
evolution of the density contrast:

d2δ

dt2
+ 2

(
ȧ

a

)
dδ

dt
− 4πGρδ = 0. (1.12)

Solving this equation, it is possible to find the growth and decaying rates of the density
fluctuation. In general, the decaying rate has a negligible conribution to the growth of
structures, so we only concern about the growth rate D(a):

D(a) =
5

2

(
Ωm,0

ΩΛ,0

)1/3
√

1 + y3

y3/2

∫ y

0

y′3/2

[1 + y′3]3/2
dy′, (1.13)

y ≡ a

(
ΩΛ,0

Ωm,0

)1/3

, (1.14)

with Ωm,0 and ΩΛ,0 the density parameters corresponding to matter and to the cosmologi-
cal constant, respectively, and evaluated at present time. The growth rate D(a) is used to
define the linear regime for the growth of structures, valid at large scales.

1.3 Cosmic Microwave Background and its Anisotropies
In 1964 the engineers Arno Penzias and Robert Wilson, worked at the Bell Laboratories
in Holdmdel, New Jersey, with a radiometer used to comunicate with the Telstar satellite.
In their work, they found a hiss in the signal that came from all directions, and deducted
that this interference was produced by a Black-Body radiation field with a temperature
near to the 3 K. This Black-Body radiation that filled completely the Universe, was in
the region of the microwaves of the electromagnetic spectrum, with a peak wavelength
of λmax = 1.06 mm and it is known as the Cosmic Microwave Background Radiation
(CMBR or simply CMB). Nowadays it is known that the peak temperature in the spectrum
of this black-body radiation is near to 2.72548 ± 0.00057 K [7], and has been measured
with high precision by surveys such as COBE, WMAP and more recently, Planck.

This radiation field is isotropic in the whole Universe, but due to effects such as
the movement of the observers or the presence of matter in the Universe, this radia-
tion may present anisotropies. The first kind of anisotropies are the so-called primordial
anisotropies, which are effects produced before the surface last scattering, such as the
Baryonic Acoustic Oscillations (BAO). Those primordial anisotropies were developed in
the first moments of the history of the Universe, i.e. at high redshift, z.
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The other type of anisotropies are the late anisotropies, induced as the photons prop-

agate through the Universe and interact with matter [33]. One of such anisotropies is

the Doppler effect due to the peculiar velocity that each observer has with respect to the

Hubble flow (see middle panel of Figure 1.1). This anisotropy causes that an observer

measures a lower temperature if looks backwards (in the opposite direction of its veloc-

ity) and a higher temperature if looks forwards (in the same direction as its velocity) [7].

Other late anisotropies have a much lower amplitude than the primordial anisotropies

in the CMB spectrum. Some of them are the Sunyaev-Zel’dovich effect. This effect is

related with the inverse Compton effect when photons of the CMB pass through regions

of ionized hot intracluster gas, which allows the high energies of the electrons of the

gas to be transferred to the photons, increasing the energy and temperature of photons.

With this effect, the black-body spectrum of the CMB changes its shape, moving towards

higher frequencies, generating a change in the temperature with respect to the mean CMB

temperature [7]

The late Integrated Sachs-Wolfe effect (ISW) is another late anisotropy, produced by

the gravitational redshift of the photons when they pass through the gravitational poten-

tial wells that evolve with time. In the case in which matter dominates the Universe, the

gravitational potential wells will not evolve in time; but due to the presence of a cos-

mological constant (or even by the same space-time curvature) the potential wells will

present a time evolution, generating a gravitational redshift fluctuation in the CMB tem-

perature at low redshift [31]. The late ISW effect occurs mainly at z < 2 when photons

pass through overdense or underdense regions, changing its energy and its temperature.

The temperature fluctuation ∆T (n̂) along the direction n̂ can be written as an integral of

the time derivative of the gravitational potential Φ̇, from the surface of last scattering to

the present time [31]:

∆T (n̂) =
2

c2
T 0

∫ tL

t0

Φ̇(t, n̂)dt, (1.15)

where t is the cosmic time, tL is the age of the Universe at the surface of last scattering, t0
is the present age of the Universe, Φ̇ is the time derivative of the gravitational potential, T 0

is the mean CMB temperature we observe today and c the speed of light. Equation 1.15

can be equivalently written as an integral over radial comoving distance xr according to

[6]:

∆T (n̂) =
2

c3
T 0

∫ xr,L

0

Φ̇(xr, n̂) a dxr, (1.16)
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where n̂ is the unitary vector that points along the Line-Of-Sight (LOS), xr,L is the co-

moving radial distance to the surface of last scattering, a is the scale factor of the Uni-

verse, Φ(xr, n̂) is the gravitational potential differentiated respect to the conformal time,

τ , along the photon’s geodesic. This equation gives the amplitude of the signal to be

detected [27].

With more detail, the ISW effect may be understood as follows: it is know that the

Universe is well described by the ΛCDM cosmological model as proved by observa-

tions. By the presence of the cosmological constant, Λ, the Universe will expand at an

accelerated rate, making the scale factor a to grow accelerated. Thus, the expansion of

the Universe, driven by the cosmological constant makes the gravitational potential wells

to decay as Φ ∝ −1/a [6]. The ISW effect is underwent by the CMB photons when

they pass through overdense or underdense regions in the Universe: when the photons

pass through an overdense or cluster region, they will gain more energy falling into the

potential well than the ammount they will loose when they climb out of the evolved shal-

lower gravitational potential well. This is translated in an increase in the temperature

of those photons, and can be seen as hot spots in CMB maps [6]. If the photons pass

through underdense or void regions, then the photons first climb up the hill while losing

energy and regain some energy when it descend the hill. Then, the photons decrease their

temperature, and cold spots appear in CMB maps [6].

1.3.1 Perturbative General Relativity in ΛCDM and the Boltzmann
Equation

With the goal to find the temperature fluctuation induced by the late ISW effect, it is nec-

essary to study perturbative methods in the general relativity, applied to the cosmological

model ΛCDM . In particular, it is necessary to apply perturbations over the FLRW metric

(Equation 1.1), which describes a flat, homogeneous and isotropic universe. Thus, the

general metric may be written as a perturbed FLRW metric (very near to an homogeneous

and isotropic FLRW metric) and a FLRW background metric, without perturbations [20]:

gµν = gµν + δgµν , (1.17)

where gµν is the background metric shown in Equation 1.1 and δgµν is the perturbation to

the metric. In the same way, it is possible to perform perturbations to the Einstein’s field

equations and with the help of the Friedmann equations such a problem may be studied.

For a more detailed procedure, please see reference [20].
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As metric perturbations may be scalar, vectorial and tensorial, it is only necessary to
us to pay attention to the scalar perturbations in order to obtain the following line element
[20]:

ds2 = a2(τ)
[
−(1− 2Φ)dτ 2 + (1− 2Ψ)δijdx

idxj
]
, (1.18)

which is obtained in the Newtonian gauge. Here, τ is the conformal time and Φ y Ψ are
the Bardeen potentials, which are Gauge invariant. When studying the photon’s trajectory
in this universe, and assuming that |Φ| ≈ |Ψ| it is possible to obtain the temperature
fluctuation of a photon that passes through a potential well that varies in time:

∆T (n̂) =
2

c3
T 0

∫ xr,L

0

∂Φ(xr, n̂)

∂τ
dxr, (1.19)

which is the same Equation 1.16, explained before. The assumption that |Φ| ≈ |Ψ| is only
possible in the Newtonian gauge and allows to assume that the gravitational potential have
a classical behavior [20].

1.3.1.1 Boltzmann Equation and Brightness Function

This section presents a brief description of the Boltzmann equation for photons in the
Newtonian gauge and will serve as basis to understand the CMB anisotropies. A more
detailed discussion can be found in [23]. In general, the gauge choices to work with in
the perturbed general relativity are physically equivalent, but it is necessary to choose a
convenient gauge to describe and interpret the perturbed quantities; as shown before in
Equation 1.18, the conformal Newtonian gauge is choosen. This gauge, although has a
simple metric, is only valid for scalar perturbations. In this gauge, in order to describe
the evolution of the perturbations in photons and neutrinos or the interactions between
photons and baryons it is necessary to specify the evolution of a full distribution function
f(x,p, τ), which gives the number density of particles in phase-space:

dN = f(x,p, τ)d3x d3p, (1.20)

where the distribution function f is a invariant scalar under canonical transformations.
When studying the geodesic equation of a free particle from the action principle and us-
ing a convenient set of non-canonical energy-momentum variables,Eq and q, respectively,
it is possible to find a conservation law for the distribution function, known as the Boltz-
mann equation. For more details, please see the section 4.2.4 of [23]. The Boltzmann
equation is then given by:

∂f

∂τ
+

dxi

dτ

∂f

∂xi
+

dq

dτ

∂f

∂q
=

(
∂f

∂τ

)
c

, (1.21)
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where a term of second order in perturbed quantities is neglected. The term in the right

hand side of Equation 1.21 is called collisional term, and describes the change of the

distribution function due to collisions, i.e. interacions between photons and matter. Fur-

thermore, to study the perturbation of the distribution function it is possible to write:

f = f0 + f1 (1.22)

where f0 is the unperturbed distribution function and f1 is the perturbation. This unper-

turbed term f0 may be a Fermi-Dirac distribution for fermions or a Bose-Einstein distri-

bution for bosons with non-canonical momentum q. For the first order in the perturbed

quantities, Equation 1.21 yields to the following equation for f1 in Fourier space:

f ′1 + ikµ
q

Eq
f1 −

q

4

∂f0

∂q
Ψq =

(
∂f1

∂τ

)
c

, (1.23)

with

Ψq ≡ −4

[
Φ′ − ik

(
Eq
q
µΨ

)]
and µ ≡ k · q

|k||q|
, (1.24)

with Φ and Ψ as the Bardeen potentials shown in the metric of Equation 1.18 and the

primes are derivatives with respect to the conformal time τ . For photons we have Eq = q,

and is convenient to consider the brightness perturbation:

∆(k, q, µ, τ) = −f1

(
q

4

∂f0

∂q

)−1

. (1.25)

For a Planck distribution, which is the case of CMB photons, the brightness perturba-

tion function is related to the temperature perturbation as:

∆ = 4Θ with Θ ≡ ∆T

T
. (1.26)

In terms of the brightness perturbation function, Equation 1.23 becomes:

∆′ + ikµ∆ + Ψq =

(
∂∆

∂τ

)
c

. (1.27)

If we assume a coupling between baryons and photons in the form of a Thomson or

Compton scattering interaction, which is the case before recombination, the collisional

term will be: (
∂∆

∂τ

)
c

= σTne a(δγ + 4ve · q̂−∆), (1.28)
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where σT is the Thomson cross-section, ne is the electron density, ve is the peculiar

velocity of electrons in proper units, q̂ = q/|q| and δγ is the perturbation to the density

field of photons.

Equation 1.27 may be solved through and expansion of the µ-dependence of

∆(k, q, µ, τ) in Legendre polynomials:

∆(k, q, µ, τ) =
∞∑
`=0

(−i)` (2`+ 1) ∆`(k, q, τ) P`(µ), (1.29)

where the two relations

∆0 =
1

2

∫ 1

−1

∆ dµ = δγ and ∆1 =
1

2

∫ 1

−1

i∆µ dµ =
4

3k
θγ, (1.30)

are important in order to solve the Equation 1.27 recursively. In those relations, θγ is the

source function for the velocity field of photons.

1.3.2 Fluctuations in the CMB

In this section, we will talk about the observational quantities of the CMB: the tempera-

ture fluctuation and the Angular Power Spectrum. After that, we will discuss about the

contribution of some anisotropies to the Angular Power Spectrum, focusing on the Inte-

grated Sachs-Wolfe effect.

1.3.2.1 Angular Power Spectrum of the CMB

As aformentioned, the observed properties of the CMB are very well explained in the base

of the standard ΛCDM cosmological model. Since the early Universe was so dense, hot

and ionized, photons were absorbed and re-emited many times by electrons, establishing

a black-body spectrum for the photons in the early Universe. As the Universe expanded

and cooled, photons were scattered with lower frequency and they could propagate freely

in the Universe, inheriting this black-body spectrum [23].

In 1989, the Cosmic Background Explorer (COBE) was launched by NASA in order

to perform accurate measurements of the properties of the CMB in the entire sky. The Far

InfraRed Absolute Spectrophotometer (FIRAS) on board COBE showed that the CMB

has a spectrum perfectly consistent with a black-body spectrum, with a temperature T =

2.728 ± 0.002K. But COBE was also able to measure for the first time an anisotropy in

the CMB. The Differential Microwave Radiometers (DMR) also on board COBE showed

that, although the CMB temperature distribution is highly isotropic over the sky, it has also
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small temperature fluctuations. The observed temperature map contains a component of
anisotropy on very large angular scales well described by a dipole distribution [23], [7]:

T (α) = T 0

(
1 +

v

c
cosα

)
, (1.31)

being α the angle of the line-of-sight (LOS) relative to a specific direction. This compo-
nent is explained as a Doppler effect caused by the motion of the Earth with a velocity
v = 369 ± 3 km s−1 towards the direction (l, b) = (264.31◦ ± 0.20◦, 48.05◦ ± 0.10◦) in
Galactic coodinates. Once the mean temperature and the dipole anisotropy due to Doppler
effect are substracted, the resulting map will present fluctuations in the temperature of
the CMB of the order of ∆T/T ∼ 2 × 10−5 and emission from the Milky Way disk,
as shown in the lower panel of Figure 1.1 [23]. Following the detection by COBE, there
have been a large number of experiments to measure small-scale CMB anisotropies, suchs
as balloon-borne experiments or modern surveys as the Wilkinson Microwave Anisotropy
Probe (WMAP) and Planck which have provided us with more detailed and accurate maps
of the CMB anisotropies.

In order to quantify the observed temperature fluctuations, it is often common to ex-
pand the fluctuation temperature field in spherical harmonics:

∆T (n̂)

T
≡ T (n̂)− T

T
=
∑
`,m

a`mY`,m(ϑ, ϕ); a`m ∈ C, (1.32)

where n̂ = (ϑ, ϕ) is a direction on the sky and T is the mean CMB temperature. The
values of a`m can be determined by observing the CMB and making measurements of
∆T/T in all directions. Furthermore, the term ` = 1 is the dipole anisotropy through
space relative to the Hubble flow, i.e., the Doppler effect.

The observed CMB sky should be considered as one realization of a cosmic random
process, where the expectation values of the square of the harmonic coefficients a`m give
the angular power spectrum of the temperature fluctuations [23]:

C` = 〈|a`m|2〉 '
1

2`+ 1

∑
m

|a`m|2, (1.33)

which is an ensemble average with spherical symmetry, or an angular average over the
2`+1 values ofm in order to avoid the effect of an arbitrary choice of ϕ = 0. Equivalently,
it is possible to define an auto-correlation function of the temperature fluctuations as [23]:

C(ϑ) =

〈
∆T (n1)

T

∆T (n2)

T

〉
, (1.34)

=
1

4π

∑
`

(2`+ 1)C`P`(cosϑ); with n1 · n2 = cosϑ. (1.35)
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1.3 Cosmic Microwave Background and its Anisotropies

Figure 1.1: Temperature maps of the CMB in galactics coordinates. The upper panel shows
the near-uniformity of the CMB brightness; the middle panel is the map after substraction of
the mean brightness, showing the dipole component due to the motion of the Earth respect to
the background; the bottom panel shows the temperature fluctuations after substraction of the
dipole component. Emision from the Milky Way is evident in the bottom image [23]. Image
taken from http://lambda.gsfc.nasa.gov/product/cobe/dmr_image.cfm

The last line in Equation 1.35 gives the relation between the auto-correlation function
and the angular power spectrum through the Legendre polynomials P`(cosϑ). Also,
when using the orthogonality properties of the Legendre polynomials, the inverse relation
could be found [15]:

C` = 2π

∫ π

0

C(ϑ)P`(cosϑ) sinϑdϑ. (1.36)

The values of C` contain much information about the physical conditions and con-
stituents of the early Universe. From Equation 1.33, we can define the angular power
spectrum to be `(` + 1)C`/2π. Every term in the summation is ≥ 0, so both positive and
negative temperature fluctuations contribute to the angular power spectrum withouth can-
celling each other. We will see more about the angular power spectrum in the following:
from Equation 1.32, we can define the expansion coefficients a`m as [15]:

a`m =

∫
∆T

T
Y ∗`m(ϑ, ϕ) dΩ. (1.37)
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1. THEORETICAL FRAMEWORK

Thus, we can take an ensemble average:

〈a`m a∗`′m′〉 =

∫∫
dΩ1 dΩ2 Y

∗
`m(n1) Y`′m′(n2)

〈
∆T (n1)

T

∆T (n2)

T

〉
. (1.38)

Assuming spherical symmetry, the autocorrelation function 〈∆T (n1)/T ∆T (n2)/T 〉
can only depend on ϑ12, where cosϑ12 = n1 ·n2. Expanding the autocorrelation function

in Legendre polynomials Pn:〈
∆T (n1)

T

∆T (n2)

T

〉
=
∑
n

kn Pn(cosϑ12), (1.39)

where kn are constant coefficients, and with the addition theorem of spherical harmonics:∑
j

Ynj(n1) Y ∗nj(n2) =
2n+ 1

4π
Pn(cosϑ12). (1.40)

Using Equation 1.39 and Equation 1.40 in Equation 1.38, renamingCn = 4πkn/(2n+

1) and applying some properties of the spherical harmonics, we can obtain the equality in

Equation 1.33. Hence:

C` =

∫
dΩ1

∫
dΩ2 Y

∗
`m(n1) Y`m(n2)

〈
∆T (n1)

T

∆T (n2)

T

〉
. (1.41)

Summing Equation 1.41 over m, produces a factor of 2`+ 1 on the left, while on the right

using Equation 1.40, we have:

∑̀
m=−`

C` = (2`+ 1)C` =
2`+ 1

4π

∫
dΩ1

∫
dΩ2 P`(cosϑ)

〈
∆T (n1)

T

∆T (n2)

T

〉
.

(1.42)

From Figure 1.2, the integration over Ω2 in Equation 1.42 is performed first using

spherical coordinates in the x′y′z′-frame at fixed n1. In this frame the coordinates of n2

are ϑ12 and ϕ12. Because the integrand is axially symmetric around the z′-axis, we have:∫
dΩ2 = 2π sinϑ12dϑ12. (1.43)

Spherical symmetry renders the remaining integrand independent of n1, so that
∫

dΩ1

produces just a factor of 4π. Then:

C` =
1

4π

∫
dΩ1

∫ π

0

2π sinϑ12dϑ12

〈
∆T (n1)

T

∆T (n2)

T

〉
with n1 · n2 = cosϑ12,

(1.44)
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1.3 Cosmic Microwave Background and its Anisotropies

Figure 1.2: The integration over Ω2 in Equation 1.42 is performed first, using spherical
coordinates in the x′y′z′-frame at fixed n1. In this frame the coordinates of n2 are ϑ12, ϕ12.
Because the integrand is axially symmetric around the z′-axis we have the expression of
Equation 1.43, and the result is Equation 1.44. Spherical symmetry renders the remaining
integrand independent of n1, so that

∫
dΩ1 produces just a factor 4π. Image taken from [15].

C` =
4π

2

∫ π

0

C(ϑ) P`(cosϑ) sinϑ dϑ, (1.45)

where we have changed ϑ12 → ϑ and applied Equation 1.34. This last equation is Equa-

tion 1.36. Now, expanding C(ϑ) in Legendre polynomials:

C(ϑ) =
∑
n

An Pn(cosϑ). (1.46)

Inserting this last equation in Equation 1.45, and using:∫ 1

−1

Pn(x) Pm(x) dx =
2

2n+ 1
δKnm, (1.47)

we obtain:

C` = 2π

∫ π

0

An Pn(cosϑ) P`(cosϑ) sinϑ dϑ (1.48)

⇒ A` =
(2`+ 1) C`

4π
. (1.49)

Finally, replacing An in the expansion in Legendre polynomials for C(ϑ) and chang-

ing n→ `:

C(ϑ) =
∑
`

(2`+ 1) C`
4π

P`(cosϑ), (1.50)
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1. THEORETICAL FRAMEWORK

which is Equation 1.35. The angular power spectrum given by

∆T = `(`+ 1)C`/2π, (1.51)

from Equation 1.33 is shown in Figure 1.3. In this power spectrum, we speak of an

angular frequency called the multipole moment `. The reciprocal of ` corresponds to the

angular scale. For example, ` = 10 corresponds to roughly 10◦ on the sky, and ` = 100

corresponds to roughly 1◦ on the sky1.

The angular power spectrum of the anisotropy of the CMB contains information about

the formation of the structures in the Universe and its current contents. This angular power

spectrum is a plot of how much the temperature varies from point to point on the sky (the

y-axis variable) vs. the angular frequency ` 2. In other words, this gives information about

the amount of “power” that anisotropies would have according to its angular scale.

The power spectrum shows a flat plain at small values of `, a fundamental peak around

` ' 200, which corresponds to an angular size of about 1◦ on the sky, and a few harmonic

peaks whose heights decline as ` approaches 1000; those peaks are called acoustic peaks.

A detailed analysis shows that the location of the first peak is sensitive to the value of Ω0,

given by ` ' 200/
√

Ω0. This angular power spectrum can be seen in Figure 1.3 where it

is shown the best fit of the ΛCDM model, and in Figure 1.4, where we can see the relation

between the different anisotropies and the angular power spectrum, as we will explain

briefly later in subsubsection 1.3.2.2.

1.3.2.2 Contribution of the CMB Fluctuations to the Angular Power Spectrum

Given a cosmological model, it is possible to calculate the expected temperature fluctua-

tions in the CMB. The temperature perturbation, at a space-time point (x, t), for photons

propagating in a direction q̂ is related to the radiation brightness function ∆ by Equa-

tion 1.26, [23] that can be re-written as:

Θ(q̂,x, t) ≡ ∆T

T
(q̂,x, t) =

∆(q̂,x, t)

4
. (1.52)

It is possible to use the linearized Boltzmann equation (given by Equation 1.23) to write,

for a perturbation mode k [23]:

(Θ + Ψ)′ + ikµ(Θ + Ψ) = (Φ + Ψ)′ +

(
Θ

τ

)
c

(µ ≡ q̂ · k), (1.53)

1see http://background.uchicago.edu/˜whu/intermediate/map5.html
2see http://www.astro.ucla.edu/˜wright/CMB-DT.html

20

http://background.uchicago.edu/~whu/intermediate/map5.html
http://www.astro.ucla.edu/~wright/CMB-DT.html


1.3 Cosmic Microwave Background and its Anisotropies

Figure 1.3: The angular power spectrum of the temperature fluctuations in the CMB. The
solid line is the best-fit ΛCDM model.

being Φ and Ψ the metric perturbations in the conformal Newtonian gauge (Bardeen po-

tentials of the perturbed metric given in Equation 1.18), the prime denoting a derivative

with respect to conformal time τ =
∫

dt/a(t), and the collisional term as a sum of the

collisional term correspoding to a Compton interaction (Equation 1.28) plus a polarization

term: (
∂Θ

∂τ

)
c

= σTne a

(
δγ
4

+ ve · q̂−Θ + polarization term
)
. (1.54)

Integrating Equation 1.53 it is possible to find a relation between the temperature

fluctuations we observe today (at τ0) with those on the surface of last-scattering (at τ∗) by

[23]:

[Θ + Ψ](k, µ, τ0) =[Θ + Ψ](k, µ, τ∗)e
ikµ(τ∗−τ0)

+

∫ τ0

τ∗

[
(Φ + Ψ)′ +

(
∂Θ

∂τ

)
c

]
τ

eikµ(τ−τ0)dτ , (1.55)

where the exponential factors describe the phase shifts of the perturbation mode in ques-

tion. The first term on the right-hand side is due to intrinsic fluctuation in the surface

of last-scattering, while the term containing (Φ + Ψ)′ in the integral is the contribution

from the change of the gravitational potential along the path of the photon. The colli-

sional term accounts for possible non-gravitational interaction of the CMB photons with
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1. THEORETICAL FRAMEWORK

Figure 1.4: Anisotropies in the angular power spectrum of the CMB. We can see the con-
tributions of the Early SW effect, which is produced in the surface of last scattering and the
contribution of the Late ISW effect which is the effect we are studying in this work. The Late
ISW effect contributes only for small multipole moment ` which means that it can be detected
only in large scales. Effective temperature is divided in a Non-integrated SW effect and bary-
onic acoustic oscillations (both represented by the green curve), which account for the peaks
of the power spectrum, while the acoustic velocity of the BAOs (red curve) accounts for the
valleys between peaks.

baryons after decoupling [23]. This equation can be integrated once the time dependence
of the perturbation quantities is solved, and again, the µ dependence can be expanded in
harmonics to obtain the angular power spectrum C`. Also, almost all cosmological pa-
rameters (Ωm,0, ΩΛ,0 Ωb,0 h) and the power spectrum P (k) can affect the pattern of the
predicted CMB anisotropies, as shown in Figure 1.4. In the following, we will see some
of those anisotropies and their corresponding contribution to the angular power spectrum.

(a) Sachs-Wolfe Effect (Large-Scale Fluctuation): The CMB radiation comes to us
from the surface of last-scattering at redshift zdec ≈ 1100. A physical event at
z = zdec, characterized by a length scale l in comoving units, subtends an angle:

ϑ(l) =
l

dA(zdec)(1 + zdec)
, (1.56)
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where dA(z) = a0x(z)/(1 + z) is the angular-diameter distance to redshift z and

a0 = 1 is the scale factor at present time. For a flat Universe with Ωm,0 + ΩΛ,0 = 1

we have x(z) ≈ 2(2H2
0 a

2
0 Ωm,0)−1/2. Furthermore, the Hubble radius, in proper

units at z � 1, which defines a causally conected region is given by dH(z) =

cH−1(z). With those definitions, we have that a causally conected region at the time

of decoupling subtends an angular scale (for an universe with Ωm,0 + ΩΛ,0 = 1):

ϑd ≡ ϑH(zdec) ≈ 0.87◦
( zdec

1100

)−1/2

. (1.57)

On scales larger than ϑd, the observed temperature fluctuations are entirely due

to super-horizon perturbation in space-time, while on scales smaller than ϑd evo-

lutionary effects may be relevant. Since the angular scale corresponding to har-

monic ` is roughly given by ϑ` ≈ π/`, the Hubble radius at decoupling corre-

sponds to ` ∼ 200, for an universe with Ωm,0 + ΩΛ,0 = 1. Then, for angular scales

ϑ� ϑd, the density perturbations responsible for the temperature fluctuations have

k � 2πa/(c tdec), i.e. their scale sizes are much larger than the Hubble radius at

zdec. In this case, the collisional term of Equation 1.55 can be neglected and, ex-

panding the µ dependence of Θ(k, µ, τ∗) in Legendre polynomials to the two lowest

order components (obtained with the help of Equation 1.29), we have

[Θ + Ψ](k, µ, τ0) =

[
Ψ +

δγ
4

+ Θv

]
(k, τ∗)e

ikµ(τ∗−τ0) +

∫ τ0

τ∗

(Φ′ + Ψ′)eikµ(τ−τ0)dτ

(1.58)

with Θ0 = δγ/4 and Θv = −3iΘ1µ = −iθγµ/k = v · q̂.

In the case in which Φ and Ψ do not explicitly depend on time, the integral in

Equation 1.58 is zero and the observed temperature fluctuations are caused by the

intrinsic fluctuations of the photon density δγ(τ∗) at the surface of last-scattering, a

Doppler shift (v · q̂)(τ∗) due to the motion of the surface of last-scattering, and the

potential difference between the observer and the surface of last-scattering Ψ(τ∗).

The temperature fluctuations due to intrinsic and potential fluctuations together,

also denominated effective temperature, are called the Sachs-Wolfe effect. This

decomponsition of the Sachs-Wolfe effect into the intrinsic and potential parts is

defined in the Newtonian gauge; if another gauge is used, the Sachs-Wolfe effect

may correspond to a different combination of perturbation quantities [23]. In Fig-

ure 1.4, the Sachs-Wolfe effect, or effective temperature is shown as the green-solid
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line, that at low multipoles ` (or larger scales) generates what is known as the Sachs-
Wolfe plateau. This effective temperature also has a modulation due to Baryonic
Acoustic Oscillations, as we will show later and its amplitude and positions of the
peaks depend on the values of Ωm,0 and Ωb,0.

It is also possible to relate the Sachs-Wolfe effect with initial perturbations. Assum-
ing that at the time of the surface of last scattering the universe is matter dominated,
and also assuming that initial perturbations are isentropic in the long wavelength
limit:

Ψ(k, τ∗) = Φ(k, τ∗) =
9A(k)

10
with A(k) = Ψ(k, τ → 0), (1.59)

δγ(k, τ∗) = −8

3
Ψ(k, τ∗), (1.60)

then

ΘSW(k, µ, τ0) =
1

3
Ψ(k, τ∗)e

ikµ(τ∗−τ0). (1.61)

When expanding ΘSW(k, µ, τ0) in Legendre polynomials in a similar way as in
Equation 1.29, it is possible to find:

C` = 〈|a`m|2〉 =
2Vu

π

∫ ∞
0

〈|ΘSW
` (k, τ0)|2〉k2dk (1.62)

∝
∫ ∞

0

Pi(k)

k2
j2
` (kτ0)dk, (1.63)

where Vu is a convenient integration volume, j`(kτ0) are the spherical Bessel func-
tions and Pi(k) = k4〈|A(k)|2〉 is the initial power spectrum. For a power-law
spectrum Pi(k) ∝ kn, Equation 1.63 gives [23]:

C` = C2

Γ
[
`+

(
n−1

2

)]
Γ
[

9−n
2

]
Γ
[
`+

(
5−n

2

)]
Γ
[

3+n
2

] ; (1.64)

and in the special case of a scale-invariant power spectrum Pi(k) ∝ k [23]:

C` =
1

2`(`+ 1)
. (1.65)

Then, for an scale-invariant power spectrum we have that `(`+ 1)C` is independent
of `.

(b) The Integrated Sachs-Wolfe Effect: If Φ + Ψ is time-dependent in Equation 1.58,
there is an additional contribution to the temperature fluctuations due to the integral
term. Such a contribution is denominated Integrated Sachs-Wolfe (ISW) effect [23].
There are two possibilities to generate this ISW effect in the linear regime:
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• First, in an open universe, or in flat universes with a cosmological constant,

the linear gravitational potential decays with time. Because this kind of poten-

tial decay occurs only at later times when the curvature or the cosmological

constant dominates the dynamics of such kind of universe, this effect on the

CMB is referred as the late ISW effect, which is the effect we are studying in

this work.

In Figure 1.4, the late ISW effect is shown as a pink short-dashed line that has

a contribution only at very low multipole ` values. This feature present before

the Sachs-Wolfe plateau is also known as ISW Rise. As the contribution of

this effect to the Angular Power Spectrum is at low `, this gives rise to the

difficulty to measure and detect the late ISW effect, because this region of

low multipole values suffers from a large cosmic variance, as can be seen in

Figure 1.3 at low `.

• Second, since the Universe is not completely matter dominated at the decou-

pling time, the density perturbations grow (Equation 1.13) with time more

slowly than the scale factor, according to [23];

D ∝ 1 +
3

2
ζ with ζ =

a

aeq
(1.66)

being aeq the value of the scale factor at the epoch of equivalence between

radiation and matter. This slow growth causes the potential to decay until

the Universe becomes fully matter dominated. The temperature fluctuations

caused by this potential decay are referred as the early ISW effect, because

they were produced close to decoupling. The contribution of this early ISW

effect is shown in Figure 1.4 as the blue-dashed line. The amplitude of this

effect depends on the value of Ωm,0 and has a contribution to the width and

amplitude of the first acoustic peak.

From Equation 1.58, it is possible to expand again in Legendre polynomials and

find that the contribution of the ISW effect can be written as:

ΘISW
` (k, τ0) =

∫ τ0

τ∗

(Φ + Ψ)′j`[k(τ0 − τ)]dτ . (1.67)

As the Bessel function j` peaks at k(τ0 − τ) ∼ `, and the potential evolution is

important for modes within the horizon, the largest effect is typically for modes

with ` ∼ `c ∼ (τ0 − τc)/τc [23], with τc the time when the potential starts to
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evolve significantly, although all modes with ` > `c can be affected. The early ISW

effect is expected to peak roughly at the scale corresponding to the horizon size at

decoupling, i.e. at ` ∼ 200 in a flat universe.

For a flat ΛCDM universe, the cosmological constant starts to dominate the energy

content at z ∼ (ΩΛ,0/Ωm,0)1/3 − 1; then, the late ISW effect is expected to peak

roughly at the present horizon scale, i.e. at very low ` [23].

(c) Acoustic Peaks: On angular scales ϑ . ϑd (Equation 1.57), the CMB can be

affected by non-gravitational effects. For example, at decoupling time the Jeans

length is larger than the horizon size; then, all baryonic perturbations that may

have come through the horizon before decoupling oscillate as acoustic waves in the

tightly coupled photon-baryon fluid. This gives rise to an oscillatory pattern in the

CMB power spectrum at angular scales ϑ < ϑc ∼ 1◦.

The evolution of the baryonic content of the Universe may have an acoustic wave

solution. Due to the coupling with photons, it is also possible to understand the

qualitative behavior of the acoustic pattern in the CMB through this solution. As

the photon-baryon fluid is tightly coupled, we have that the acoustic wave solution

takes the form [23]:

Θ0(τ) + Ψ = [Θ0(0) + (1 + R)Ψ] cos (kcsτ) +
1

kcs
Θ′0(0) sin (kcsτ)−RΨ,

(1.68)

with cs as the speed of sound, R ≡ (3ρb)/(4ργ) ≈ 27Ωb,0h
2 [1100/(1 + zdec)] and

where Θ0(0) and Θ′0(0) are determined by the initial conditions. This solution is

only valid if the potential Ψ is constant, which is true only in a matter dominated

era. Here, Θ0 ≡ δγ/4 = δb/3 is the temperature fluctuation due to the isotropic part

of the perturbation in photon number density. However, the observed temperature

fluctuation is the sum of the effective temperature Θ0 +Ψ and the Doppler term due

to acoustic velocity [23]:

Θv(τ) = −3µ

k
Θ′0 =

√
3cs[Θ0(0) + (1 + R)Ψ] sin (kcsτ)−

√
3

k
Θ′0(0) cos (kcsτ).

(1.69)

The form of the acoustic oscillation is governed by the two initial conditions Θ0(0)

and Θ′0(0). The cosine part in Equation 1.68 represents an isentropic mode, since

it is driven by the initial metric perturbations (given by Ψ). Meanwhile, the sine

part in Equation 1.68 represents the isocurvature mode, because it corresponds to
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zero initial metric perturbations [23]. It is very difficult to construct a pure isocur-

vature model that match the observed CMB power spectrum; thus, we are going

to concentrate only in the isentropic part of the model, that allows to explain the

observations.

As the fluctuations in the effective temperature on super-horizon scales are due to

the Sachs-Wolfe effect, it is possible to consider Ψ = Φ as constants for those super-

horizon perturbations, and then the initial condition for perturbations which come

through the horizon in the matter dominated era may be written as (Θ0 + Ψ)(0) =

Ψ/3. The acoustic waves at the decoupling time may be written as:

Θ0(τ∗) + Ψ =
Ψ

3
(1 + 3R) cos (kls)−RΨ, (1.70)

where ls is the size of the sound horizon at decoupling. If the initial perturbation

spectrum does not oscillate significantly for k & 1/ls, then the modes of the effec-

tive temperature fluctuations with k = mπ/ls (with m = 1, 2, 3, ...) have extremal

amplitudes:

|Θ0(τ∗) + Ψ| =
{
|Ψ|1+6R

3
(m = odd),

|Ψ|
3

(m = even).
(1.71)

Hence the amplitude of anm = odd mode is enhanced by a factor of 1+6R relative

to that of an m = even mode. Since each k is associated with a characterisctic scale

on the surface of last-scattering, these extrema correspond to peaks in the CMB

power spectrum C`. Those periodic peaks can be seen in Figure 1.4 as part of the

effective temperature along with the Sachs-Wolfe effect, i.e. it appears as the solid

green-line but for higher values of `.

The Doppler effect for the same isentropic initial condition is given by:

Θv(τ∗) =
cs√

3
Ψ(1 + 3R) sin (kls). (1.72)

This Doppler effect due to acoustic velocity also produces peaks in the CMB, but

with a phase shift of π/2 relative to Θ0(τ∗)+Ψ. Since R at decoupling is not much

smaller than 1, the peaks given by Θv are lower than those given by Θ0(τ∗)+Ψ and

so, in C`, they fill the valleys between the peaks of Θ0(τ∗)+Ψ rather than appearing

as peaks. This feature can be seen as the double-dashed red-line in Figure 1.4.

The positions of the acoustic peaks in the C` are determined by the physical size of

the sound horizon at decoupling, ls, and the angular-diameter distance of the surface
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of last-scattering. For an universe with Ωm,0 + ΩΛ,0 = 1, this position is given by:

`m ≈
mπ(1 + zdec)dA(zdec)

ls
≈ 200m(1 + R)1/2. (1.73)

It is possible to see how the position of the peaks depend on Ωb,0 through the R

dependence. From Equation 1.71, the heights of the odd peaks increase with Ωb,0

but it does not affect the even peaks. Since the contributions from acoustic velocities

increase with R, the depths of the valleys depend also son Ωb,0.

Furthermore, the heights of the acoustic peaks may be affected by Ωm,0. This de-

pendence comes from the fact that potentials are time dependent in realistic models,

and also, for perturbations inside the horizon the time evolution in the mass compo-

nent can induce a potential evolution through the Poisson equation, and so potentials

must respond to the acoustic oscilation in the photon-baryon fluid. As the change

in the potential is in resonance with the acoustic oscillation, this leads to a boost in

the amplitude of the acoustic oscillation. For isentropic modes, the boost is larger

for smaller Ωm,0h
2, and for acoustic perturbations which come through the horizon

at higher z, i.e., peaks with larger ` [23].

Finally, the damping effect in the acoustic peaks, given by the dotted purple-line

in Figure 1.4, may be due to several factors. One of those factors is the imper-

fect coupling between baryons and photons during decoupling, causing a damping

in δγ on scales smaller than some damping scale ld. This damping suppresses the

temperature fluctuations on scales correponding to l & 2000 [23]. Another impor-

tant damping of the temperature fluctuations on small scales comes from the fact

that the surface of last-scattering has a finit thickness. As the width in redshift of

the surface of last-scattering is ∆z ≈ 80, the observed temperature fluctuation is

a superposition of the temperature fluctuations distributed within this finite width

[23].

1.4 Cosmological Simulations of Formation of Structures
In the hierarchical picture of structure formation, small objects collapse first and then

merge to form larger and larger structures in a complex way. This formation process

is evident in the intricate structure of galaxy clusters, whose properties depend on how

the thousands of smaller objects that the cluster accretes are destroyed or survive within

the cluster gravitational potential. These merging events are source of processes such as

shocks, turbulence and acceleration of relativistic particles in the intracluster medium. In
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order to model these processes realistically, we need to resort to numerical simulations

which are capable of resolving and following correctly the highly non-linear dynamics.

Numerical simulations started in the 60s (Aarseth 1963) and 70s (Peebles 1970; Press

& Schechter 1974) with simple N -body problems solved using N -body codes with a

few hundred particles. Later the Particle-Particle (PP) code, or direct summation of all

two-body forces, was polished and brought to the state-of-art (Aarseth 1985). From this

moment, problems such a more realistic density profile and the generation of initial con-

ditions were solved with the help of different approximations to the structure-formation

models and the implementation of a variety of new numerical methods and codes which

allows to find more resolution in the forces calculation and particle’s positions. Some

methods are described in the following sections.

1.4.1 N -body Simulations and Equations of Evolution of Fluctuations
in Expanding Universe

Usually the problem of the formation and dynamics of cosmological objects is formulated

as N-body problem: for N point-like objects with given initial positions and velocities

find their positions and velocities at any later moment. Over most of the cosmic time

of interest for structure formation, the Universe is dominated by dark matter. The most

favourable model turned out to be the so-called Cold Dark Matter (CDM) model. The

CDM can be described as a collisionless, non-relativistic fluid of particles of mass m,

comoving coordinate position x and momentum p. In general, if we neglect the baryonic

component, the system is described by the distribution functions fi(x,p, t); for a simple

CDM model we have only one component. The phase-space distribution function of the

dark-matter fluid (CDM) can be described by the collisionless Boltzmann equation (CBE

or Vlasov equation) coupled to the Poisson equation:

∂f

∂t
+

p

ma2
∇f −m∇Φ

∂f

∂p
= 0; where p = ma2ẋ, (1.74)

∇2Φ(x, t) = 4πGa2[ρ(x, t)− ρ(t)]. (1.75)

Here the proper mass density can be inferred by integrating the distribution function over

the momenta p.

ρ(x, t) =

∫
f(x,p, t) d3p. (1.76)
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This set of equations represents a high-dimensional problem. The solution of the CBE

equation can be written in terms of equations of characteristics, which look like equations

of particle motion:

dp

dt
= −m∇Φ, (1.77)

dx

dt
=

p

ma2
. (1.78)

These equations can be written in other form when using the proper peculiar velocity

v = aẋ:

dv

dt
+ v

ȧ

a
= −∇Φ

a
, (1.79)

where the time derivative of the scale factor ȧ, can be obtained from the Friedmann equa-

tion as:

ȧ = H0

√
1 + Ωm,0(a−1 − 1) + ΩΛ(a2 − 1). (1.80)

One of the most famous N -body simulation is the Millennium simulation performed

by the Virgo Consortium in 2005. With the help of the Max Planck Society’s Supercom-

puting Centre in Garching, Germany, they traced the evolution of the matter distribution

in a cubic region of the Universe over 2 thousand million light-years on a side of 21603

particles, where each particle represents approximately a thousand million solar masses

of dark matter. They have been able to recreate the evolutionary histories both for 20

million galaxies which populate this volume and for the supermassive black holes which

occasionally power quasars at their hearts. By comparing such simulated data to large

observational surveys, they can clarify the physical processes underlying the buildup of

real galaxies an black holes1. A picture with some results is shown in Figure 1.5.

1.4.2 Codes and Methods

There are many different numerical techniques to follow the evolution of a system of

many particles. Most of the methods for cosmological applications take some ideas from

three techniques: Particle Mesh (PM) code, direct summation of Particle-Partilce code,

and the TREE code. All methods have their advantages and disadvantages.

1see http://www.mpa-garching.mpg.de/galform/virgo/millennium/
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1.4 Cosmological Simulations of Formation of Structures

Figure 1.5: Results from the Millenium Project, 2005. The results of this simulation show us
filaments and other structures also detected in the observations. Taken from http://www.

mpa-garching.mpg.de/galform/virgo/millennium/.

Direct Sum: The most direct way to solve the N -body problem is to sum directly the
contributions of all the individual particles to the gravitational potential Φ(r):

Φ(r) = −G
∑
j

mj

(|r− rj|2 + ε2)1/2
, (1.81)

whereG is the gravitational constant, mj is the mass of j-ith particle, rj its corresponding
position and ε is a gravitational softening. In principle, this sum would represent the
exact (Newtonian) potential which generates the particle’s acceleration. In a collisionless
models close encounters between individual particles are irrelevant to the physical
problem under considerations, but in such N -body simulations, close encounters could
occur, leading to numerical inconsistencies, then the gravitational force between two
particles must be smoothed by introducing the gravitational softening ε. This softening
reduces the spurious two-body relaxation which occurs when the number of particles
in the simulation is not large enough to represent correctly a collisionless fluid. This
situation however is unavoidable, because the number of dark matter particles in real
systems is orders of magnitude larger than the number that can be handled in a numerical
simulation. Typically, ε is chosen to be 1/20− 1/50 of the mean inter-particle separation
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within the simulation. In general, this direct-sum approach is considered to be the

most accurate technique, and is used for problems where superior precision is needed.

However this method has the disadvantage of being already quite CPU intensive for even

a moderate number of particles, because the computing time is ∝ O(N2), where N is the

total number of particles.

PM Code:This method uses a mesh to produce density and potential. As the result,

its resolution is limited by the size of the mesh. There are two advantages of the method:

(1) it is fast, because it has the smallest number of operations per particle per time step of

all the other methods, (2) it typically uses very large number of particles.

The PM method treats the force as a field by computing it on a mesh. Differential op-

erators, such as the Laplacian, are replaced by finite difference approximations Potentials

and forces at particle positions are obtained by interpolation on the array of mesh-defined

values. Typically, such an algorithm is performed in three steps. First, the density on the

mesh point is computed by assigning densities to the mesh from the particle positions.

Second, the density field is transformed to Fourier space, where the Poisson’s equation is

solved. Alternatively, the potential can be determied by solving Poisson’s equation iter-

atively with relaxation methods. In a third step the forces for the individual particles are

obtained by interpolating the derivatives of the potential of the particle positions. Typi-

cally, the amount of mesh cells Ng used is lower respect to the number of particles in the

simulation, so that when structures form, one can have large numbers of particles within

individual mesh cells, which immediately illustrates the shortcoming of this method: its

limited resolution. On the other hand, the calculation of the Fourier transform via a Fast

Fourier Tranform (FFT) is extremely fast, as it only needs of order O (Ng log (Ng)) oper-

ations, which is the advantage of this method.

There are many schemes to assign the mass density of the mesh. The simplest method

is the “Nearest-Grid-Point” (NGP). Here, each particle is assigned to the closest mesh

point, and the density at each mesh point is the total mass assigned to the point divided

by the cell volume. One of its drawbacks is that it gives forces that are discontinuous.

The “Cloud-in-a-Cell” (CIC) scheme is a better approximation to the force: it distributes

every particle over the nearest 8 grid cells, and then weigths them by the overlapping

volume, which is obtained by assuming the particle to have a cubic shape of the same

volume as the mesh cells. The CIC method gives continuous forces, but discontinuous

first derivatives of the forces. A more accurate scheme is the “Triangular-Shaped-Cloud”

(TSC) method. This scheme has an assignment interpolation function that is piecewise

quadratic.
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The advantage of such PM methods is the speed, because the number of operations
scales with N + Ng log (Ng), where N is the number of particles and Ng the number of
mesh points. However, the disadvantage is that the dynamical range is limited by Ng,
which is usually limited by the available memory. An sketch of a PM code can be seen in
Figure 1.6.

Figure 1.6: Particle-Mesh method. This method superimposes a regular grid over the set
of particles, and creates an approximation of the original problem by moving particles to the
nearest grid points. Taken from http://www.cs.berkeley.edu/˜demmel/cs267/

lecture16/lecture16.html.

P3M Code: This method has two parts: A PM part which takes care of large-scale
forces, and a PP part, which adds small-scale particle-particle contribution. Because of
strong clustering at late stages of evolution, PP part becomes prohibitively expensive once
large objects start to form in large numbers. One of the major problems for these codes is
the correct splitting of the force into a short-range and long-range part. The PM method
is only able to produce reliable inter particle forces down to a minimum of at least two
grid cells. For smaller separations the force can no longer be represented on the grid and
therefore it is necessary to introduce a cut-off radius re (larger than two grid cells), where
for r < re the force should smoothly go to zero. The parameter re defines the chaining-
mesh and for distances smaller than this cut-off radius a contribution from the direct PP
summation needs to be added to the total force acting on each particle. This PP force
should smoothly go to zero for very small distances in order to avoid unphysical particle-
particle scattering. This cut-off of the PP force determines the overall force resolution of
a P3M code. An sketch of this P3M method is shown in Figure 1.7 .
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Figure 1.7: Distribution of grid refinements placed with a particular kind of
P3M method. Taken from http://www.cs.berkeley.edu/˜demmel/cs267/

lecture16/lecture16.html.

TREE Code:It is the most flexible code in the sense of the choice of boundary con-
tidions. It is also more expensive than PM: it takes 10-50 times more operations. The
method of the tree algorithm consist in solving the N -body problem with a hierarchical
multipole expansion. This method groups distant particles into larger cells, allowing their
gravity to be accounted for by means of a single or many multipole force terms. Instead
of requiring N − 1 partial force evaluations per particle, as needed in a direct-summtion
approach, the gravitational force on a single particle can be computed with substantially
fewer operations, because distant groups are treated as “macro” particles in the sum. In
this manner the sum usually reduces to N log (N) operations.This scaling is only true for
homogeneous particle distributions. An schematic illustrations of a tree code is shown in
Figure 1.8.
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Figure 1.8: Schematic illustration of a kind of Tree code, called Barnes and Hut approxima-
tion. The particles are first enclosed in a square (root node). This square is then iteratively
subdivided into four squares of half the size, until exactly one particle is left in each final
square (leaves of the tree). In the resulting tree structure, each square can be the progenitor of
up to four siblings. Taken from [8].
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CHAPTER

2
Computational Methods and
Construction of the Maps of

δ(x) and Φ̇(x)

This chapter includes a description of the computational methods developed through-

out the work with the aim to obtain, from a discrete particle distribution of points, the

corresponding density field using Mass-assigment schemes (MAS). Then, with the use of

Fast Fourier Transforms (FFT), the underlying gravitational potential and its time deriva-

tive are computed. To compute the time derivative of the potential the following two

approaches are used: an exact solution that takes into account the peculiar velocities,

which is associated with a local and small-scale evolution of the hosted structures, and a

linear approximation based on the linear evolution of the Large-Scale Structures (LSS).

We point to solve the question about if the use of different MAS to compute the density

field may induce larger differences in the other estimated field (potential and time deriva-

tive) that may lead to a spurious signal in the ISW effect. In particular, as the estimated

time derivative of the potential is used to compute the ISW effect, a bad estimation of

this field may affect the signal of the ISW temperature fluctuation. Another important

aspect that will be treated here is comprised by the resolution effects in the estimation of

the potential and time derivative fields. Although only first results are presented in this

chapter, the most important results about the influence of the resolution on the estimated

ISW signal will be treated in the next chapter. In addition, results from this chapter will
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give an insight of the order of magnitude of the temperatures and temperature ranges that
the ISW effect should have in generic ΛCDM universes, i.e. this will be our theoretical
expectation about this effect.

2.1 Mass-Assignment Schemes and Window Functions
In order to solve the Poisson’s equation (given by Equation 1.11) with data from a cosmo-
logical simulation, given by the mass and positions of synthetic particles, it is necessary
to smooth the mass distribution of particles in a grid. Such a grid surrounds the box of
the cosmological simulation and its divided in cells. As the most common geometry for
a cosmological simulation is a cubic box, the grid has the same number of cells per axis.
The mass distribution of the particles from the cosmological simulation is smoothed and
assigned to the cells of the grid. The most used Mass-Assignment Schemes (MAS) are
the Nearest-Grid-Point (NGP), Cloud-In-Cell (CIC) and Triangular-Shaped-Cloud (TSC)
[14].

For a given assigment scheme, it is possible to associate a shape function, which
quantifies how a property (number, mass, charge, etc.) of a particle is distributed in the
grid. After this process, the particle (or mass) distribution is not a mere sampling of
the underlying density field, but a sample convolved with the window function of the
assignment scheme [18], [14]. Let us consider Np particles (as dark matter particles in
a cosmological simulation) in a cubical simulation box with each side of length L. The
particle number density is given by [18]:

n0(x) =

Np∑
l=1

δD(x− xl), (2.1)

with xl the position of particle l. The mass density field is given by the multiplication of
Equation 2.1 times the mass ml of each particle. In our case, the individual masses for
each particle are the same, ml = m∀ l, then:

ρ(x) = m

Np∑
l=1

δD(x− xl). (2.2)

Then, the mass assignment in the grid can be formulated by the convolution:

ρg(x) =

∫
V

d3x′ ρ(x′)W (x− x′), (2.3)

where W (x) is the window function that quantifies how much mass density is assigned to
a grid point at x from a density distribution at x′. Sampling the continuous mass density
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ρ(x) by a regular grid with N cells per axis (for a total of N3 cells in the whole cube of
side-length L), we obtain:

ρg(xijk) =

∫
V

d3x ρ(x′)W (xijk − x′), (2.4)

where the subscripts ijk stands for the triplet of integer indices that characterizes the
position of each cell in each direction x, y, z, respectively. This means that the position
of a given cell in the x axis is given by xi = i L/N = iH and in the three directions the
vector is given by:

xijk =

(
i
L

N
, j

L

N
, k

L

N

)
= H (i, j, k) , (2.5)

where H = L/N is the length of the sides of each cell. The sampled density contrast is

δg(xijk) =
ρg(xijk)

ρ
− 1; with ρ =

Npm

VSim
, (2.6)

where VSim = L3. This discretized density field is then given by the convolution of the
real density contrast and the window function:

δg(x) = [δ ∗W ] (x). (2.7)

The discretized values of the density contrast in the grid are represented by δg(x)

which is the field used to compute the following quantities, needed to infer the Integrated
Sachs-Wolfe effect. As we will show in section 2.2 , it is necessary to perform a Fourier
transform to Equation 2.7, and the density contrast values in the grid will have the follow-
ing expression:

δg(k) = δ(k)W (k), (2.8)

where by easiness with the notation, all quantities in Fourier space differ from their rep-
resentation in coordinate space only in the functional dependence, in other words, δg(x)

is the representation in coordinate-space of the density contrast function δg while δg(k)

is the same function δg represented in Fourier-space. The same convention applies for all
the quantities that we work with henceforth.

Now, we are going to talk about the window function in a general way, in other words,
for any MAS such as the aformentioned NGP, CIC and TSC. We have used the CIC and
TSC MASs.

From the distribution of points representing any physical quantity, in our case mass,
we may obtain the density field as in Equation 1.5. In this work, these points were ob-
tained from data of N -body cosmological simulations or from the reconstruction of the
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density field of observational data using the Halo Based Method. As in both cases what
we obtain is a set of point particles, each one in a given point of the space and with given
mass, it is necessary to smooth the density mass distribution with the help of a MAS in
a grid. Depending on the choosen scheme the distribution of mass in the grid could be
interpreted in different ways, as shown in [14] and [18].

2.1.1 NGP
In the Nearest Grid Point (NGP), the mass of each particle is assigned to the nearest
grid point, and the number density changes discontinuously when particles cross cell
boundaries [18]. In Figure 2.1 it is shown a sketch of a grid in 2 dimensions with one
particle. A particle has a position marked with an ×, and all its mass will be assigned to
its nearest grid point (with position marked with the blue point), as indicated by the arrow.

In one dimension, the window function for the NGP is proportional to a top-hat func-
tion:

WNGP(x) =


1/H if x < H
1/(2H) if x = H
0 otherwise

(2.9)

The Fourier transform of the top-hat function is a sinc function, then, for the NGP
assignment scheme, we have:

WNGP(k) =
sin (Hk/2)

Hk/2
= sinc

(
Hk

2

)
= sinc

(
πk

2kN

)
, (2.10)

where kN = π/H is the Nyquist frequency.

Figure 2.1: Nearest Grid Point assignment scheme: The particle’s position is marked with×,
while the position of the grid-point is given by the blue point. All the mass of the particle will
be assigned to such grid point, as indicated by the arrow.
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2.1.2 CIC

The Cloud-In-Cell (CIC) assignment scheme is the first order distribution scheme which

uniformly distributes the particle with a top-hat spreading function [18]. This means that

each particle is assumed to have the same shape and size as the cell in which the particles

is contained, as shown in Figure 2.2. Given that the particle is not assumed as a point-

particle anymore but with a defined shape, this particele will not be contained only in the

cell that encloses it, but the it will be “shared” by the neighbouring cells, allowing that

the mass of the particles will be distributed and a smoother density field may be achieved

compared with the density field obtained with the NGP scheme.

Figure 2.2: Cloud-In-Cell (CIC) mass assigment scheme. The particles is shown as a cross
(×), while the cell in which the particle is contained has its centre in the blue point. In the
CIC, the assumed shape of the particle is an square of the same size as the grid cell. Given the
fact that the particle is not completely centered with respect to the container cell, the square
of the particles overlaps the neighbouring cells. This overlaping means that the mass of the
particle is distributed in the neighbouring cells.

The CIC mass assignment scheme may be developed from the window function which

in the case of a 1-dimensional CIC is given by the following expression [14], [18]:

WCIC(x) =

{
1− |x|/H si x ≤ H
0 si x > H,

(2.11)

with H = L/N is, again as the cell size. The Fourier Transfom of the window function is

given by:

WCIC(k) = W 2
NGP(k) = sinc2

(
πk

2kN

)
. (2.12)
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2.1.3 TSC
The Triangular-Shaped-Cloud (TSC) assignment scheme, is a second order distribution
scheme, with a window function given by the following expression in one dimension:

WTSC(x) =


3
4
−
(
|x|
H

)2

if |x| ≤ H
2

1
2

(
3
2
− |x|

H

)2

if H
2
< |x| ≤ 3H

2

0 otherwise

(2.13)

The Fourier transform is given by:

WTSC(k) = W 3
NGP(k) = sinc3

(
πk

2kNy

)
. (2.14)

2.1.4 3D Window function
In 3 dimensions, the window function for all the three assigment schemes shown before
takes the following expression (in both, coordinates and Fourier space):

W (x) = W (x1) W (x2) W (x3), (2.15)

W (k) = W (k1) W (k2) W (k3). (2.16)

Once the window function is known, it is possible to find the enclosed mass in the
cells mg(x) as:

mg(x) = mpW (x). (2.17)

being mp the mass of each particle. With that, it is possible to find the density fluctuation
field δg(x) given by Equation 2.7 in the cells.

2.2 Estimation of Φ(x) and Φ̇(x) as Grid Quantities
Once the density field is computed, it is possible to solve the Poisson equation to find the
gravitational potential. In comoving coordinates, we have:

∇2Φ(x, t) = 4πGρ(t)δ(x, t)a2(t). (2.18)

To solve this equation, we have made use of Fourier methods. A Fourier Transform
allows to rewrite Equation 2.18 in Fourier space as follows [33]:

Φ(k, t) = −4πGρ(t)a2(t)k−2δ(k, t)

= −3

2
Ωm,0H

2
0k
−2 δ(k, t)

a(t)
. (2.19)
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In this point, it is necessary to take into account that the value of δ(k, t) is not precisely

the Fourier Transform of the density field δg(x) found with the MAS. When computing

the Fourier Transform of the density field in the grid, δg(x), it is necessary to perform a

deconvolution with the Fourier Transform of the window function to obtain the true value

δ(k, t) as in Equation 2.7. Making use of the properties of the Fourier transform, such

deconvolution may become a division, as follows [33]:

δ(k) =
δg(k)

W (k)
, (2.20)

where δg(k) is the Fourier transform of the density field in the grid, δg(x), and W (k)

is given by Equation 2.16. In general, the deconvolution with the window function will

depend on the MAS. This deconvolved field is the one used to estimate the gravitational

potential in Equation 2.19, which may be differentiated respect to time to obtain [33]:

Φ̇(k, t) =
3

2
Ωm,0H

2
0k
−2

[
H(t)

a(t)
δ(k, t)− δ̇(k, t)

a(t)

]
, (2.21)

where its has been taken into account that ρ(t)a3(t) = ρ0 is the mean matter density in the

Universe at present time and is time independent. H0 is the present value of the Hubble

parameter (H(t) = ȧ a−1) and Ωm,0 is the present value of the matter density parameter.

Ωm,0 can be related with ρ0 by means of Ωm,0 ρc,0 = ρ0, been ρc,0 the present value of the

critical density, ρc,0 = (3H2
0 )/(8πG).

From here, two approaches can be studied in order to find the value of δ̇(k, t). First, is

what we call the exact solution of Φ̇(k, t) which is obtained using the continuity equation

in the Fourier space in order to relate the density field δ̇(k, t) with the Fourier transform

of the momentum field p(k, t) [33]. The continuity equation can be written as:

∇ · [1 + δ(x, t)]vp(x, t) = −a(t)δ̇(x, t), (2.22)

where vp(x, t). Defining the pseudo-peculiar momentum field:

p(x, t) = [1 + δ(x, t)]vp(x, t). (2.23)

Replacing in the continuity equation and taking a Fourier transform:

ik · p(k, t) = −a(t)δ̇(k, t). (2.24)

It is important to take into account that our convention with the Fourier transform has sign

-1 in the exponential to the Fourier transform from position space to k-space, while sign
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+1 for the inverse transform. Replacing δ̇(k, t) from Equation 2.24 into Equation 2.21

and with our convention in the signs of the Fourier transform, we obtain [33], [6]:

Φ̇(k, t) =
3

2
Ωm,0H

2
0k
−2

[
H(t)

a(t)
δ(k, t) +

ik · p(k, t)

a(t)

]
. (2.25)

Once the density field δ(k, t) and momentum field p(k, t) in Fourier space are known, it

is possible to compute Φ̇(k, t). With an Inverse Fourier Tranform (IFT) in Equation 2.25,

one can find the integrand of Equation 1.16.

In the case in which the momentum field p(k, t) cannot be known, it is possible to per-

form and approximation, associated with the linear growth of the structure to estimate the

analytical form of Φ̇(k, t). From linear theory, it is possible to find the linear growth factor

D(t), which gives the time evolution of the density contrast as δ̇(k, t) = Ḋ(t)δ(k, z = 0)

[6]. This linear growth factor D(t) is obtained when solving the equation that describes

the evolution of the density field δ(x) in the linear regime (Equation 1.12), i.e., assum-

ing that such fluctuations are first-order perturbations in the mean density field ρ of the

Universe.

Substituting δ̇(k, t) in Equation 2.21 and using the definition for the linear growth rate

f(t) = d lnD(t)/d ln a, yields [6]:

Φ̇(k, t) =
3

2
H2

0k
−2Ωm,0

H(t)

a(t)
δ(k, t)[1− f(t)]. (2.26)

This equation uses only information from the density field. This can also be seen as

assuming that the velocity field is related with the density field by the linear approximation

[6]:

p(k, t) = iδ̇(k, t)
k

k2

≈ if(t) δ(k, t)H(t)
k

k2
. (2.27)

In the linear approximation, the density field δ determines completely the potential

field Φ and its time derivative Φ̇. Then, overdense regions (δ > 0) correspond to regions

with positive values of Φ̇ and underdense regions (δ < 0) are related to negative values

of Φ̇ [6]. Both Equation 2.25 and Equation 2.26 may be used as integrands in Equa-

tion 1.16 allowing to make a comparison between the contribution of the ISW effect in

both regimes.

Finally, an important annotation that must be taken into account when computing the

Φ̇ field with Equation 2.25 and Equation 2.26. Those equations come from the Poisson

equation in Fourier space (Equation 2.19) in which to perform the Fourier tranform, we
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assume that the laplacian operator in Fourier space can be expressed as ∇2 → −k2, or

more formally, when solving the Poisson equation through a Green function, we obtain

that the continuous Green function of a point source is given by:

G(k) = − 1

k2
. (2.28)

This is the same k−2 present in Equation 2.25 and Equation 2.26. This result is valid only

when solving these equations in the continuum case; as we have a discrete grid, the Green

function changes according to the discretization and is given by [14]:

Gd(k) = − (H/2)2

sin2 (kxH/2) + sin2 (kyH/2) + sin2 (kzH/2)
. (2.29)

This new form for the Green function does not depend on the MAS. So, in Equa-

tion 2.25 and Equation 2.26 instead of using the typical form of the Fourier transform

of the laplacian operator, or the Green function given by Equation 2.28, it is necessary

to use Equation 2.29. According to this requirement, the exact solution to Φ̇ given by

Equation 2.25 becomes:

Φ̇(k, t) =− 3

2
Ωm,0H

2
0 Gd(k)

[
H(t)

a(t)
δ(k, t) +

ik · p(k, t)

a(t)

]
, (2.30)

and the solution in the linear approximation given by Equation 2.26 becomes:

Φ̇(k, t) =− 3

2
Ωm,0H

2
0 Gd(k)

H(t)

a(t)
δ(k, t)[1− f(t)]. (2.31)

Those two final equations are the ones we are going to use of now in ahead in our work

and we will refer to those them frequently. Now, we are going to show the way each

equation of Φ̇ was modeled.

2.2.1 Exact Solution of Φ̇

With the aim to compute the exact solution of Equation 2.30 in the grid, it is also necessary

to know the velocity field or the momentum field of the particles in the simulation and

perform an assigment scheme to this velocity or momentum field. The pseudo-momentum

field can be estimated as shown before as [33]:

p = [1 + δ(x)]u(x)a(t), (2.32)
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where u(x) = vp/a is the comoving peculiar velocity field. Using Equation 2.6, it is

possible to write:

1 + δ(x) =
1

Np

VSim

VW

Np∑
l

W (xijk − xl)

=
N3

Np

Np∑
l

W (xijk − xl), (2.33)

with N3 = VSim/VW as the total number of cells in the grid. Then, the right hand side of

Equation 2.32 can be written as:

[(1 + δ)u] (x) =
VSim

Np

Np∑
l

δD(x− x)ul. (2.34)

Convolving with the window function of the mass-assignment scheme, the mesh-averaged

quantity becomes:

[(1 + δ)u] (xijk) =
1

Np

VSim

VW

Np∑
l

ulW (xijk − xl). (2.35)

Then, the estimated pseudo-momentum field will be given by:

p(xijk) = a(t)
N3

Np

Np∑
l

ulW (xijk − xl). (2.36)

This is the pseudo-momentum field used in Equation 2.30. As it is also necessary to know

the wavenumber-vector k, we used the FFTW convention to define them, due to the fact

that this is the library we use to perform Fourier Transforms. For example, in the direction

of the x-axis, with Nx cells in this axis, one has that the k vector has the form1:

kx(i) =

{
2π
L
i if i = 0, · · · , Nx−1

2
,

2π
L

(−Nx + i) if i = Nx

2
, · · · , Nx − 1.

(2.37)

And in the same way for the y and z axes, and taking into account a 0-based indexing for

the index i, which is related with the position of the cell in the grid. Using Equation 2.36

and Equation 2.37, it is possible to find the value of Φ̇(k) in each cell. Performing an

inverse Fourier transform allows to find the value in the position space Φ̇(x).

1see http://pauli.uni-muenster.de/tp/fileadmin/lehre/NumMethoden/

SoSe10/Skript/Ordening.pdf
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2.3 Fields from 400h−1Mpc Simulation

2.2.2 Solution of Φ̇ in Linear Theory
To estimate the solution in the linear regime from Equation 2.31, it is necessary to know
the functional form of the linear growth rate f(t). In this work, we take a functional form
used in cosmological simulations, that has the form [4], [22]:

f(Ωm(a)) = Ω5/9
m (a); with Ωm(a) =

Ωm,0

Ωm,0 + ΩΛ,0a3
. (2.38)

Given that until now the computation of the fields δ(x), Φ(x) and Φ̇(x) was performed
over a grid, it is necessary to compute an interpolation of the function Φ̇(x) with the goal
to obtain a continuous function that may be integrated numerically and then, estimate
the values of ∆T through Equation 1.16. It is worth to say that the codes used in this
analysis where programmed in the ANSI C programming language with the help of the
FFTW1 library to perform the Fast Fourier Transform routines and the GSL2 library to
compute the interpolation and numerical integration. In the following, we will show the
results obtained from the computation of the aformentioned fields in some cosmological
simulations.

2.3 Fields from 400h−1Mpc Simulation
With the aim to study the ISW effect, we have used a N -Body cosmological simulation
that consists of 5123 particles inside a cubic box of 400h−1Mpc of length per axis in a
ΛCDM cosmological model with ΩΛ,0 = 0.742, Ωm,0 = 0.258, Ωb,0 = 0.04, σ8 = 0.796,
present value of Hubble’s constant H0 = 100h km s−1 Mpc−1 and Hubble’s parameter
h = 0.72. These conditions were chosen according to a WMAP5 cosmology. The internal
units of this simulation were chosen to make the unit of mass equal to 1 × 1010 h−1M�,
the unit of length as 1 h−1Mpc in order to make the gravitational constant equal to G =

43.0071 internal units and the unit of time as 3.08568× 1019 s.
Only one snapshot of the cosmological simulation, with redshift z = 0, was taken

to make the analysis of the ISW imprint due to the structures formed by the particles in
the simulation at that time. Only this snapshot was used because when studying the ISW
imprint due to the reconstructed density field of the 2MASS survey, the observational data
used has an spherical shape with nearly 300h−1 Mpc of diameter and the imprint from the
density field from the observational data will be compared with that obtained from this
cosmological simulation. The results shown in the following come from the analysis of
the simulation particles enclosed in a regular grid with a resolution of 512 cells per axis.

1http://fftw.org/
2https://www.gnu.org/software/gsl/
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δ(X) AND Φ̇(X)

2.3.1 Density Field
To obtain the values of Φ̇(x) it is necessary to know the density field from the spatial
distribution of particles in the simulation. For that reason, a CIC MAS was implemented
in order to compute the density field δ(x) as shown in section 2.1. The CIC MAS was
performed with 512 cells per axis (a total of 5123 cells), allowing to obtain the smooth
density field shown in Figure 2.3, where all plots represent slices of 10h−1Mpc of thick-
ness along the z axis of the simulation box. It is worth to say that in the following figures
we factored out the Hubble parameter h without replacing its value; that is the way we
will show all the results from now on. In Figure 2.3, we can see a yellow background that
corresponds to such regions in the particle distribution with lower densities (possibly void
regions), while the red filamentary structure show us the clustering of particles and, then,
of matter.

2.3.2 Gravitational Potential Field
As we will need to solve the Poisson equation in the Fourier space, as seen in Equa-
tion 2.19, it is necessary to perform the Fourier transform of the estimated density field
δg(xijk) (as shown in Equation 2.6). In order to find the field δd (where d stands form dis-
crete) it is necessary to deconvolve the field δg with the Fourier transform of the window
function, as given by Equation 2.20. In this case, this equation becomes:

δd(k, t) =
δg(k)

WCIC(k)
. (2.39)

After knowing the correct value for the discrete density field in the Fourier space δd(k), we
can use this field in Equation 2.19, implement the Inverse Fourier Transform and obtain
the gravitational potential in position space Φ(x) as shown in Figure 2.4. As expected,
negative regions in the gravitational potential coincide with overdense regions of the den-
sity maps in Figure 2.3. Here, we may notice that as the Poisson equation (Equation 2.19)
also has a continuum Green function given by the k−2 factor; to be consistent we used
insted the discrete form, as shown in Equation 2.29.

An unexpected behaviour was found in the potential maps of Figure 2.4, and corre-
sponds to a larger region in which the gravitational potential is very positive (associated
with a possible void). This feature is present in all maps of this simulation and may be
due to the fact that this cosmological simulation box is not large enough and it will not
be possible to resolve the largest modes, i.e. the greatest structures. This feature will be
present also in the maps of Φ̇(x). If the density field is smoothed in a way that small
scales are completely suppresed and only the largest of the scales are seen in the density
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2.3 Fields from 400h−1Mpc Simulation

Figure 2.3: Density field maps from the cosmological simulation in logarithmic scale
log10 [δ(x) + 1]. Slices at different depths, from top to bottom and left to right: 0 − 10h−1

Mpc, 100− 110h−1 Mpc, 150− 160h−1 Mpc, 200− 210h−1 Mpc, 300− 310h−1 Mpc and
380− 390h−1 Mpc.
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Figure 2.4: Gravitational potential maps for the cosmological simulation data. Slices at
different depths, from top to bottom and left to right: 0 − 10h−1 Mpc, 100 − 110h−1 Mpc,
150−160h−1 Mpc, 200−210h−1 Mpc, 300−310h−1 Mpc and 380−390h−1 Mpc. Units
[Φ] = h−2 Mpc

(
1010M�

)−1 (
3.08568× 1019 s

)−2.
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field map, a kind of underdense region will be present in such regions with the most pos-

itive values of the gravitational potential, giving as a result such kind of large scale mode

features.

2.3.3 Time Derivative of Gravitational Potential

As aformentioned, the time derivative of the gravitational potential Φ̇ is computed also

in the Fourier space in two regimes, an exact solution given by Equation 2.30 and the

linear approximation from Equation 2.31, in which the linear growth rate function f(t)

is associated with the linear growth of the Large-Scale Structures (LSS). In the next two

subsections the results for both regimes are shown.

2.3.3.1 Exact solution to Φ̇ and pseudo-momentum field

In order to use the exact approach of Equation 2.30, one needs to know the velocity

field or the momentum field of the particles in the simulation. The velocity field is also

assigned to the regular grid using the CIC MAS, according to Equation 2.36 and taking

into account that ul refers to the velocity of a certain particle l, while p(xijk) is the

accumulated pseudo-momentum field in the cell of the grid that contains the lth particle.

With this pseudo-momentum field and the convention for the wavenumber vector k of

FFTW, according to Equation 2.37, we computed Φ̇(k, t) as given in Equation 2.30 for

each cell in the grid. Again, with an Inverse Fourier Transform we found the values in the

position space, Φ̇(x). The corresponding maps in the exact solution regime are shown at

the left panels in Figure 2.5.

The expected behaviour of Φ̇(x) is that positive values are associated with the over-

dense regions of Figure 2.3, while negative values of Φ̇(x) are associated with underdense

regions. This is because overdense regions are contained in a deeper gravitational poten-

tial wells (Φ < 0) and such potential will loose depth due to the expansion of the Universe,

which is associated with Φ̇ > 0. On the other hand, underdense regions with Φ > 0 will

have Φ̇ < 0 so the potential well will evolve to have smaller values. As can be seen

when comparing the left and right panels of Figure 2.4 both panels show the described

behaviour: the most negative values of Φ(x), in which the structures should be hosted,

are consistent with the most positive values of Φ̇(x). In the case of the positive values of

Φ(x), the Φ̇(x) field has negative values but very near to zero.

In these maps it is also possible to see the behaviour found in the maps of gravitational

potential, i.e. a large region that may be associated with an underdense region, due to the

fact explained before: this cosmological simulation box is not large enough and it will
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Figure 2.5: Maps of the time derivative of gravitational potential for the cosmological simu-
lation data. Left panels correspond to the exact solution and right panels to the linear approx-
imation. Slices at different depths, from top to bottom: 0− 10h−1 Mpc, 150− 160h−1 Mpc
and 200− 210h−1 Mpc. Units [Φ̇(x)] = h−2 Mpc

(
1010M�

)−1 (
3.08568× 1019 s

)−3.

52



2.3 Fields from 400h−1Mpc Simulation

not be possible to resolve the largest modes. Although in this case this behaviour is not

as notable as in the maps of potential or as in the maps of the linear approximation of Φ̇,

as we will see later. We verified that this large mode feature is not a defect or a mistake

on the estimation of the gravitational potential or its time derivative. For this aim we

performed different tests:

• First, we used a uniform distribution of points in a simulation box of the same size

and applied the MAS to find the associated density constrast field. Then, the FFT

algorithm was applied to compute Φ and Φ̇, expecting also uniform fields, which

were indeed found by us.

• Second, a distribution of points distributed according to a 3-dimensional Hernquist

profile were placed at the center of the simulation box. Again, we obtained the

expected behaviour which consist in a very deep (Φ < 0) gravitational potential at

the center with the same extension as the Hernquist sphere, while the surroundings

have basically a potential Φ ≤ 0. In the case of the Φ̇ at the position of the Hernquist

sphere, we found Φ̇ > 0 in the center, indicating that the potential well will loose

depth, and positive but very near to zero values at the surroundings.

• Third, a set of 7 Hernquist spheres were placed in the following way: one at the

center of the box, two were placed along the x-axis at positions (L/4, L/2, L/2)

and (3L/4, L/2, L/2). The other four spheres were placed in a similar way but at

the y or z axes. Once again, we obtained the expected result, which consist in 7

haloes with Φ < 0 (and Φ̇ > 0) while the surroundings of the spheres presented

Φ ≤ 0 (Φ̇ ≥ 0).

• As a final test, we used the gravitational potential computed directly from the sim-

ulation with Gadget code. We then performed a CIC MAS to this gravitational

potential and notice that the same large scale mode appeared in this solution, so it

is an intrinsic feature of this cosmological simulation.

According to those tests, we clarified that no mistakes were made in the estimation

of both fields; instead of that, the larger mode is, as aformentioned, a feature due the the

small size of the simulation box which did not allow to resolve the largest modes, or the

largest of the structures in this particular box.
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2.3.3.2 Linear regime solution to Φ̇l(x)

For the linear approximation, the functional form of the linear growth rate f(t) given by

Equation 2.38 was used in Equation 2.31 in order to compare the results and the order

of magnitude for the induced temperature fluctuations ∆T with those obtained in the ex-

act solution. In the majority of works about the ISW effect in a ΛCDM universe, this

linear approximation is used, so we perform such a comparison to study the discrepancy

between the signal amplitudes of the ISW effect in ΛCDM in both regimes (linear ap-

proximation and exact solution) and determine if the linear approximation is indeed a

good approximation to estimate the temperature fluctuation signal.

Once the values in Equation 2.31 are known for the grid, an Inverse Fast Fourier

Transform is performed, allowing us to obtain the values of the rate of change of the grav-

itational potential in each cell, i.e. to find Φ̇l(x) in this approximation. The corresponding

maps of this linear approximation are shown at the right panels of Figure 2.5.

The structure of the maps obtained in the linear approximation looks similar to those

obtained in the regime of the exact solution. It is worth to say that a difference between

both maps is the order of magnitude of the values; it can be seen that the range of values

with the exact solution can achieve the Φ̇ ∼ ±2 × 109 internal units, which corresponds

to a difference of one order of magnitude larger than the values obtained with the linear

approximation (right panels). In the case of the exact solution and by visualization issues,

the range of values is constrained to −2 × 108 < Φ̇ < 4 × 108 internal units to make

a proper comparison with the values obtained in the linear approximation. This issue is

due to the smoothing introduced by the linear approximation, because in the exact solu-

tion the influence of the peculiar velocities will introduce a local evolution of the smallest

structures, making that local gravitational potentials that host small structures would have

a contribution to the Φ̇ field and those maps can resolve the smallest structures as can be

noticed in the left panels of Figure 2.5. In the case of the linear approximation, the struc-

tures are supposed to grow in the linear regime valid only for the largest structures. Then

the features associated to small scale structures cannot be resolved in this approximation.

This linear regime will induce a lost of information at the smallest structures, averaging

the overall behaviour of the larger structures.

2.3.4 Comparison between CIC and TSC Mass Assignment Schemes

Only for this simulation we performed a comparison between CIC and TSC mass assig-

ment schemes (MAS) in order to quantify how the MAS would affect the estimation of

the ISW effect. This is done with the aim to solve the question of the influence of the
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MAS in the estimation of the ISW effect, while searching for some notable differences

in the estimated underlying fields (density and time derivative of the potential) and find if

such differences introduce spurious signals in the temperature fluctuation field that may

originate the discrepancies associated with the detectability of the late ISW effect, as afor-

mentioned in the Introduction chapter . For this reason, we compared the density contrast

field and the time derivative of the gravitational potential obtained in both MAS. The

comparison of the temperature in both MAS will be shown in the next chapter.

2.3.4.1 Effect of the MAS in the estimation of the Density Contrast field δ(x)

When comparing the values of δ(x) obtained with CIC and TSC cell by cell, we can see

in the left panel of Figure 2.6 that the values from TSC are below those obtained with

CIC. This is an expected behaviour due to the fact that TSC being a second order scheme,

allows to obtain a smoother field than the obtained with the CIC MAS. The x-axis shows

the index which refers to the internal index of each cell in C-order. It is worth to say that

we would expect two curves instead of the distribution of points shown in this figure, but

this distribution is due to the fact that the internal C-order for the index of the cells does

not imply a physical relationship between adjacent indeces. At the right panel of the same

figure, we took the value obtained through CIC for a cell (in the x-axis) and compare

it with the value from TSC for the same cell (in the y-axis). This figure shows a black

line indicating δCIC = δTSC . However, TSC gives a lower values of δx than CIC, the

slope of the data is smaller than 1. A color code according to the value of k (the Fourier

reciprocal of position) is given in order to see if there is any correlation with the scale.

Data has been sorted according to ascendent values of k. A gradient can be noticed, with

the largest values of k at the smallest values of δx, decreasing k with larger δx, but at the

largest values of density contrast it can be noticed a mix between the larger values of k

with some smaller values of k.

When we compare the relative difference |δ(x)TSC−δ(x)CIC |/|δ(x)CIC | as a function

of the scale k, shown in the right panel of Figure 2.7, it looks like no clear dependence on

the scale can be seen; for the majority of scales, the scatter in the values of |δ(x)TSC −
δ(x)CIC |/|δ(x)CIC | is very large. Only for the largest of the scales (k << 1 h Mpc−1)

and the smallest ones (k ∼ 7 h Mpc−1) in our simulation box the scatter of values looks

to be below 10. This is supported by the left panel of the same figure, in which we

compare δ(x)TSC − δ(x)CIC as a function of the scale k. In this second figure, it is also

shown a narrower dispersion of the values of δ(x)TSC − δ(x)CIC for the largest scales

(k << 1 h Mpc−1) and for the smallest scales (k ∼ 7 h Mpc−1). For the other scales, the

scatter is again so large that no kind of correlation seems to arise from this comparison.
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This large scatter in the difference and relative difference may be due to the different

ways in which each MAS distributes the total mass in small and median scales, but at

larger scales all the mass is distributed in a very similar way.

2.3.4.2 Effect of the MAS in the estimation of the Φ̇(x) field in the exact solution

The same experiment was performed for Φ̇(x) in both regimes: the exact solution and in

the linear approximation. In this section we will show the results obtained in the exact

solution. When performing a comparison of the values of Φ̇(x) obtained after applying

Fourier Transforms to the density field found with CIC and TSC, we can see in the left

panel of Figure 2.8 that the values associated to the TSC MAS are very similar, but still

below, to those associated with the CIC. This is evident in the statistical properties of

the distribution of each MAS, as shown in the left part of Table 2.1. In this table, it

can be noticed that the ranges of values of Φ̇(x) in the exact solution span 18 orders of

magnitude (taking the maximum values minus the minimum values), and although the

means have different values, they have an order of magnitude ∼ 1 × 10−9, which is

negligible compared with the complete range of values; so the means of the distribution

according to the MAS are very similar, but the standard deviation associated to the CIC

MAS seems to be slightly larger. Furthermore, the range of values of the CIC is also

slightly larger than the associated to the TSC MAS, although the TSC have a larger upper

limit.

When performing a comparison of Φ̇(x) from CIC in the x-axis and the obtained from

TSC in the y-axis, we can see that this comparison has a behaviour very near to a straight

line Φ̇CIC = Φ̇TSC , as shown in the left panel of Figure 2.9. This tells us again that both

schemes gives us similar values for Φ̇. At the behaviour according to the scale k it can be

noticed that the larger values of k are more near to zero, but at the extremes the gradient

in k is not so evident.

The comparisons associated with the physical scale k give analogous results than in

the case of the density contrast, as can be seen in the left panel of Figure 2.10 for the

comparison of the difference Φ̇TSC − Φ̇CIC vs k. Again, at the larger scales, associated

with the lower values of k, the difference between the values of TSC and CIC tends to

zero, allowing us to say that in both schemes, in a general view, the evolution of the

gravitational potential is very similar, although at lower scales the gravitational potential

of the substructures may have a different evolution. This difference at middle and small

scales may be due to the fact that, as TSC tends to present a smoother density field than

the obtained through a CIC, the gravitational potential wells obtained from TSC data will

also tend to be smoother than the obtained with CIC, because TSC spreads the mass more
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Figure 2.6: At the left panel, density contrast field obtained through the CIC MAS (red
points) compared with the values from the TSC MAS (blue points) as function of the index
(maximum index is 5123). TSC values are below the CIC values, as expected. Right panel
shows the density contrast field obtained through the CIC MAS (x-axis) compared with the
values from the TSC MAS (y-axis) cell by cell. The black line represents δCIC = δTSC . As
the data tuples have an slope lesser than 1, we can assure again that TSC values are below
CIC values for each cell. The colour code is given by the associated value of k in h Mpc−1.

Figure 2.7: Difference δ(x)TSC − δ(x)CIC and relative difference |δ(x)TSC −
δ(x)CIC |/|δ(x)CIC | as function of the scale k between both assigment schemes. Either the
difference and the relative difference show a smaller scattering for the largest and smallest of
the scales; in other case, the scatter is so large that no correlation seems to arise from those
comparisons.
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Figure 2.8: Φ̇(x) field obtained with the exact solution (left panel) and linear approximation
(right panel) through the CIC MAS (red points) compared with the values from the TSC MAS
(blue points) cell by cell. TSC values have a very similar behaviour than the the CIC values,
but still some below. The x-axis corresponds to the index of each cell.

Figure 2.9: Φ̇(x) field obtained through the CIC MAS (x-axis) compared with the values
from the TSC MAS (y-axis) cell by cell. The black line representes a y = x line with
slope 1. Left panel is associated with the exact solution, while the right one to the linear
approximation. Data tuples have an slope very near to 1, so both schemes give similar values
of Φ̇(x). The colour code is given by the associated value of k in h Mpc−1.
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into the neighbouring cells. In other words, with a CIC scheme we will obtain a structure

that comprises fewer cells than with TSC, making the structure more overdense, and then,

a deeper gravitational potential will be obtained if compared with the potential obtained

through TSC. As the potential well is deeper with CIC, its time evolution will also be

affected. An analogous behaviour will be obtained with underdense regions, which will

be more underdense in CIC than in TSC.

The relative difference |Φ̇(x)TSC− Φ̇(x)CIC |/|Φ̇(x)CIC | presented in the left panel of

Figure 2.11 shows an analogous behaviour than the previous figure, because it continues

to be near to zero for the largest physical scales, while at mean and small scales the

scattering is larger.

Statistical Φ̇Exact Φ̇Linear

property

Φ̇CIC 1.2796× 10−9 3.7825× 10−9

σCIC 6.2566× 107 6.075838× 107

b1,CIC −0.3658 −0.2382

g2,CIC 1.7601 −0.685

Minimum value in CIC −3.1777× 109 −1.8129× 108

Maximum value in CIC 3.0571× 109 5.6847× 108

Φ̇TSC 3.5506× 10−9 2.9295× 10−8

σTSC 6.2551× 107 6.075835× 107

b1,TSC −0.3676 −0.2382

g2,TSC 1.6434 −0.0317

Minimum value in TSC −3.0236× 109 −1.8148× 108

Maximum value in TSC 3.0938× 109 5.6178× 108

Table 2.1: Table with the statistical properties for the distribution of Φ̇ for both MAS. A
comparison between both solution regimes is also shown.

2.3.4.3 Effect of the MAS in the estimation of the Φ̇(x) field in the linear approxi-
mation

When performing a comparison of the values of Φ̇(x) obtained in the linear regime with

CIC and TSC, we can see in the right panel of Figure 2.8 that the behaviour is very similar

to that of the exact solution (left panel of the same figure), i.e. both, CIC and TSC give

very similar values to Φ̇(x) with a very small visual difference in which TSC gives the

“smaller” values. This is supported again with the statistical properties summarized in

the right part of Table 2.1 in which the behaviour is very similar than the described above
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Figure 2.10: Difference between two schemes Φ̇(x)TSC − Φ̇(x)CIC as function of the phys-
ical scale k. Left panel corresponds to the exact solution and right panel to the linear approx-
imation. It is possible to see that at the largest scales (smallest values of k) the difference
between both schemes tends to zero, allowing us to say that in both schemes, in a general
view, the evolution of the gravitational potential is very similar, although at middle and some
smaller scales the gravitational potential of the substructures may have a different evolution.
At the smallest of the scales, this difference also tends to zero.

Figure 2.11: Relative difference |Φ̇(x)TSC − Φ̇(x)CIC |/|Φ̇(x)CIC | between both assigment
schemes. Left panel is associated to exact solution and righ panel to the lienar approximation.
The relative difference is very low at the largest scales (smallest values of k), while becoming
more scattered at middle and some small scales. This great relative difference may be due to
the different ways in which each MAS distributes the total mass in small and median scales,
but at larger scales all the mass is distributed in a very similar way. For the smallest scales in
the box, this relative difference also tends to zero.
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for the exact solution, i.e. the larger range of values makes the means negligible and very
similar and the standard deviation associated to the distribution of values from CIC is
slightly larger than the standard deviation for TSC. The total range of values of the CIC
MAS is also slightly larger than those from TSC.

Again, a comparison of Φ̇(x) from CIC in the x-axis and the obtained from TSC in
the y-axis, is shown in the right panel of Figure 2.9. This figure shows again that both
MAS gives us similar values for Φ̇, because the slope of the data is very near to the slope
of a straight line Φ̇CIC = Φ̇TSC and the behaviour according to the values of k is similar
to the case of the exact solution.

As in the previous case for the solution of Φ̇ in the exact regime, the comparisons
associated with the physical scale k are shown in the right panel of Figure 2.10 for Φ̇TSC−
Φ̇CIC vs k. This figure is very similar to the left panel of the same figure, differing only
in a lower range of values for the y axis, so the same conclusions of subsubsection 2.3.4.2
can be infered to the linear approximation. These same conclusions hold also in the case
of the relative difference |Φ̇(x)TSC − Φ̇(x)CIC |/|Φ̇(x)CIC | presented in the right panel
of Figure 2.11, i.e. at the largest physical scales the relative difference is very close to
zero, while at mean and small scales the scattering is larger. From all these results, we
may conclude that for both regimes for the solution of Φ̇, both CIC and TSC will give
very similar results at the larger scales, which are the scales we are interested in order to
study the ISW effect. This issue also tells us that the MAS used to estimate the underlying
density field and the Φ̇ field will not affect the estimation of the ISW signal, as we will
show in the next chapter.
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2.4 Fields from MultiDark 1 (MDR1) Simulation
In order to make another estimate of the ISW signal in a ΛCDM cosmology, we used

the MultiDark 1 1 cosmological simulation [29], which has the following characteristics,

also corresponding to a WMAP5 cosmology: 20483 particles in a cubic box of 1h−1Gpc

of side, ΩΛ,0 = 0.73, Ωm,0 = 0.27, Ωb,0 = 0.0469, σ8 = 0.82, and a Hubble parameter

h = 0.70. We have also used the snapshot at redshift z = 0.

The data obtained from the CosmoSim web corresponding to the MultiDark 1

(MDR1) simulation is the density fluctuation field δ(x) computed through a CIC mass-

assignment scheme with 5123 cells and smoothed with a gaussian filter. With this density

field we performed the same procedure described for the simulation of 400h−1Mpc in or-

der to compute the gravitational potential and its time derivative. Taking into account that

the data obtained from CosmoSim does not have information about the velocity field, it

is necessary to use the linear approximation to the growth of structures of Equation 2.31,

with the functional form of the linear growth rate f(t) shown in Equation 2.38.

The importance of a simulation with such scales is because as the ISW effect is due

to the density field of large-scale structure, it is important to have a density field large

enough to make a comparison of the signal amplitude of the actual ISW effect, in which

the photons of the CMB have pass through a large amount of large-scale structures. Fur-

thermore, the use of this simulation provides results that may be comparable to those of

previous works as [6] and [33].

2.4.1 Density Field

The density field, as downloaded from the CosmoSim web is shown in Figure 2.12. The

slices in this figure were built in a similar way as in the previous simulation, that means,

projections along the z-axis with 10h−1Mpc of thickness. Again, it can be seen the

overdense regions corresponding to red zones and voids to yellow zones, forming the

filamentary structures.

2.4.2 Gravitational Potential Field

In order to compute the gravitational potential with Fourier methods, we need to know the

density field δ in the Fourier space. In this case not only a deconvolution with the win-

dow function is necessary (as shown in Equation 2.20) but also a deconvolution with the

1https://www.cosmosim.org/cms/simulations/multidark-project/mdr1/
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Figure 2.12: Maps of the density field of Multidark 1 simulation in logarithmic scale:
log10 [δ(x) + 1]. Slices at different depths; from top to bottom and left to right: 0 − 10h−1

Mpc, 150− 160h−1 Mpc, 300− 310h−1 Mpc, 450− 460h−1 Mpc, 600− 610h−1 Mpc and
750− 760h−1 Mpc.
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Fourier transform of the smoothing gaussian filter function. Then, the total deconvolution
becomes:

δ(k, t) =
δg(k)

WCIC(k)× eiµk− 1
2
σ2k2

, (2.40)

where, in the deconvolution of the gaussian function, we have used the values: µ = 0 and
σ = H with H the size of each cell, according to the values of the simulation. With this
deconvolution performed, it is possible to compute the corresponding Fourier transforms
in order to know the gravitational potential. The maps of the gravitational potential are
shown in the left panel of Figure 2.13 for some chosen slices. From those maps it can be
also seen the expected behaviour for the gravitational potential, that means, regions with
negative values of Φ correspond to overdense regions in the density field maps, while
positive values of Φ are associated with voids. Here it is also possible to observe a large
region with Φ > 0, which may be related with an underdense region. In this case, this
large region is also a large mode (a large structure associated with a large underdensity)
that may be not resolved due to the resolution of the the MAS and the Fourier transforms.

2.4.3 Φ̇ in Linear Regime
Using Equation 2.31, we compute the values of Φ̇ for the MDR1 simulation. In this case,
we obtain the maps shown in the left panel of Figure 2.14 for f(t) given by Equation 2.38.
Again, we can see the expected behaviour for the values of Φ̇, which has the opposite sign
than the potential. That implies that we also have the expected behaviour according to
the density field: regions with positive values of Φ̇ are related with overdense regions,
while regions with negative values of Φ̇ are associated with voids, as explained for the
first simulation of 400h−1Mpc. Furthermore, the same large region that appears in the
maps of Φ related with a large underdense regions can be seen here, and it is a feature due
to the resolution used.
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Figure 2.13: Gravitational potential maps for the Multidark 1 simulation. Panels at the left
side correspond to the resolution of 5123 cells. At the right side, the maps correspond to the
highest resolution of 10243 cells. From top to bottom : 0− 10h−1 Mpc, 300− 310h−1 Mpc
and 600− 610h−1 Mpc. Units [Φ] = Internal length2 Internal time−2.
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Figure 2.14: Maps of Φ̇ for the Multidark 1 simulation in the linear regime. Panels at the left
side correspond to the resolution of 5123 cells. At the right side, the maps correspond to the
highest resolution of 10243 cells. From top to bottom : 0− 10h−1 Mpc, 300− 310h−1 Mpc
and 600− 610h−1 Mpc. Units [Φ̇] = Internal length2 Internal time−3.
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2.5 Effects of Resolution in MDR1 Simulation
For MDR1 simulation, we also study the effects of the resolution in the estimation of the

different fields and on the ISW effect. We use the same MDR1 simulation but a higher

resolution of 1024 cells per axis was implemented to test the effects of the resolution on

the reconstructed density field. The data obtained from the CosmoSim database is analo-

gous as in the lower resolution case, i.e., what we obtain is the density field δ(x) obtained

through a CIC MAS convolved with a gaussian smoothing kernel. So, to perform the

Fourier transform algorithms it is necessary to apply again the corresponding deconvo-

lution, given by Equation 2.40. In the following, we are going to see the maps obtained

with our method.

2.5.1 Gravitational Potential Field for MDR1 × 10243

After applying the Fourier transform algorithm with the complete deconvolution (Equa-

tion 2.40), the gravitational potential field maps obtained for this new resolution are shown

in the right panel of Figure 2.13.

From this map, we see a slight difference in the structure of the maps, with a slight

wider range of values for the resolution of 10243 cells; indeed it looks like the 5123 resolu-

tion shows more smaller structures while the 10243 resolution looks smoother, but may be

due to the fact that the color scales are a bit different. It would be interesting to determine

the distribution of values for Φ and Φ̇ to see if the distribution for the lower resolution

and the higher one are similar with at least similar means and standard deviations; due

to our interest in the temperature field, such a comparison between distributions is done

only for the temperature field, and as we will show in subsection 3.2.2. The distribution

of temperatures for both resolutions have, up to normalization, the same behaviour. This

allow us to conclude that resolution will not play an important role in the estimation of the

ISW effect, although obviously will allow to evidence a more detailed structure alongside

with a possible Rees-Sciama signal. This issue will be discussed in the next chapter.

2.5.2 Φ̇ in Linear Regime for MDR1 × 10243

Applying the linear solution for Φ̇, we obtain the maps shown in the right panel of Fig-

ure 2.14.

Again, as in the case for Φ, there is no change in the structure of the field when

changing the resolution. The only slight change is in the range of values that takes the Φ̇

field. We can assume that, according to this behaviour, the structure and ranges of values
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for the temperature fluctuation ∆T due to an ISW effect must be also unaffected when

increasing the resolution for the MDR1 simulation. This is consistent with the results

of chapter 3, in which it can be noticed that an increase in the resolution does not affect

the estimated temperature fluctuation nor the fluctuation along the photon’s path, i.e. the

quantity dT/dr . For the ISW effect, a change in the resolution will not have a notable

effect so any of the resolutions may be used, but a higher resolution may be desired in

order to obtain a more detailed perspective of the temperature fluctuation induced by small

scale structures, eg. the Rees-Sciama effect.

2.6 MultiDark-Planck (MDPL) Simulation
The last simulation used in this work is the MultiDark-Planck (MDPL)1 simulation [19],

which is an analogous project to MDR1 with more than 6 times higher mass resolution,

using 38403 particles and with a Planck cosmology. The parameters of the simulation

are the following: ΩΛ,0 = 0.6922885, Ωm,0 = 0.307115, Ωb,0 = 0.048206, h = 0.6777,

n = 0.96 and σ8 = 0.8228. Due to the simulation’s resolution and the availability of

the velocity field, it is possible to resolve the smallest structures. This fact will allow not

only to have a more detailed view of the underlying fields but also to obtain a contribution

to the temperature fluctuation due to the smalles structures in the same way as the ISW

effect, i.e. the Rees-Sciama effect. Besides, the large size of this simulation will allow to

obtain and resolve very large structures, reducing the cosmic variance.

With this simulation, we will be able to use both regimes for the solution of Φ̇ in order

to compare the two results. Due to the largest simulation box, those results will allow us

to obtain a better estimation of an exact theoretical temperature amplitude for the ISW

effect in a ΛCDM universe and make a detailed comparison with the amplitude obtained

from the linear approximation, which is used in several works. If the difference between

both amplitudes is small, the use of the linear approximation could give a good estimate

of the ISW effect at the largest scales, but the use of the exact solution will bring more

information about small-scale fluctuations.

For this simulation, a CIC MAS with a resolution of 10243 cells was also used in order

to obtain both, the smooth density field δ and the velocity field to estimate the momentum

field p. As aformentioned, the importance of a simulation with such scales is because as

the ISW effect is due to the density field from large-scale structures, and it is important

to have a density field large enough to make a comparison of the signal amplitude of

the actual ISW effect. Furthermore and as mentioned above a higher resolution is also

1https://www.cosmosim.org/cms/simulations/mdpl/
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desirable because allows to resolve better the structures of the simulation. Although the

resolution does not induce any effect on the estimation of the large-scale ISW signal, it

has an important contribution to the estimation of the temperature fluctuation at smallest

scales, especially in the case of the exact solution, that is also associated with the Rees-

Sciama effect. The maps of the different fields for the MDPL simulation can be seen in

the appendix, at chapter 7.

2.6.1 Density Field

In Figure 7.1 it is possible to see the maps of the density field from the structures in the

MDPL simulation obtained through the CIC MAS. As before, the thickness of those slices

is of 10 h−1Mpc, and the depths are the same as shown for the MDR1 simulation. The

color code is in the same logarithmic scale, with redder regions representing overdensities.

2.6.2 Gravitational Potential Field

After applying the Fourier transform algorithm, the result of the gravitational potential

maps is shown in Figure 7.2 for the same thickness and depths. Due to the higher resolu-

tion of the CIC and the Fourier algorithms, it is possible to see that the large structures are

resolved better and the regions associated with larger voids are smoother and with values

of Φ not so positive. Furthermore, the overdense regions are also well resolved, allowing

us to know the more local and small gravitational potential that host particular overdense

structures.

2.6.3 Time Derivative of Gravitational Potential

Applying again the Fourier transform algorithm in order to compute the time derivative

of the gravitational potential in both regimes for the MDPL simulation gives the results

shown in the following subsections.

2.6.3.1 Exact solution to Φ̇

In the right panel of Figure 7.3 we can see the corresponding maps of Φ̇ through the exact

solution using the momentum field. As in the case of the simulation box of 400 h−1Mpc

(in subsection 2.3.3), these maps have a wider range of temperatures than the obtained

through the linear approximation; this range is between−4× 109 < Φ̇ < 4× 109 internal

units. Despite those differences, we continue observing that the overdense regions of the

maps in Figure 7.1 correspond to those regions of Φ̇ with the most positive values, while
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underdensities are associated with small positive or negative values of Φ̇. Furthermore,

due to the higher resolution and the use of the exact solution it is possible to see how

in those maps the larger underdense features present in the previous simulations are not
present here because smaller structures are better resolved.

2.6.3.2 Φ̇ in Linear Regime

The maps obtained after applying the linear solution are shown in the left panel of Fig-
ure 7.3. Those maps show a very similar structure to the gravitational potential maps. As

in the case of the exact solution, the larger underdense features present in the previous

simulations are not present here, and the maps are smooth, mainly in regions associ-
ated with underdensities, while regions associated with overdensities are clearly resolved.

Those regions with Φ̇ > 0 in this linear regime coincide with the same regions in the exact

regime, as explained above.

2.7 Summary of results
The results obtained in this chapter can be summarized in three items:

• Effects of the Mass-assigment scheme (MAS) on the estimation of underlying
fields: As it was shown in subsection 2.3.4, the MAS has important effects in the
estimation of the density contrast field. The TSC MAS gives a smoother field than

the obtained through the CIC MAS, so the values from TSC are slightly smaller,

i.e. δCIC > δTSC . In the case of Φ̇(x) field, it looks that the estimations are more
similar, i.e. Φ̇CIC ∼ Φ̇TSC , but CIC has a slightly larger standard deviation and

range of values. Then, the MAS has effects on the estimation of the underlying

fields, showing expected behaviours with CIC given larger ranges of values than
TSC, but the distributions are similar. A further analysis becomes necessary in

order to quantify how the MAS affects the estimation of the temperature fluctuation

due to the ISW effect. Such an analysis is shown in the next chapter.

• Effects of the resolution on the estimation of underlying fields: According to
results from section 2.5, the resolution has no important effects on the estimation

of the Φ and Φ̇ fields in larger scales. Although in the figures shown in section 2.5,

the smallest resolution of 5123 looks to show more features at the smallest scales
but it is a because the color bar in the maps of Φ and Φ̇ fields is slightly wider

for the highest resolution, but the general structures and the ranges of values are

basically so similar that we can assure that the resolution has no considerable effects
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in the estimation of such fields. Furthermore, we will show in the next chapter that
resolution will neither affect the estimation of the temperature field.

• Effects of the regime of the solution (exact or lineal) on the estimation of Φ̇(x):
In this case, considering the discussed results from subsection 2.3.3 for the sim-
ulation box of 400 h−1Mpc and from subsection 2.6.3 for MDPL simulation we
conclude that, as expected, the exact solution will offer a better estimation of the
smallest of the structures. As discussed in those subsections, the influence of the
velocity field in the evolution of the smaller structures is important and will rep-
resent an important contribution in the estimation of the Φ̇(x) for the smaller and
more local regions. On the other hand and also with and expected result, the linear
approximation will show a very similar general behaviour at the largest scales if
compared with the exact solution; but the information of the smallest scales will be
suppresed and this field at such scales will be smoothed. We conclude that in the
largest scales, the use of the linear approximation will give a very good estimated
of the Φ̇(x) field if compared with the exact solution, so the expected behaviour of
the temperature field will be similar, i.e. that the linear approximation and the exact
solution will give the same results in the largest scales, so for an estimation of the
ISW effect, the use of the linear approximation will no lead to spurious signals or
bad estimations. But it is important to take into account that if the idea is to know
the behaviour of the fluctuations associated with smaller scales, the use of the exact
solution becomes mandatory.
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CHAPTER

3
Estimation of the Late ISW

Effect in Cosmological
Simulations

Once we know the Φ̇ field, either with the exact solution or in the linear regime, an

interpolation of the values of Φ̇(x) in the grid is performed. Once interpolated, these

functions are integrated according to Equation 1.16. Although until now we have shown

all maps as a projection along the z-axis, in this step we perform the integration along the

three coordinate axes, as different lines-of-sight (LOS), in order to have enough variance

in our samples. This step is performed for all the three cosmological simulations, with

the aim to compare the large scales in all simulations and the ISW signal at each scale.

Having different box sizes will allow us to study the influence of the cosmic variance

in each ISW estimation. Furthermore, due to the different grid resolutions used, we can

compare the effects of the grid in the ISW signal. For the largest boxes with higher

resolutions a Rees-Sciama effect estimation could also be obtained.

After the integration along the 3 axes to obtain the ISW imprint, we divided the total

temperature by the size of the box in each axis in order to obtain the temperature fluc-

tuation per unit of length (∆T/∆L) in all the three simulations. This step was made for

consistency in order to compare the ranges of ∆T/∆L and study the change of tempera-

ture along the whole trajectory of the photons. This temperature change should be of the

same order of magnitude for the three simulations if it is indeed due to an actual physical
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effect, and not to numerical artifacts that affect the estimation of the ISW imprint. In

this chapter, we show all the ISW maps we estimated from the previously computed Φ̇

field. The influence of the MAS and resolution effects on the ISW signal is discussed here

alongside with the study on the distribution of values of the temperature fluctuation per

unit of length.

3.1 ISW Effect from Simulation of 400 h−1Mpc

3.1.1 ISW Effect from the Exact Solution

The ISW maps for the exact solution along the three axis of the box are shown in the left

side panels of Figure 3.1. In the left-bottom panel of this figure, a cold region surrounded

by hotter regions can be seen. This behaviour means that along the line-of-sight (the z-

axis) there is a region dominated by voids in the density field, while around this zone,

there is domain of overdense regions along the LOS. This feature may correspond to the

large-mode that can not be resolved well enough in this small simulation box. Along

the x and y axis one can also see some cold spots surrounded by hotter regions. It is

possible to see how the cold spots have a slight larger contribution to the ISW imprint

than the hotter spots in this simulation, but both hot and cold temperatures are in the

same orders of magnitude. It is worth to notice the size of the spots we are obtained,

which have diameters of the order of 100 − 150 h−1Mpc; even some of them can reach

200 h−1Mpc. This is an important fact because the larger sizes of the spots indicate us

that we are observing large-scale fluctuations, which are associated with a ISW signal in

this simulation.

The temperature ranges obtained in this regime due to the ISW effect are smaller than

those reported in literature wich is a signal of ∆T = 10− 20µK in a ΛCDM cosmology

[13]. Those smaller ranges are due to the small size of the box. We expect that for larger

box sizes the ISW signal will be larger, as we will show above. The range of temperatures

can be seen in Table 3.4, and can be compared with the ranges of the MultiDark simula-

tions. This table also shows the change of temperature per unit of length ∆T/∆L for all

the three simulations. The ranges of temperatures and the ranges of ∆T/∆L correspond

to the overall maximum and minimum values obtained from the maps along the three

axes. Taking the mean of ∆T for the three coordinates axes, it can be noticed that this

mean value is around 1×10−5 µK even for both solution regimes. In the case of the mean

∆T/∆L for all the three axes, it is 1× 10−8 µK h Mpc−1 for both solution regimes.
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Figure 3.1: ISW maps obtained from the exact solution (left panels) and linear approximation
(right panels) with the cosmological simulation data set from the box of 400 h−1 Mpc. Upper
panels correspond to the integration along the x-axis as LOS; middle panels to the integration
along y-axis as LOS and bottom ones to the integration along z-axis as LOS.
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3.1.2 ISW Effect in the Linear Regime

Following the same procedure described to obtain the ISW maps in the exact regime,

we construct the ISW maps for the linear approximation in the three coordinates axes as

different LOS. The corresponding maps are shown in the right panels of Figure 3.1.

In the linear approximation for Φ̇ it is possible to observe an analogue structure as the

left panels shown in Figure 3.1 with the exact solution, but smoother. The details seen in

the exact solution are due to the fact that in this regime the momentum field (or peculiar

velocities) is used. As this field accounts for the movement of the structures at smaller

scales, it may affect the growth of the structure itself; but in the linear approximation

there is no use of the momentum field, so these small details disappear. The range of

temperature fluctuations ∆T and the change of temperature per unit of length ∆T/∆L are

shown in Table 3.4. Those temperature ranges are below the ones obtained using the exact

solution, but the signal structure is very similar and the values do not differ too much with

this exact solution. It can be noticed that although this simulation gives the smallest range

of values for ∆T if compared with the values from the other simulations, the temperature

per unit of length ∆T/∆L is in the same range and order of magnitude, so the change of

temperature along the line of sight is consistent between all the simulations. As discussed

before, the small size of the simulation affects the range of values for the total temperature

fluctuation, ∆T , but not the temperature per unit of length. This result holds for both

regimes, the exact solution and the linear approximation. Due to the resolution used, that

allows to obtain for this simulation a cell size of 0.781 h−1Mpc, the comparison with the

other simulations is fair, so we are obtaining consistent results between slight different

ΛCDM -CMB realizations for the expected behaviour of the ISW effect.

3.1.3 Effects of CIC and TSC Mass Assignment Schemes in tempera-
ture estimation

As in subsection 2.3.4 in the previous chapter, we study again the effects of the MASs

in the estimation of the ISW temperature fluctuation looking for a possible spurious es-

timation in the ISW signal due to the precense of numerical artifacts from the MAS. In

the following we will show a comparison between the temperature values obtained with a

TSC MAS and those obtained through CIC. As pointed out before, this analysis between

assigment schemes is done only for the 400 h−1Mpc simulation box.
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3.1.3.1 ∆TTSC in the exact solution

As the temperature maps along each coordinate axis for the exact solution using a TSC

MAS have the same temeprature range and structure, we do not show them here for

brevity, but a further analysis was performed. Due to the similarity in temperatures and

structure for both MAS, we conclude that although the assigment schemes produce differ-

ent values of the Φ̇(x) field, these fluctuations are compensated between them allowing to

obtain the same temperatures. This fact is due to the integration performed, which makes

a linear combination of the values of Φ̇(x), allowing to compensate positive and negative

contributions, so the temperature field will be the same.

The difference ∆TTSC − ∆TCIC vs ∆TCIC in the exact solution can be seen in Fig-

ure 3.2 at the left panels. This comparison shows that the difference ∆TTSC −∆TCIC is

between 2 and 3 orders of magnitude smaller than the magnitude of values obtained with

CIC. As we speak of ∆T in µK, those difference are in the order of 10−9K or in the range

of nano-Kelvin (nK), i.e. we can assure that ∆TTSC ∼ ∆TCIC . Because both schemes

give the same structure and the same temperature range, those differences may have no

considerable effect in our estimation. So, in the estimation of the ISW effect, CIC or TSC

may be used without expecting great differences, but in our work with data infered from

observational surveys we will use only the TSC scheme, which is a better choice [18],

[14].

A deeper comparison of the temperatures in both MAS is done when computing the

corresponding histograms with their mean and standard deviation. For the exact solution,

we can see those histograms at the left panel of Figure 3.3. In the legend it is shown the

mean ∆T and standard deviation σ, skewness b1 and kurtosis g2 for the estimated tem-

peratures through each MAS. This information is also summarized in Table 3.1. Arguing

to the CMB isotropy, which allows to assume that the behaviour of the distributions of

temperature fluctuation along each coordinates axis must be similar, we study the pro-

jection only along the z-axis. We can see that the behaviour of the histograms is almost

the same, maintaining the temperature ranges and basically the same statistical properties

regardless of the MAS. These results support our statement concerning the fact that the

MAS has no great effect in the ISW estimation, and no spurious signal on the ISW effect

is observed due to the MAS.

The behaviour shown in those histograms allows us to conclude that the distribution of

temperatures for the simulation box of 400 h−1Mpc is not gaussian. The negative values

for the skewness −0.5 < b1 < 0 allows to conclude that this distribution is skewed to the

negative values but not completely assymetrical and with a platykurtic, i.e. thinner tails,

behaviour due to the negative excess of kurtosis, deviating from a gaussian distribution.
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Figure 3.2: Difference ∆TTSC − ∆TCIC vs ∆TCIC . Left panels correspond to the esti-
mation of temperatures with the exact solution, while right panels are those from the linear
apprxomations. Upper panels are the temperature fluctuations integrated along x-axis, middle
panels are those for y-axis and bottom one for z-axis. Blue lines represents a constant straigh
line y = 0.
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Figure 3.3: Histograms for the distribution of temperatures for both MAS. Left panel corre-
spond to the temperature estimated through the exact solution, while right panel correspond
to the linear approximation. Blue lines correspond to TSC MAS and red lines to CIC MAS.
In both MAS the temperature distribution is basically the same.

Statistical ∆TExact ∆TLinear

property

∆TCIC [µK] 3.047× 10−5 2.718× 10−5

σCIC [µK] 3.269 3.249

b1,CIC −0.252 −0.177

g2,CIC −0.602 −0.685

∆T TSC [µK] 3.047× 10−5 2.718× 10−5

σTSC [µK] 3.269 3.249

b1,TSC −0.252 −0.177

g2,TSC −0.602 −0.685

Table 3.1: Table with the statistical properties of the distribution of temperatures for both
MAS with the exact and linear solutions. It is very notable that both statistical quantities are
basically the same no matter the MAS used. Differences between exact solution and linear
approximation are more noticeable, but expected.

3.1.3.2 ∆TTSC in the linear regime

For the linear regime and in the same way as for the exact solution, the temperature maps

along each coordinate axis obtained through the TSC MAS have the same structure and

temperature ranges than those obtained through a CIC MAS, so in the linear approxima-

tion we have the same conclusions than in the exact solution regime. For this reason,

those maps are neither shown in this work.

The difference ∆TTSC−∆TCIC vs ∆TCIC in this linear approximation is shown in the
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right panels of Figure 3.2. The difference ∆TTSC −∆TCIC is between 3 and 4 orders of
magnitude below if compared with the values of ∆TCIC in the linear approximation. This
difference is then of the order of 0.1nK, one order of magnitude below the results from the
exact solution, so for the linear regime we have that the statement of ∆TTSC ∼ ∆TCIC

is even stronger than for the exact solution. As in this linear regime this difference is
even smaller, again, the choice of the MAS has no considerable effect in our estimation
of temperatures.

The histogram for the distribution of the temperatures in the linear regime is shown
in the right panel of Figure 3.3, and the information about statistical properties is also
summarized in Table 3.1. In the same way as for the exact solution, the distribution of
temperatures is basically the same no matter the MAS used and the means and standard
deviations show no difference. This fact allows us to maintain our conclusion that either
CIC or TSC may be used to estimate the ISW effect withouth notable differences. Fur-
thermore, it can also be noticed that the mean in the linear approximation is just slightly
smaller than the mean in the exact solution, and the standard deviation of both regimes
have a very similar value.
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3.2 ISW Effect from MDR1 Simulation

3.2.1 ISW Effect in the Linear Regime

Once we know the values of Φ̇ for the linear regime, we proceed to perform the inter-

polation and integration of values along three LOS, in the same way as we did with the

simulation box of 400h−1Mpc. This allows to obtain the maps shown in Figure 3.4 at the

left panels for the resolution of 5123 cells.

The feature that stands out in those maps is the cold spot observed in the map along

the z-axis. This spot has very low temperature compared with the spots in the other maps

and may be due to another large-mode that can not be resolved completely due to the

resolution of CIC MAS. As mentioned for the maps of the previous simulation, we can

infer that behind this cold spot there is a major contribution to the temperature fluctuation

due to underdensities. Despite of this feature, we can notice that our ΛCDM theoretical

estimation of the ISW agrees even more (compared with the previous simulation box)

with the proposed expectation from [13], i.e. expected temperature ranges due to ISW of

the order of∼ 10−20 µK in a ΛCDM universe, but in our case with a slight wider range.

As aformentioned, the comparison of the temperature ranges and the ranges of

∆T/∆L are shown in Table 3.4. Comparing the mean ∆T and ∆T/∆L from this simu-

lation with the values from the simulation box of 400 h−1Mpc, it can be noticed that the

order of magnitudes are the same, altough for MDR1 it tends more to positive values.

3.2.2 Effects of the Resolution for MDR1 Simulation in the Linear
Regime

Using the results obtained with the MDR1 simulation with the higher resolution of 1024

cells per axis, we obtain the following ISW maps, after integrating along all the LOS, as

shown in the right panels of Figure 3.4.

From those maps, and as mentioned in subsection 2.5.2, we can see that there is no

change in the general structure of the pattern generated by the ISW effect due to the struc-

tures in the MDR1 simulation. Furthermore, the ranges of temperatures remain the same

as in the lower resolution case. From those maps, we can state that for the linear approxi-

mation, there is no change in the estimation of the ISW effect if we analyze the simulation

through a grid of 5123 or 10243 cells. In general, we can say that resolution has no ef-

fect our estimation. To prove this statement, we compare the temperature distributions

for both resolutions. The corresponding normalized histograms can be seen in Figure 3.5
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with their statistical properties, which are summarized in Table 3.2. Comparing the sta-
tistical properties of both distributions, we can notice that the differences are so small,
even although the mean for the resolution of 1024 is one order of magnitude below the
resolution of 512, we can ensure that both resolutions share the same distribution. These
results support our conclusion that resolution does not have a considerable effect in our
ISW estimation for the linear approximation.

Besides, the values of skewness and kurtosis for the distribution of temperatures for
MDR1 also shows that the distribution is not gaussian; even we can see a more skewed
distribution to negative values than for the previous simulation.

Statistical MDR1×512 MDR1×1024

property

∆T [µK] 2.255× 10−5 5.295× 10−6

σ [µK] 12.299 12.298

b1 −0.653 −0.652

g2 −0.077 −0.077

Table 3.2: Table with the statistical properties of the distribution of temperatures for MDR1
simulation. It can be noticed that the statistical properties differ so slight between both reso-
lutions that we may assert that resolution has no considerable effect in the ISW estimation.
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Figure 3.4: ISW effect map for Multidark 1 simulation in the linear approximation. Left
panels correspond to the lowest resolution of 5123 cells, while right panels to the highest
resolution of 10243 cells. Upper panels corresponds to the integration along the x-axis as
LOS; middle panels to the integration along y-axis as LOS and bottom to the integration along
z-axis as LOS. It can be noticed that regardless the resolution, the structure and temperature
ranges remains the same.
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Figure 3.5: Histograms with the distribution of temperatures in the MDR1 simulation. Blue
line correspond to the highest resolution of 1024 cells per axis; red line to 512 cells per axis.
The blue line presents a larger amplitude, which is given by the fact that for this high resolu-
tion there is a larger ammount of points than the low resolution, but the statistical properties
ensure that both distributions are the same. An appropiate normalization is performed to
compare both histograms.
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3.3 ISW Effect from MDPL Simulation

3.3.1 ISW Effect in the Exact Regime
Using the exact solution for Φ̇ in the MDPL simulation, we obtain the ISW effect maps
shown in the left panels of Figure 3.6 along the three lines-of-sight from top to bottom. In
this case, due to the higher resolution of the CIC and Fourier algorithms, the cold and hot
spots are resolved better and the small-scale structures due to the momentum field can be
seen in great detail, as in the case of the simulation box of 400 h−1Mpc. This small scales
give an insight of how the Rees-Sciama amplitude must be.

In Figure 3.7 it is possible to observe the histogram with the temperature distribution
for the exact solution in red. Again, the range of temperatures for our theoretical esti-
mation in a ΛCDM universe agrees with the expectation proposed in [13]. Contrary to
the results found with the previous simulations, this distribution has a positive skewness,
indicating an assymetry towards positive values, but it continues to be a platykurtic distri-
bution. So again, the temperatures distribution differs from a gaussian distribution. The
statistical properties are summarized in Table 3.3. We can notice that in this simulation,
with a slight different value of ΩΛ and a large resolution of 10243 the distribution looks
different from the temperature distributions obtained for MDR1 and for the 400 h−1Mpc
box, being skewd toward hotter temperatures. Even, comparing the exact solution and the
linear approximation temperature distributions, there are more noticeable differences but
those may be due to the approach used; in spite of those differences, both distributions
look similar, with means near 0 µK and with the same range of temperatures This supports
again the fact that for larger scales, the linear approximation and exact solution give al-
most the same results. From those results, we can also conclude that, as the Rees-Sciama
effect needs more resolution at the smallest scales and the use of the exact solution, this
could have changes in the temperature distributions.

Statistical MDPL-Exact MDPL-Linear
property

∆T [µK] −2.897× 10−5 −6.570× 10−5

σ [µK] 8.107 8.096

b1 −0.168 −0.179

g2 −0.458 −0.457

Table 3.3: Table with the statistical properties of the distribution of temperatures for MDPL
simulation. It can be noticed that the statistical properties differ so slight between both solu-
tion regimes.
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Figure 3.6: ISW maps obtained of MDPL simulation. Left panels correspond to the temper-
ature fluctuation estimated through the exact solution, while right panels correspond to the
linear approximation. Upper panels correspond to the integration along the x-axis as LOS;
middle ones along y-axis as LOS and bottom ones along z-axis as LOS. As expected, the ex-
act solution allows to resolve better the smallest of the scales, while the linear regime gives a
good approximation to the general structure of the larger scales, while smoothing the smaller
ones.
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Figure 3.7: Histograms with the temperature distributions for MDPL simulation. Red line
shows the distribution for the exact solution, while blue line for the linear approximation.
Statistical properties and the behaviour of the distributions are very similar with only slight
fluctuations, as expected due to the nature of each regime.

3.3.2 ISW Effect in the Linear Regime

Right panels of Figure 3.6 show the ISW maps along the different LOS for the MDPL

simulation in the linear regime approximation for Φ̇. As seen in the previous simulations,

the linear approximation gives a slight narrower range of temperatures than the exact solu-

tion, and shows an smoother structure due to the lack of knowledge about the momentum

or velocity field, that acts at small scales. The ranges of temperatures and the range of val-

ues for ∆T/∆L for both regimes are shown alongside the ranges for the other simulations

in Table 3.4.

For both ISW maps obtained from MDPL simulation we can see that the temperature

ranges are in agreement with the the expected values from [13], and although some above

the range of temperatures of MDR1, they are consistent and allow us to obtan an imprint

on the temperature profile due to the presence of structures as a theoretical expectation in

ΛCDM universes. Comparing the values of the mean ∆T and ∆T/∆L in Table 3.4 for

both solution regimes we see that they are very similar in order of magnitude. If compared

with the same mean values for MDR1 or the small simulation box of 400 h−1Mpc, it

can be noticed that for MDPL the mean values are nearer zero than for the other two

simulations. Taking into account that MDR1 and the box of 400 h−1Mpc are a ΛCDM -

WMAP cosmology while MDPL has a ΛCDM - Planck cosmology, it can be noticed that

the value of ΩΛ could introduce slight changes, but the orders of magnitude in which such
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changes are introduced are so small that we may considere that in principle, there is no
higher dependence on the cosmological constant density parameter.

Simulation MDPL MDR1 400 h−1Mpc
(ΩΛ,0 = 0.6922885) (ΩΛ,0 = 0.73) (ΩΛ,0 = 0.742)

∆TExact [µK] (∼-32.0, ∼24.0) No Data (∼-9.0, ∼8.0)

∆T Exact [µK] −5.97792× 10−7 No Data −1.73864× 10−5

∆TLinear [µK] (∼-30.0, ∼24.0) (-40.0, ∼27.0) (∼-9.0, ∼7.0)

∆T Linear [µK] 2.48579× 10−7 1.30466× 10−5 −1.80528× 10−5

(∆T/∆L)Exact (∼-0.032, ∼0.024) No Data (∼-0.022, ∼0.02)
[µK hMpc−1]

(∆T/∆L)Exact −1.49448× 10−9 No Data −4.34661× 10−8

[µK hMpc−1]

(∆T/∆L)Linear (∼-0.03, ∼0.024) (-0.04, ∼0.027) (-0.022, 0.017)
[µK hMpc−1]

(∆T/∆L)Linear 6.21449× 10−10 3.26165× 10−8 −4.51321× 10−8

[µK hMpc−1]

Table 3.4: Ranges of temperature fluctuation ∆T in both regimes and ranges of change of
temperature per length of unit ∆T/∆L also in both regimes. Those ranges are shown for
the three simulations and are obtained as the overall maximum and minimum values of the
ranges per axis. We show the value of ΩΛ for each simulation in order to see how the density
parameter of Dark Energy may affect the temperature range values; according to the mean
value of ∆T and ∆T/∆L there is no high dependence on this parameter. In the case of MDR1
simulation, only the linear approximation values are known, and as in the two resolutions used
the range of temperatures is the same, it is not necessary to show the results for both of them.
It should be noticed that for the higher resolution of 1024 the cell size is 0.976 h−1Mpc and
for the resolution of 512 the cell size is 0.781 h−1Mpc; as our resolutions allow us to resolve
until scales of around ∼ 1 h−1Mpc, we have fair comparisons of the temperature fluctuations
in all cases.
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3.4 Temperature fluctuation along the LOS
Finally, for cosmological simulations we computed the temperature fluctuation along the
LOS dT/dr, in the same way as Figure 2 of [6]. For this, we implemented different anal-
ysis for the MDR1 and MDPL simulations. For the MDR1 simulation we did a resolution
analysis and for both, MDR1 and MDPL we performed a brief statistical analysis, as ex-
plained in subsection 3.4.2. This brief statistical analysis will help us to characterize the
distribution of values for dT/dr.

In order to compute dT/dr we take the values of Φ̇ in the simulation box, then we
numerically integrate Equation 1.16 from back to front in each of the cells along the
chosen LOS-axis. Along this LOS-axis, we began to integrate from the inner border of the
last cell as the lower integration limit, with position rin = (Box Size−Cell Size)h−1Mpc
until the outer border of the cell with position rout = Box Size h−1Mpc. After that, we
divided by the step length and obtain the temperature fluctuation per unit length in one
cell. Then, we performed the same procedure but varying the lower integration limit by
the size of a cell until it reach rin = 0 h−1Mpc while the upper limit remains the same,
i.e. rout = Box Size h−1Mpc. This was made for each pixel on the grid in the plane
z = 0 h−1Mpc.

3.4.1 Resolution analysis for MDR1 simulation
In the first analysis we obtain the temperature fluctuation along the LOS dT/dr along
each of the three coordinate axes for the two resolutions, 5123 and 10243 cells. Then we
compare dT/dr for both resolutions. As an example, we took an integration along the z-
axis as LOS. A row-major ordering of the cells (for a detailed explanation of the indeces,
see [35]) will give indeces in 3 dimensions to each cell in this block of as follows:

m = k +Ng(j +Ng i), (3.1)

where Ng is the number of cells per axis and (i, j, k) are indeces corresponding to the
position of the cell in (x, y, z) respectively and take values i, j, k = 0, · · · , Ng − 1. If
we take i = j = 0 and let k to vary we obtain the indeces of the block of cells along
the z-axis as LOS that may have a projection over the cell with m = 0 in the xy plane.
It is also possible to see that the cell m = 0 in the grid of Ng = 512 should correspond
to the mean contribution of the blocks of cells that have a projection in the cells m =

0, Ng − 1, N2
g − 1, N2

g − 1 + (Ng − 1) in the xy plane for Ng = 1024 grid.
Then, we compare the block of cells along the z-axis as LOS that has projection (in

xy plane) in m = 0 for Ng = 512 with the four block of cells that has projection (in
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xy plane) in the indeces m = 0, Ng − 1, N2
g − 1, N2

g − 1 + (Ng − 1) for Ng = 1024.

Finally, those comparisons must present the same behaviour because as the four cells in

the Ng = 1024 grid are contained inside the big cell m = 0 for Ng = 512, so this big

cell is an average of the behaviour of the 4 cells of Ng = 1024. This is true whatever

the choosen coordinate axis as LOS. This can be seen in Figure 3.8 for some cells with

dT/dr taken along the x-axis, in Figure 3.9 for the y-axis as LOS and in Figure 3.10 for

the z-axis as LOS.

Figure 3.8: Comparison of the temperature fluctuation per unit of length dT/dr for the
two resolutions used in the MDR1 simulation (5123 and 10243 cells). The integration was
performed along the x-axis as LOS and then, the projection will be in the yz plane, that has
index i = 0. In the upper-left panel we can see the dT/dr for the block of cells that will
be projected in the cell with (j = 0, k = 0) if we see a map in the yz plane for Ng =

512 (the index i is 0 due to this projection). Then, the cell of the projection, according to
Equation 3.1 will be m = 0 for Ng = 512. In the grid with Ng = 1024, the block of
four cells that are inside the same block of Ng = 512 correspond to indeces (j = 0, k =

0), (0, 1), (1, 0), (1, 1). The other three panels have an analogous explanation.
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Figure 3.9: Comparison of the temperature fluctuation per unit of length dT/dr for the
two resolutions used in the MDR1 simulation (5123 and 10243 cells). The integration was
performed along the y-axis as LOS and then, the projection will be in the xz plane, that has
index j = 0. In the upper-left panel we can see the dT/dr for the block of cells that will
be projected in the cell with (i = 0, k = 0) if we see a map in the xz plane for Ng =

512 (the index j is 0 due to this projection). Then, the cell of the projection, according to
Equation 3.1 will be m = 0 for Ng = 512. In the grid with Ng = 1024, the block of
four cells that are inside the same block of Ng = 512 correspond to indeces (i = 0, k =

0), (0, 1), (1, 0), (1, 1). The other three panels have an analogous explanation.
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Figure 3.10: Comparison of the temperature fluctuation per unit of length dT/dr for the
two resolutions used in the MDR1 simulation (5123 and 10243 cells). The integration was
performed along the z-axis as LOS and then, the projection will be in the xy plane, that has
index k = 0. In the upper-left panel we can see the dT/dr for the block of cells that will
be projected in the cell with (i = 0, j = 0) if we see a map in the xy plane for Ng =

512 (the index k is 0 due to this projection). Then, the cell of the projection, according to
Equation 3.1 will be m = 0 for Ng = 512. In the grid with Ng = 1024, the block of
four cells that are inside the same block of Ng = 512 correspond to indeces (i = 0, j =

0), (0, 1), (1, 0), (1, 1). The other three panels have an analogous explanation.

92



3.4 Temperature fluctuation along the LOS

From these figures it is possible to see that the resolution has no effect in the esti-
mation of dT/dr and indeed the result obtained with the resolution of 5123 cells looks
like the average behaviour of the 4 corresponding values obtained with the highest res-
olution of 10243 cells. Furthermore, we can see that the ranges of values that dT/dr

takes are in good agreement with those shown in Figure 2 of [6] in the spatial range of
0 − 1000h−1Mpc. The fact that the quantity dT/dr is not affected by resolution is in
agreement with our previous analysis of the distribution of temperatures for MDR1 in
subsection 3.2.2 where we see that both resolutions share the same temperature distribu-
tion with very similar statistical properties and the same range of temperatures.

3.4.2 Mean dT/dr for MDR1 and MDPL simulations
After performing the resolution test, we obtained the mean dT/dr along each LOS. For
this step, what we do can be seen again with an example: after knowing the complete data
of dT/dr for a certain LOS, as the z-axis, we know that the projection of the temperature
must be seen in the xy-plane. Then for each position z (we can access to it through
the indeces), we averaged the values of dT/dr for the corresponding xy-plane. Then, we
move to the next position in z, and continue averaging in the dT/dr for the corresponding
xy-plane, and so on. This allow us to obtain an average profile of dT/dr for a certain LOS
with the corresponding variance. This was performed for all the 3 coordinate axis for the
MDPL simulation and the MDR1 simulation (with the two resolutions). As we saw in
subsection 3.4.1, the resolution has no considerable effect on the estimation of dT/dr so
we will show only the results obtained for the highest resolution grid.

The mean dT/dr for MDR1 simulation with 10243 cells is shown in Figure 3.11
as a red line with a red-shadowed region as the variance. Remember that for MDR1
the integrand of Equation 1.16 was obtained through the linear approximation given by
Equation 2.31. It can be seen that the average behaviour of the temperature fluctua-
tion per unit of length is near to zero, with a mean standard deviation of the order of
∼ 0.0169 µK h Mpc−1 for the x-axis as LOS, ∼ 0.0181 µK h Mpc−1 for the y-axis and
∼ 0.0186 µK h Mpc−1 z-axis as LOS.

For MDPL simulation, the values of dT/dr were computed in both regimes, the exact
solution (Equation 2.30) and the linear solution (Equation 2.31). For the exact solution,
the profile can be seen as the blue line in Figure 3.11 with the blue-shadowed region as
the variance. Again, we can see a mean behaviour near zero for all the three LOS, with
a mean standard deviation of ∼ 0.0181 µK h Mpc−1 for the x and y-axes as LOS, and
∼ 0.0172 µK h Mpc−1 for the z-axis. For the linear approximation shown as the yellow
line in the same figure, the behaviour is almost the same as obtained in the exact regime,
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Figure 3.11: Average dT/dr for all the LOS in the MDR1 simulation with a resolution of
10243 cells and MDPL simulation. The red line represents the mean value that dT/dr takes
for the MDR1 simulation while the red-shadow region shows the variance of this distribution.
In this case, the values of dT/dr were computed in the linear aproximation (Equation 2.31).
For MDPL, the exact solution is shown as the blue line and the blue-shadowed region, while
the linear approximation is the yellow line with a yellow-shadowed region. The overlapping
for both regimes in MDPL is almost complety, but the variance of the linear approximation
(yellow) is slightly below the variance for the exact solution.
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but the mean standard deviations are some below: ∼ 0.0178 µK h Mpc−1 for the x and y-

axes and∼ 0.0169 µK hMpc−1 for the z-axis as LOS. It can be noticed that the variances

for the linear approximation are almost the same as for the exact solution, so a complete

overlapping of both variance regions is appreciated, making the yellow-shadowed region

of the linear approximation to lay just above the blue region.

The general behaviour of these plots shows that the temperature fluctuations along

each axis are very near to zero, so the structures along the path of the photons perturb

slightly the photons energy (or temperature), making such kind of contributions to the

ISW effect very small. The fact that those contributions have means very near to zero is

in agreement with the estimated means of the complete temperature fluctuation shown in

the temperature distributions (remember Figure 3.5 for MDR1 and Figure 3.7 for MDPL).

In addition, we can see that the linear approximation contributes almost in the same order

of magnitude than the exact solution, so this linear growth of structures may be considered

the main responsible for an ISW signal which is an expected result due to the large-scale

nature of this phenomenon. Then, the exact solution will contribute mainly at the smallest

scales, allowing to obtain a Rees-Sciama signal, but giving fewer information to the ISW

signal amplitude.

The plots presentend in this section will help us as a comparison with the ISW effect

computed for the observational data. When the ISW signal will be computed and, fur-

thermore, the dT/dr for the observational data, we may compare if the mean of those

fluctuations are larger (in absolute value) than the obtained in this section or if the fluctu-

ation is too small that is inside the variance of the dT/dr for the data of the simulations.

3.4.3 Skewness and kurtosis of dT/dr for MDR1 and MDPL simula-
tions

Additional to the mean temperature fluctuation per unit of length dT/dr and its corre-

sponding variance shown in subsection 3.4.2, we computed for each plane higher statis-

tical moments such as the skewness (b1) and the kurtosis (g2) to have some insight in the

distribution of dT/dr in each plane for all the LOS used.

3.4.3.1 Skewness and kurtosis for MDR1 simulation

As the MDR1 simulation was analized with the linear approximation (Equation 2.31), so

we would expect that the behaviour of each distribution of dT/dr is near gaussian. In

Figure 3.12 we show the skewness for each LOS in the MDR1 simulation with 1024 cells

per axis; there can be seen the fluctuation of the skewness for each plane near to zero. The
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peaks in this figure tell us that in the plane at those depths (in the corresponding LOS) we

can find that the distribution of dT/dr has a larger tail through positive values, while the

valleys in the figure will indicate that a certain plane will have a distribution with a larger

tail for the negative values. In general, it can be seen that for the three LOS, almost all the

values of the skewness are concentrated in the range −0.5 < b1 < 0.5 so the distribution

of dT/dr values are nearly symmetric, with only few regions with 0.5 < |b1| < 1.0

indicating a moderately skewed distribution for those planes.

Figure 3.12: Skewness of the distribution of dT/dr for each plane along the three different
LOS used. This was obtained for the MDR1 simulation with 1024 cells per axis in the linear
approximation. It can be seen a fluctuation of the skewness around 0, which is the expected
value for a gaussian distribution.

We used GSL to compute the statistical moments of those distributions, so the kurtosis

in the library is normalized to be 0 for a gaussian distribution (the expected value for

a gaussian distribution without this “normalization” is 3). For MDR1 simulation, the

kurtosis (g2) in each plane for the different LOS can be seen in Figure 3.13. Again, it

can be seen that the kurtosis values fluctuate around 0 with some peaks indicating that in

this certain plane the distribution of dT/dr have a pronounced peak near the mean value

obtained in Figure 3.11 (red line), while the negative values correspond to planes with

less pronounced peaks.

In order to understand the link between Figure 3.11, Figure 3.12 and Figure 3.13 let

us show and example. Taking the red line of the bottom panel from Figure 3.11, we know

that this is the mean behaviour of dT/dr along the z-axis (i.e. the mean behaviour of
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3.4 Temperature fluctuation along the LOS

the distribution of temperatures in certain xy-planes or z-planes). Taking for example a

value of z = 200 h−1Mpc, we will see that the mean value of the distribution of dT/dr

for this plane z = 200 h−1Mpc is 〈dT/dr〉 ∼ 0 µK h Mpc−1 with a standard deviation

σ ∼ 0.0186 µK h Mpc−1. Then, according to the blue line in Figure 3.12 which gives

the skewness for the z-planes, we can see that for z = 200 h−1Mpc we have b1 ∼ −0.1,

so the distribution of values for dT/dr in this particular plane is skewed to the negative

values, but still nearly symmetric. Finally, the blue line of Figure 3.13 that gives the

kurtosis for the z-planes indicates us that for the plane z = 200 h−1Mpc, g2 ∼ −0.4,

so this distribution is platykurtic, i.e. have thinner tails than a gaussian distribution. So,

using those 3 figures we can give a general characterization of the distribution of values

for dT/dr in a chosen z-plane; this holds for the three integration axis.

Figure 3.13: Kurtosis for the distribution of dT/dr for each plane along the three different
LOS used. This was obtained for the MDR1 simulation with 1024 cells per axis in the linear
approximation. It can be seen a fluctuation of the kurtosis around 0, which is the expected
value for a gaussian distribution (according to the normalized computation of GSL).

3.4.3.2 Skewness and kurtosis for MDPL simulation

For the MDPL simulation, we compare each solution (exact solution of Equation 2.30 and

the linear approximation of Equation 2.31) for each integration along the different LOS. In

Figure 3.14 we can see the skewness for all the LOS in the two regimes. It can be seen how

the linear regime has an analogous behaviour as in the case of MDR1 simulation, while

the exact solution presents some kind of “noise” but the general behaviour is modulated
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by the profile found with the linear approximation. Those peaks and valleys that form the

pattern of noise are due to the non-linear effects present in the exact solution: the use of

the velocity field; furthermore, the high resolution used to compute the Φ̇ field alongside

with the non-linear effects produce this noisy pattern. The interpretation of these profiles

is analogous as in the case shown in subsubsection 3.4.3.1, and we can also see that,

in general, the majority of values of the skewness are in the range −0.5 < b1 < 0.5,

indicating a near symmetric distribution of values for dT/dr. Only few regions has a

moderately skewed behaviour, characterized by 0.5 < |b1| < 1.

Figure 3.14: Skewness of the distribution of dT/dr for each plane along the three different
LOS used. This was obtained for the MDPL simulation with 1024 cells per axis in both
regimes: the linear approximation and the exact solution. It can be seen a fluctuation of the
skewness around 0, which is the expected value for a gaussian distribution.

In the case of the kurtosis, the curves obtained in the exact solution are more anoma-

lous that those obtained for the skewness. Figure 3.15 shows the feature of the kurtosis

in both regimes at the left panels, and can be seen how the curve for the exact solution

presents a noiser profile than the skewness, with higher peaks, while the linear approxi-
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mation looks to modulate this noisy curve, as can be seen in the right panels of the same

figure where a zoom has been made. In the right panels is evident that the behaviour of

the kurtosis in the linear approximation is similar to the kurtosis of MDR1 simulation,

and although the curve representing the exact solution is highly noisy, it is indeed modu-

lated by the curve of the linear approximation. The interpretation is similar as the given

to Figure 3.13 and from that we can infer that the majority of the regions present values

of g2 < 0, indicating that the distribution in those planes has thinner and shorter tails

maybe without prominent peaks, while there are special regions with peaks of g2 > 0,

i.e., regions where the values of dT/dr have a distribution with a fatter and longer tails

and maybe with a prominent peak. According to these results, the distribution of dT/dr

in certain planes is not completely gaussian, which would have been the expected result.

3.5 Summary of results
The results obtained in this chapter can be summarized in the following items:

• Effects of the Mass-assigment scheme (MAS) on the estimation of the temper-
ature field: Although in the previous chapter we found that the MAS has an effect

on the estimation of the density field, and also on the Φ̇ field in a small degree,

the effect on the temperature field can be neglected. When computing the differ-

ence ∆TTSC −∆TCIC , we found that it is of the order of 10−9∆TCIC for the exact

solution and 10−10∆TCIC for the linear approximation. With those results we as-

sure that the MAS does not have important contribution to the temperature field

because the integration implies a linear combination of positive and negative values

of Φ̇, which are compensated to produce the same temperature ranges in spite of

the MAS.

• Effects of the resolution on the estimation of the temperature field: According

to results from subsection 3.2.2 we achieved the characterization of the distribution

of temperatures for MDR1 simulation with two resolutions: 512 and 1024 cells per

axis. According to this characterization we found that the resolution has a negli-

gible effect on the estimation of the temperature field. The range of temperatures,

standard deviation and larger statistical moments are very similar, and although for

the resolution of 1024 cells the mean is one order of magnitude smaller than for the

resolution of 512 cells, both are basically zero if compared with the wider range

of temperatures, which is seven order of magnitudes larger than the means. Then,

we found a negligible effect on the ISW estimation due to the resolution used. We
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support this conclusion with the results obtained in subsection 3.4.1, in which we
compute the temperature fluctuation along the line of sight for MDR1 simulation in
both resolutions. As explained in subsection 3.4.1 the behaviour of dT/dr for the
lower resolution of 512 should be considered as a mean behaviour of dT/dr for the
higher resolution of 1024, which is the result found and shown in Figure 3.8. Due
to the structure of those curves, we see that the fluctuations of dT/dr for 1024 are
very small and around the curve for 512.

• Effects of the regime of the solution (exact or lineal) on the estimation of the
temperature field: According to results from section 3.1 we found that both, the
exact solution and the linear approximation have basically the same contribution
at the larger scales. As mentioned in the previous chapter, the exact solution is
associated with a local evolution of the smallest structures due to the contribution of
the velocity field. This local contribution will allow to understand the temperature
fluctuation at smallest scales, i.e. the Rees-Sciama effect. This contribution is
suppresed with the use of the linear approximation, but at larger scales we obtain
nearly the same behaviour. Taking algo into account the size of the spots, either cold
or hot spots, of around 100−200 h−1Mpc of diameter, we conclude that indeed our
signal is due to an ISW effect.

When characterizing the temperature distribution for the exact solution and for the
linear approximation, we can see that both distributions are similar, with means
very near to zero and statistical moments very alike. This fact support our con-
clusion about that linear approximation produces a good estimation of large scale
fluctuations (ISW effect) if compared with the exact solution, but if we are inter-
ested in small scale fluctuations (as Rees-Sciama effect) the use of the exact solution
becomes mandatory.

Those results are supported for a larger cosmological simulation as the MDPL,
which are shown in section 3.3. In this case, we found spots with sizes of
∼ 200 h−1Mpc and even larger (our ISW signal). For the exact solution, the gran-
ularity of the maps is evident and associated with smaller-scales, but for the linear
approximation this information is suppresed. The characterization of the temper-
ature distribution for both regimes is similar, but is different if compared with the
temperature distribution for the simulation of 400 h−1Mpc. In spite of this fact, the
results for the MDPL support our previous conclusions.

• Effects of the cosmological constant on the estimation of the temperature field:
With the results summarized in Table 3.4, we can see that the mean behaviour of ∆T
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for MDPL is of the order of 10−7 µK, while for MDR1 and the box of 400 h−1Mpc
is of the order of 10−5 µK, but due to the large range of values of ∆T , this means
can be considered as zero, so the value of the density parameter for the cosmological
constant will not influence too much the estimation of the temperature fluctuations.
This is supported when computed the mean of the temperature fluctuation per unit
of length ∆T/∆L, for which we also see that in the case of MDPL, the value is
two orders of magnitude smaller than for the other two simulations, but again the
ranges of values for ∆T/∆L are larger enough so we can consider those differences
as negligible.
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Figure 3.15: Kurtosis for the distribution of dT/dr for each plane along the three different
LOS used. This was obtained for the MDPL simulation with 1024 cells per axis in the linear
approximation. A global view can be seen in the left panels, and a zoom of the same plots is
shown in the right panels. Upper panels correspond to integration along x-axis, middle ones
to y-axis and bottom ones to z-axis. The noise pattern in the exact solution shows very high
peaks, while the linear approximation looks to modulate the noisy curve. The zoom plots at
the right reassert the statement about the modulation.
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CHAPTER

4
ISW Effect from Observational

Data

This chapter comprises the work done with the data from a galaxy redshift survey

with the aim to estimate the ISW effect due to the density field of the survey. First,

the method with which the observational data was manipulated is described. Then, we

integrate along coordinate axes of the box that contains the data in the same way as in the

previous chapter. Finally, a radial integration is performed and visualized as Mollweide

projections to resemble actual CMB maps to estimate the corresponding cross-correlation

function between our ISW-estimation and observations from CMB surveys, alongisde

with the angular power spectrum of this correlation. These results are compared with the

results obtained from control experiments that come from cosmological simulations in

order to characterize the amplitude of the ISW signal associated to observations.

4.1 Halo-Based Method and Estimation of Fields Inferred
from Observations
To estimate the ISW signal from the density field of a cosmological simulation, we just

need to use a mass assignment scheme, such as the Cloud-in-Cell (CIC) or the Triangular-

Shaped-Cloud (TSC) on the synthetic discrete dark-matter particles. When the density

field is calculated, it is possible to use the Poisson equation in the Fourier space and then

compute the full gravitational potential and its time derivative.
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For the observational data the approach may be different, and it should be reminded

that one of the possible facts that causes the inconsistencies between the works of different

authors, even working with the same data sets, could be the assumptions made in the

galaxy bias used to estimate the density field. The galaxy bias pretends to relate the

amount of baryonic matter observed with the possible amount of dark matter that host

such amount of baryonic matter. In other words, what we can see in the observations

is just the baryonic matter that composes the galaxies, but not the amount of underlying

dark matter; for this reason, several models for galaxy bias were constructed in order to

estimate such relation.

In this work we will implement a different approach, that consist in use of the so-

called Halo-Based Methods (HBM) [24], [25]. Such a method has the advantage to be

bias-free and does not assume ad hoc parameters in the manipulation of the observational

data. Before implementing the HBM, it is neccesary to begin with the galaxy distribution

from a survey like the Two Micron All-Sky Survey (2MASS). From this survey, haloes

of each galaxy are identified through a method described in [25]. In this method, the halo

hosting each galaxy group is identified and its characteristics such as virial radius and its

mass are estimated. Then, through an iterative method based on the Friends-of-Friends

(FoF), the population of haloes is modified. The mass of the haloes is also modified itera-

tively. When this step is finished, the result is a catalogue of haloes that host the observed

galaxies, with their positions, radius an masses.Once the haloes are identified from the

galaxy distribution and the corresponding halo catalogue is created, the reconstruction

of the density field ρ(x) may be performed, i.e. here begins the implementation of the

Halo-Based-Method, as described in [24].

Theoretically, the cosmic mass distribution can be modelled as a smooth continuous

function of the coordinates [24]. But this cosmic mass distribution must be inferred from

the galaxy distribution, which is a distribution of discrete objects that are considered as

tracers of the cosmic mass distribution. The majority of methods used to reconstruct the

cosmic mass distribution infer it by smoothing the discrete data of the galaxy distribution

on a grid and convolve it with a given smoothing kernel [24]. As those reconstructions are

based on the distribution of galaxies, and they may be biased tracers of the cosmic mass

distribution, assumptions on the shape and functional dependence of the bias factor are

needed [24]. The Halo-Based Reconstruction Method uses the haloes insted of the galax-

ies to perform the reconstruction procedure, while simultaenously enables the inclusion

of environments on the mass distribution around these haloes.

In this method, it is assumed that the cosmic mass is distributed in haloes following

a given mass density profile. Here, it is supposed that the density distribution η(r,M) in
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and around a halo of given mass M is a function of the distance r to the centre of the halo
and of the halo massM . Also, spatial coordinates and masses of a set of dark mater haloes
are given by a known function Ψ(ri,Mi), where ri and Mi are the individual coordinates
and masses of the ith halo, respectively, i.e. the halo catalogue computed before. Then,
the mass density field around the ith halo is defined by the convolution of η(r,M) with
Ψ(ri,Mi) in the following way:

ρi(ri,Mi) = η(r,M)⊗Ψ(ri,Mi), (4.1)

where the function Ψ(ri,Mi) as mentioned before comes from the catalogue of identified
haloes. The typical mass distribution in a halo of mass M and its surroundings, η(r,M),
is computed from cosmological simulations. The total mass distribution ρ(r) arising from
a complete set of haloes is defined as:

ρ(r) = Σ̂ρi(ri,Mi). (4.2)

For well-isolted haloes, the operator Σ̂ will represent a summation of the density profiles
at the different positions of the haloes. Well-isolated haloes means that their domains
do not overlap. The domain of a halo represents the unique region of the universe that
is closest to the halo than to any other. But, as the domains of the haloes are going to
overlap , the operator Σ̂ has to be defined as the operation that composes the mass density
distribution in and around haloes depending on the extension of the domain of the haloes
and the environment where they are located [24].

The final result of the reconstruction of the density field is a set of particles with known
position and mass per unit of volume, distributed in a set of haloes in an analogous way
as in a cosmological simulation. As the method to create the haloes catalogue, before the
application of the Halo-Based Method, makes use of volume-limited samples, the mean
comoving density of groups as function of redshift show an almost constant behaviour
as shown in Figure 8 in [25]. This allows us to use the estimated comoving density field
from 2MASS survey without the need of take into account any redshift incompleteness.

With those methods for the identification of the haloes in a survey like the 2MASS
and the reconstruction of the density field, it would be possible to obtain the gravitational
potential and its time derivative in order to calculate the ISW signal in such data samples.

4.2 2MASS Reconstruction and 400h−1Mpc box Recon-
struction
In order to obtain the haloes catalogue to use into the Halo-Based Method, we use the
Final Release of the Two Micron All-Sky Survey (2MASS) [17]. The reconstruction of

105



4. ISW EFFECT FROM OBSERVATIONAL DATA

the density field of 2MASS was made with a halo catalogue of 11523 galaxy groups with

virial masses and virial radius estimated according to the method described in [25]. The

groups have a distribution of galaxies that varies between 1 and ∼ 50 members with

masses that varies in the range from 1.0× 1012.3 until 1.0× 1014.5 h−1M�. The catalogue

was built with a volume-limited galaxy sample with an initial set of 14224 galaxies with

a limit magnitude in Mr = −23.0 and a maximum redshift of zmax = 0.0334.

Using the Halo-Based Method (HBM) briefly described above, we obtained two re-

constructed fields:

• Reconstruction 1: The first reconstruction consists in taking the simulation box of

400h−1Mpc and with the origin of coordinates at the centre of the box, we elimi-

nated the simulation particles that are inside a sphere of radius of ∼ 90 h−1Mpc.

Then, the halo catalogue corresponding to the positions, radius an masses of the

2MASS galaxy discrete field is introduced into this sphere. Finally, the HBM

iss performed to obtain the positions of simulation-like particles to use our Mass-

Assignment Schemes (MAS) as with the previous cosmological simulations. The

density field obtained after all these processes, which also contains the underlying

density field associated to the galaxy groups from 2MASS, is what we called Re-

construction 1. Before the application of the MAS, this reconstruction is comprised

by 142097062 dark-matter particles with the same masses of the particles of the

simulation box of 400 h−1Mpc.

• Reconstruction 2: The second reconstruction is comprised by 142910861 dark-

matter particles obtained after applying the HBM into the 400 h−1Mpc simulation

box itself. From now on, this will be called Reconstruction 2. This reconstruction

was made as a control reconstruction in order to obtain an ISW control-signal which

must resembles the ISW signal obtained in subsection 3.1.1. The aim of this control

experiment is first, to see how the HBM may influence the temperature ranges and

structure of the ISW estimation and second, to have some control results to compare

with those obtained from the first reconstruction, which will allow us to analyse the

ISW signal associated with the 2MASS density field.

Figure 4.1 shows the halo catalogue corresponding to the 2MASS survey before the

application of the HBM as a Mollweide projection obtained with HealPy1 (the Python

implementation of HealPix2 tool for pixelation schemes) [11]. As the original 2MASS

1http://healpy.readthedocs.io/en/latest/
2http://healpix.jpl.nasa.gov/
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data set is given in Celestial Equatorial coordinates, which was the coordinate system
used to describe the positions of the particles inside the simulation box, we performed
a coordinate change to Galactic coordinates, as shown in this figure. As we mentioned
before, the 2MASS data set does not contain data in the galactic plane region, so we
need to fill this gap and this is done with the synthetic particles of the simulation. This
is an important remark because in the analysis we present in this chapter this synthetic
particles in the galactic plane will have a contribution to cross-correlation functions and
angular power spectra associated to those correlations.

Figure 4.1: Halo catalogue of 2MASS survey particles before the implemetantion of the
HBM method. A conversion from Celestial Equatorial to Galactic coordinates is done before
performing the Mollweide projection of the sky. This map was obtained with HealPy library.

It is also worth to say that the step of introducing the 2MASS data into a regular geom-
etry was made in order to make Fourier transforms easier and efficiently, without dealing
with the geometry of the survey. This will allow us to use for the two reconstructions the
same methodology as in cosmological simulations without the need to create new codes.
According to this commentaries, it would be relatively easy for us to obtain the density
contrast field δ(x) through a TSC MAS and from it, to obtain the gravitational potential
Φ(x) and its time derivative Φ̇(x). A final remark about the estimation of Φ̇(x) field is
important, because 2MASS survey does not allow to know the peculiar velocities of the
surveyed galaxies, so we must use the linear approximation of Equation 2.31 to estimate
the temporal change rate of the gravitational potential.

4.3 ISW along Coordinate Axes
In the same way as with the three cosmological simulations, we performed our methods to
compute the Φ̇(x) field in the linear approximation inside the box for both reconstructions
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using a grid resolution of 5123 cells. After those steps, the ISW signal along the three

coordinate axes can be computed for the two reconstructions. This is done with the aim

to determine the influence of the 2MASS density field from Reconstruction 1 in the ISW

estimation and compare it with a previous known result. Also, this comparison allows us

to characterize the mean behaviour of the temperature fluctuation along the line-of-sight

dT/dr to analyse the influence of the different density fields in the path of the photons.

The left panels of Figure 4.2 show the ISW effect in the box for the Reconstruction

1 while the right panels show the estimation of the same effect for the Reconstruction 2.

It is possible to see that structure and range of temperatures for the Reconstruction 2 are

the same as those previously obtained in the linear approximation for the simulation box

of 400h−1 Mpc (as shown in Figure 3.1 for a CIC MAS). This is an obviously expected

result, because the second reconstruction is basically the same simulation box but the mass

density field is the result of the reconstruction technique; this shows that in principle the

reconstruction method provides an appropriate density field to compute the ISW effect.

According to this statement, the underlying density field of the Reconstruction 2 is the

same one of the simulation, so the gravitational potential and its time evolution fields are

the same. For the result of Reconstruction 1, while the range of temperatures is very

similar, reaching slightly colder values, the general structure has a notable change at the

centre of the box, showing a colder region. This is due to the presence of the 2MASS

underlying density field instead of the actual simulation density field. The fact that a cold

spot appears at this position implies that the 2MASS density field is not as overdense as

the density field of the complete data set of the simulation box.

From those results we can see that working with the Reconstruction 2 will give a good

insight of the expected behaviour of the simulation box. In the next step, we performed

an statistical analysis of the temperature fluctuation along the LOS (dT/dr) to know the

mean behaviour of this quantity along the 3 coordinate axes, as done for MDPL and

MDR1 simulations (subsection 3.4.2).

The result for Reconstruction 1 is shown as the red lines of Figure 4.3 while for Recon-

struction 2, it is shown as the blue lines. Both results have a very similar behaviour, which

is expected because the maps of the ISW effect for both reconstructions are very alike and

both are due to realizations of the structures in a ΛCDM universe. The differences are

more appreciated at the central positions with coordinate values between 100 h−1 Mpc

and 300 h−1 Mpc. This region is the place where the 2MASS density field lies in Recon-

struction 1, so it is in this region where the density fields are different, so differences in the

temperature fluctuations at those places are also expected. The general structure is very

similiar and even the standard-deviation region (the red and blue-shadowed zones) show
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more differences at the center. As the behaviour between both reconstructions is very
similar, we conclude that the estimated signal due to the Reconstruction 1 is in agreement
with the theoretical expectation obtained with Reconstruction 2. As mentioned above,
both density fields are realizations of ΛCDM universes, so even the mean behaviour of
the dT/dr produced by those density fields is expected to be very similar.
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Figure 4.2: ISW effect along the 3 coordinate axes as Lines of Sight (LOS) for the reconstruc-
tions. The left panels corresponds to the estimation with the density field of Reconstruction 1
(2MASS), while the right panels correspond to the signal associated to Reconstruction 2. Up-
per panels corresponds to the integration along the x-axis as LOS; middle ones along y-axis
and bottom ones along z-axis as LOS. For Reconstruction 1 the structure changes at the centre
of the box, in which a colder region can be seen. This colder region is due to the presence of
the 2MASS density field instead of the true density field of the simulation box.
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Figure 4.3: Mean temperature fluctuation dT/dr along the three coordinate axes as LOS for
both reconstructions. Red line is the mean dT/dr for Reconstruction 1 with its corresponding
variance (red-shaded region). Blue line and blue-shaded region correspond to the same quan-
tities for Reconstruction 2. The slight differences at the central part are due to the different
underlying density fields.
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4.4 Radial ISW Effect
After the integration along the coordinate axes as a control experiment to evidence if the

reconstructions give us consistent results with the cosmological simulations, we estimate

the ISW contribution for both reconstructions in a different way.

The procedure used for both reconstructions is described as follows: first, we took the

Φ̇(x) field obtained after applying our Fast-Fourier Transform algorithm in the cubical

box and move our coordinate origin to the center of the box. Then, we create 100 mil-

lion of radial rays with a given radius rray and angular coordinates (θray, φray) uniformly

distributed on the sphere. So, the complete length of the ray can be know if computing

the distance from the origin at the center of the box until the ending cartesian positions

(xray, yray, zray) asociated with the radius rray and the angular coordinates (θray, φray) as a

transformation from spherical to cartesian coordinates. Those angles (θray, φray) will be

our declination and right ascension coordinates, respectively.

Then, we use the algorithm from [1] in order to make a ray tracing to know which

cells are traversed by each ray and estimate the integral Equation 1.16. For each ray, we

apply the mentioned algorithm in the following way: We move the coordinate origin to

the center of the box, so the position (L/2, L/2, L/2) will be our new origin (0, 0, 0),

being L the length of the box per side. Then, we use the parametric equation of a straight

line:

(x, y, z) = (x0,ray, y0,ray, z0,ray) + t(xray, yray, zray), (4.3)

where (x0,ray, y0,ray, z0,ray) = (0, 0, 0) are coordinates of the vector that points at the initial

point of the line and (xray, yray, zray) as the coordinates of the vector that points to the final

point of the line, as mentioned before. With this equation, we assume for a first iteration

that (x, y, z) = (H,H,H), being H = L/N as the size of each cell and N the number

of cells per axis. So, we compute three different values for the parameter t, one for each

equation corresponding to a cartesian coordinate. From those 3 values (tx, ty, tz), we

choose the one with its minimum value tmin = min(tx, ty, tz), and compute values for the

intersection position between the first cell and the ray as

(xf , yf , zf ) = (0, 0, 0) + tmin(xray, yray, zray). (4.4)

From those coordinates (xf , yf , zf ), only the coordinate associated with the tmin is the

one that has a value of H , the other two coordinates must have smaller values. This new

positions will give the intersection of the ray with the first cell of the grid and will allow

us to compute the traveled distance inside this cell. We then compute ∆rm, which is the
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distance that the ray travels inside the cell m and store it in an auxiliar array as well as the

value of Φ̇m.

For the next iteration, we use again Equation 4.3 with the values of (x, y, z) =

(iH, jH, kH), where (i, j, k) are counters that begin from 1 and increase after each inter-

section. For example, we begin the first iteration with (x, y, z) = (H,H,H); if the first in-

tersection is with the x-axis, the counter i increases from 1 to 2, while j and k will remain

1, so in this case, for the second iteration we will use the values (x, y, z) = (2H,H,H)

in Equation 4.3. This is repeated until we reach the total length of the ray.

Once we have completed the arrays of ∆rm and Φ̇m, the estimation of the ISW integral

is performed as:

∆T (n̂) =
2

c3
T 0

Ntraversed∑
m=0

Φ̇m∆rma, (4.5)

with Ntraversed as the total number of cells that the ray traversed from the new origin at

(0, 0, 0) until the final position (xray, yray, zray).

4.4.1 Radial ∆T differences between reconstructions

In this section, we show the maps of the ISW effect obtained through our ray tracing

integration along radial rays. The shown maps were created using HealPy, with the 100

million rays smoothed with a gaussian beam of 1 degree. It also must be taken into

account that for all Mollweide projected maps of the ISW, we performed a coordinate

change from the Celestial Equatorial coordinates (or right ascension and declination used

in the ray tracing) to Galactic coordinates for visualization purposes; the center of the

Milky Way must lie at the center of each plot, in the same way as in Figure 4.1. We use two

different values for theNSIDE parameter of resolution, NSIDE = 512 andNSIDE = 2048

in order to also have information about the contribution of the smaller scales, i.e. the Rees-

Sciama effect. For clarity and brevity, only the maps with NSIDE = 2048 are shown in

this section.

For both reconstructions, we performed several integrations in order to make different

comparisons between them. First, a complete integration of the rays from the origin until

rray = 200 h−1Mpc was performed for the two reconstructions; in this case we obtained

two ISW contributions, that we will call ∆TCRec1 (for the Reconstruction 1 which contains

the 2MASS density field) and ∆TCRec2 (for the Reconstruction 2 with the reconstructed

density field of the simulation) and we study the difference between both temperatures

∆TCRec1 −∆TCRec2. Here, the superscript C stands for a complete integration.
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In Figure 4.4 we show the Mollweide projection of 3 maps, the upper one corresponds

to ∆TCRec1 for the Reconstrution 1, in the middle, the value of ∆TCRec2 for the Reconstruc-

tion 2, and the bottom plot is the difference ∆TCRec1−∆TCRec2. This plot shows us a similar

structure for both reconstructions, with a big hot spot that serves as a division region for

two cold spots. Comparing the temperature ranges from those two panels, we can notice

that the temperatures from Reconstrution 1 tend to be more negative than the temperature

from Reconstrution 2. The negative temperatures are related with larger underdense re-

gions on Reconstrution 1, which was a previous result according to Figure 4.2, where we

see that at the center of the box for Reconstrution 1 the underlying density field was not

so overdense as the density field from Reconstrution 2.

The bottom plot shows the residual signal after a complete integration for the two

reconstructions. In this comparison it can be seen a tendence to negative temperatures,

which is due to the high contribution of negative temperatures from Reconstrution 1.

Other comparisons we show later will give more information. It must be also taken into

account that the range of temperatures is slightly lower than the obtained through an

integration along the coordinates axis, which is expected because in this radial integral,

the light ray is traveling on average half the way it would travel if compared with the

integration along the coordinates axes. Indeed, the maximum and minimum temperatures

for the radial integrals are nearly half the maximum and minimum values of the integrals

along the coordinate axes.

The second case we studied is a complete integration of the Reconstruction 1 to obtain

∆TCRec1 but the Reconstrution 2 will be integrated from a radius of 90 h−1Mpc until rray =

200 h−1Mpc, allowing to obtain ∆T FRec2, where the superscript F stands for integration

from those 90 h−1Mpc. The difference of these two ISW contributions ∆TCRec1 −∆T FRec2

should give the estimation of the contribution to the ISW effect only due to the 2MASS

density field. In Figure 4.5 it is shown the 3 Mollweide projected maps for this second

case. The upper panel is the same as in the previous figure, an even the middle panel shows

no great difference with the middle panel of the previous figure. Only a slight change in

the temperature values indicating colder temperatures and lower hot temperatures, but the

general structure is very similar if compared with Figure 4.4. The bottom panel shows

more differences with the previous figure, but the two big hot spots and the two big cold

spots seen before can be noticed. According to our procedure, this structure of the last

panel should be the contribution only from the 2MASS density field, in which we can

see a major contribution from voids, represented by the two cold regions. It can also be

realized that the range of temperatures is very small even compared with the other radial

integrals that we know, have half the temperatures obtained when integrated along the
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Figure 4.4: Mollweide projected maps obtained with HealPy, after a coordinate changing
from Celestial Equatorial coordinates to Galactic coordinates. Upper panel shows ∆TCRec1 for
the Reconstrution 1. Middle panel shows ∆TCRec2 for the Reconstrution 2, while the bottom
panel corresponds to ∆TCRec1 −∆TCRec2.

115



4. ISW EFFECT FROM OBSERVATIONAL DATA

axes of the box. This tells us that the contribution to the ISW signal due to our 2MASS

sample is small, even tending to colder temperatures, i.e. it has a major contribution from

voids than from overdense structures.

In the next case, both reconstructions were integrated from the origin until a radius

of 90 h−1Mpc, allowing us to obtain the contributions ∆TURec1 and ∆TURec2; where the

subscript U stands for integration until 90 h−1Mpc. For Reconstruction 1, this integral

gives the ISW contribution due only to the 2MASS density field. The resulting maps

in Mollweide projection with Galactic coordinates is shown in Figure 4.6. The upper

panel shows the actual contribution of the 2MASS density field, which can be compared

with the bottom panel of Figure 4.5; from this comparison it can be noticed how both

panels are very alike, with almost the same structure and temperature range. The slight

differences may come from this fact: the HBM reconstruction method tries to mix the

density field from 2MASS with the density field from the simulation, and the TSC mass

assignment scheme will also spread the density field from 2MASS into the spatial regions

corresponding to the simulation and vice versa. In spite of those little differences, we can

assure that the actual structure and temperature range of the 2MASS-produced ISW effect

is between those two discussed panels.

In Figure 4.6 it is also shown the contribution of the Reconstruction 2 integrated until

90 h−1Mpc in the middle panel. Obviously, the structure differs from the upper panel,

because both signals are produced by different density fields. The difference between

both signals is shown in the bottom panel, and although it has the same two hot regions,

the rest of the maps shows signals of negative temperatures from the middle panel, so this

remnant shows a mix of the two signals that have no relation between them and no further

information can be extracted from it, as expected.

Finally, we estimated the temperature distribution and the statistical properties of

those distributions for the two reconstructions integrated from the origin until 90 h−1Mpc.

Those distributions can be seen in Figure 4.7 and their statistical properties are summa-

rized in Table 4.1. The aim is to obtain a fair comparison between our ISW estimation and

a generic realization of the ISW effect in a ΛCDM universe. As it can be noticed, both

distributions are very different, even with a contraty behaviour. While the ISW tempera-

tures due the Reconstruction 1 has a negative mean and an evident tendence to negative

values, the ISW from Reconstruction 2 has a positive mean with a tendence to positive

values. This result is in agreement with the qualitative analysis from Figure 4.2, in which

we found that the contribution at the central regions from the left panel of this figure (as-

sociated to Reconstruction 1) was dominated by underdensities. Those differences are
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Figure 4.5: Mollweide projected maps obtained with HealPy, after a coordinate changing
from Celestial Equatorial coordinates to Galactic coordinates. Upper panel shows ∆TCRec1 for
the Reconstrution 1. Middle panel shows ∆TFRec2 for the Reconstrution 2, while the bottom
panel corresponds to ∆TCRec1 − ∆TFRec2. The structure of the bottom panel shoul be the
contribution to the ISW effect due to the 2MASS density field.
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Figure 4.6: Mollweide projected maps obtained with HealPy, after a coordinate changing
from Celestial Equatorial coordinates to Galactic coordinates. The upper and middle panels
show the ISW contribution from reconstruction 1 and 2, respectively, both integrated from
the origin until 90 h−1Mpc; so the upper panel shows the 2MASS-produced ISW effect. A
comparison of the upper panel with the bottom panel of Figure 4.5 tells us that the actual
contribution of 2MASS to the ISW effect must be between those two maps.
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due to the different underlying density fields that give rise to this ISW signal; as both re-

constructions are integrated only until 90 h−1Mpc, we can assure that both density fields

are completely different. It should be reminded that both density fields are realizations of

the structures in ΛCDM universes, and if we take into account the ranges of temperatures

obtained in our previous study with cosmological simulations due to the ISW signal, we

have that the ranges we found for those reconstructions agree with this ISW signal, but are

narrower. Due to the large differences between both distributions and that is not possible

to stablish a fair comparison, further analysis like a Kolmogorov-Smirnov test should be

done; by time issues this kind of analysis must be done in a future.

Figure 4.7: Histograms with the temperature distributions from both reconstructions inte-
grated until 90 h−1Mpc. Both distributions have noticeable differences and look to have a
contraty behaviour.

Statistical Reconstruction 1 Reconstruction 2
property

∆T [µK] −0.6971 0.5485

σ [µK] 0.348 0.465

b1 −0.245 0.447

g2 −0.719 −0.642

Table 4.1: Table with the statistical properties of the distribution of temperatures for both
reconstructions integrated until 90 h−1Mpc.
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4.5 Cross-correlation and Angular power spectrum for
2MASS, WMAP and Planck
After the maps of the radial ISW effect are known, we extract these data from HealPy

in order to estimate the 2-dimensional cross-correlation function w(θ) and the associated

angular power spectrum coefficients C`. It is worth to remember that both quantities are

related through a Legendre Transform, according to Equation 1.35 and Equation 1.36,

where we will refer to w(θ) instead of C(ϑ). In order to compute both quantities, we use

the PolSPICE1 software [34] to obtain both the correlation function, w(θ), the angular

power spectrum of this correlation, C`, and the covariance matrix C of the angular power

spectrum, from which the diagonal Cdiag gives the variance in the estimation of the C`,

so the error ∆C` is given by the square root of this variance. The error in w(θ) is just an

error propagation through Equation 1.35.

First, we perform an estimation of the auto-correlation function and the angular power

spectrum for two CMB observational maps: for WMAP it was used the 9th year Internal

Linear Combination (ILC) map, with a HealPy resolution of NSIDE = 512; for Planck

the full-mission Spectral Matching Independent Component Analysis (SMICA) [28] map

at the HealPy resolution NSIDE = 2048.

After this step, we performed the cross-correlation and the associated angular power

spectrum between the ISW map from the Reconstruction 1 integrated from the origin until

the radius 90 h−1Mpc with the WMAP 9th year ILC map at the resolution of NSIDE =

512. Finally, the same procedure is done between the same ISW-Reconstruction 1 map

until 90 h−1Mpc and the Planck SMICA map with the resolution of NSIDE = 2048.

This comparisons have the aim to find a correlation between our ISW estimation from

Reconstruction 1 and the observations, in order to determine if our ISW signal is detected

in the observed data sets. In the case of Planck, further information can be extracted

related with the Rees-Sciama effect at the smaller scales, as we will show in the next

sections.

4.5.1 Auto-correlation and Angular power spectrum for WMAP and
Planck

In this subsection we will show the results from the auto-correlation function and the

associated angular power spectrum of the data from observations using PolSPICE soft-

ware. This allows us to know the structure of the angular power spectra from the ob-

1http://www2.iap.fr/users/hivon/software/PolSpice/
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servational CMB surveys. Knowing this structure allows to make a comparison with the

cross-correlation power spectrum from our ISW-estimated maps to characterize the cor-

responding contribution due to our estimations and find if they share features with the

angular power spectra from observations.

The 9th year WMAP ILC auto-correlation function is shown in Figure 4.8. This figure

shows in the left panel the complete auto-correlation function w(θ) for 0◦ ≤ θ ≤ 180◦

with the x-axis in logarithmic scale. The structure obtained in this plot is the same if

compared with Figure 5. from [3] when no logarithmic scale is used. On the other hand,

the angular power spectrum associated to this auto-correlation is shown in the right panel

of Figure 4.8. In this spectrum only the first acoustic peak can be seen, although not

complete. This may be an effect of the resolution used, in which small structures are not

resolved. This fact does not affect too much our work, because we are dealing mainly

with larger structures, which contribute to the power sepctrum at the small multipoles `.

Figure 4.8: Auto-correlation function for the 9th WMAP ILC map. Left panel shows the
auto-correlation function w(θ) for the complete domain 0◦ ≤ θ ≤ 180◦. Right panel shows
the Angular Power Spectrum for the 9th year WMAP ILC map. Only a contribution to the
first acoustic peak is shown, although not complete, due to the resolution used.

In the case of the full-mission of Planck, the auto-correlation function is shown in the

left panel of Figure 4.9. Here, there is a larger autocorrelation for small degrees than in

WMAP, but the general structure, is almost the same, and taking into account that the

variance (blue shaded region) is narrower.

The angular power spectrum for the Planck mission obtained with PolSPICE soft-

ware (right panel of Figure 4.9) shows the complete and expected theoretical structure.

It is possible to see how at large multipoles ` (i.e. the smallest structures) the baryonic

acoustic oscillations are present with a small variance. At the small multipoles (largest
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Figure 4.9: Autocorrelation function for Planck in the left panel. The structure is very sim-
ilar to the obtained for WMAP, except that the autocorrelation takes higher values at small
degrees for Planck. Also, the variance (blue-shaded) is narrower than for WMAP. Right panel
shows the Angular Power Spectrum for Planck mission. Due to a higher HealPy resolution
(NSIDE = 2048), the smallest scales are very well described, showing the expected acoustic
peaks.

scales) the variance increases significatively, in the same way as in Figure 4.8 for WMAP.

When comparing the region of smaller multipoles ` of this figure with the right panel of

Figure 4.8, it can be noticed that at small multipoles (largest scales), both figures present

almost the same amount of power, with very similar variance (cosmic variance), which is

the region in which the late integrated ISW effect should have its contribution.

4.5.2 Auto-correlation and Angular power spectrum for Reconstruc-
tion 1

Before the analysis between the observational data and our results from the reconstruction

with HBM, we have estimated the angular power spectrum and the correlation function

of the ISW signal from Reconstruction 1. The auto-correlation, shown in the top panel

of Figure 4.10, looks to be very constant for all angles between 0◦ and 180◦ maintain-

ing the estimated values above zero. In the case of the angular power spectrum, in the

bottom panels of Figure 4.10, it can be seen that the smallest multipoles ` ≤ 3 have the

largest variances, but for ` > 3, the power spectrum drops to very low values, even below

0.01 (µK)2. In the right panel there is a zoom of the low-multipoles regions in which

can be noticed that in spite of the larger variances values, there is a contribution to the

temperaure fluctuation on the largest scales. Although this signal is very small, we can

assure that we have found the corresponding contribution due to the ISW effect.
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For ` > 103 the power rises again, achiving values of around 0.1 (µK)2, but con-
tinues to be a small contribution. As this large multipoles correspond to the smallest of
the structures, this rising values are associated to the temperature fluctuation due to a
Rees-Sciama effect. In other words, in our 2MASS density field we also have found a
perturbation on the temperatures that may be due to the Rees-Sciama effect, alongside
with the ISW effect.

Figure 4.10: Top panel: Auto-correlation function of our estimation of ISW effect from
Reconstruction 1. A nearly constant behaviour can be noted throughout all the angles between
0◦ and 180◦. In the bottom panels, the angular power spectrum of our estimation of ISW effect
from Reconstruction 1. Multipoles ` ≤ 3 have the highest variances, but for ` > 3, the values
drop to very low values, even below 0.01 (µK)2, rising again for ` > 103. We can notice the
contribution of both, the ISW effect in the largest scales, and the temperature fluctuation due
to the Rees-Sciama effect at to smallest scales.
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4.5.3 Cross-correlation and Angular power spectrum between
WMAP and ISW from Reconstruction 1

Then, we performed the cross-correlation between the 9th WMAP ILC map and the ISW
map obtained from Reconstruction 1 integrated within the radius of 90 h−1Mpc, as men-
tioned in subsection 4.4.1. Two cross-correlations were performed, the first one using the
complete maps; in the second estimation we take both maps, WMAP and the ISW from
the Reconstruction 1, and make the temperatures in the range |b| . 10◦ equal to zero, so
the will not have any contribution to the power spectrum from the galactic disk. Indeed,
it should be reminded that Reconstruction 1 contains at the region corresponding to the
galactic plane a false signal due to the density field from the simulation. These regions
must be also omitted in this analysis in order to obtain a more accurate measurement of
the quantities of our interest.

For the first case, in which we take into account the complete map that includes the
non-actual signal from the galactic plane, the cross-correlation function is shown in the
left panel of Figure 4.11. This cross-correlation differs too much from the previously
obtained from the observational data; indeed the estimated values are below zero. Even
the variance region tells us that the estimation could reach negative values, so it looks
like there is no correlation between our ISW map and the WMAP signal. This result is
very much in disagreement with the results shown in Figure 7 from [13], where it can
be seen that their estimated values for the ISW auto-correlation are above zero. On the
other hand, the angular power spectrum (left panel of Figure 4.12) shows negative values
at the smallest multipoles, which also suffers from cosmic variance. For ` ≥ 4 the values
of the power spectrum of the correlation takes positive values and a small contribution
to the ISW auto-power spectrum can be seen, but fluctuates around zero and decreases
so rapidly, so for ` & 30 the power is completely null. Again, comparing with the ISW
auto-power spectrum from [13] in their Figure 7, they obtain nearly to zero values for
` ∼ 100, and for ` ≤ 30 their contribution is of the order of ∼ 30 (µK)2. Taking into
account the great amount of variance for those low multipoles, our auto-power spectrum
can be neglected and considered only part of this variance.

From those two results, our conclusion is that the 2MASS density field used in this
work is a small survey with not enough depth to obtain a non-negligible contribution to
the late integrated ISW effect. Further, this survey comprises only a local region, so the
largest structures can not be complete surveyed. This conclusion will be supported by the
results of the cross-correlation function and the angular power spectrum between the same
ISW-estimated temperature from Reconstruction 1 and Planck, shown in subsection 4.5.4.
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Figure 4.11: Left panel: Cross-correlation function between the ISW map from the Recon-
struction 1 and WMAP. As the estimated values are below zero, it seems that no correla-
tion between those two data sets can be obtained. In the right panel, it is shown the cross-
correlation function between our ISW estimate from Reconstruction 1 and WMAP, both data
sets without galactic plane. Again, due to the negative values obtained, there is no correlation
between both data sets.

Now we discuss the second case, in which we omitted the signal for both data sets
(WMAP and our ISW estimation) in the region of the galactic plane. The cross-correlation
function can be seen in the right panel of Figure 4.11, and again, the estimated values are
below zero. Even taking into account that the temperature contribution in the galactic
plane is assumed as zero, no direct correlation can be obtained between both data sets.
This negative cross-correlation means that hot (cold) spots in our ISW estimation are not
related with the hot (cold) spots found in WMAP, but instead of that the relation may be
with the cold (hot) spots of WMAP.

Finally, the angular power spectrum, shown in the right panel of Figure 4.12, shows
that only the multipole ` = 4 presents a higher value over zero, but with larger variance if
compared with the left panel. The rest of the multipoles continue with a similar behaviour,
fluctuating around zero, with a very negligible contribution to the corresponding angular
scales; although the fluctuation is not suppressed so quickly as before, continuing until
` ∼ 200. So, contrary to the work in [13], we could not find any cross-correlation between
the ISW signal induced by 2MASS and WMAP survey.
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Figure 4.12: In the top panel, the angular power spectrum obtained for the comparison be-
tween the ISW map from the Reconstruction 1 and WMAP. It can be noticed how for ` & 30

the power is almost zero. For ` < 30, there is not enough power so it can be considered that
our ISW estimate has a negligible contribution to the actual power from WMAP. The right
panel shows the angular power spectrum between our ISW estimate from Reconstruction 1
and WMAP, both data sets without galactic plane. The contribution to the power spectrum
continues to fluctuate around zero, making it almost negligible.
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4.5.4 Cross-correlation and Angular power spectrum between Planck
and ISW from Reconstruction 1

As for the 9th WMAP data set, we performed the same comparison to obtain the cross-
correlation and the angular power spectrum of the correlation between the Planck data
set and our ISW estimated map. These comparisons are performed in the two cases men-
tioned in the last section: using the whole maps in the data sets and assuming that the
temperatures at galactic plane (|b| . 10◦) are zero in the two data sets. These compar-
isons were performed in order to analyse how the resolution may affect our estimation
on the ISW effect and even to have a possible estimation on the Rees-Sciama effect. For
that last effect which is given at higher multipoles, according to [30] even with data from
Planck mission it would not be possible to obtain an estimative of the power contribution
in the angular power spectrum due to the Rees-Sciama, because even at those small scales,
the variance continues to be high enough to hide any contribution from this non-linear ef-
fect. We would like to study if using our method to obtain the ISW contribution through
the density field from an Halo-Based Method we could obtain some contribution at small
scales or reassert the statement found in [30].

Results of the cross-correlation function for the first case, using the complete maps in
both data sets are shown in the left panel of Figure 4.13. Again, most of the values are
below zero, and only a slight peak reaching w(θ) ∼ 0.5 (µK)2 for θ between 60◦ and
100◦. For angles θ < 30◦, all values fall below zero. Again, it looks like no correlation
can be found between our ISW data set and Planck mission, even taking into account the
larger resolution of the data sets.

Looking at the corresponding power spectrum of the correlation in the left panel of
Figure 4.14, and taking into account that we have not neglected the temperatures at the
galactic plane region, it can be noticed that, in general, the behaviour and structure of
this spectrum is very similar to Figure 4.12. For Planck, only the contribution for ` = 1

has, strangely, a very small variance, but multipoles ` = 2 and ` = 3 have the higher
variances of the samples, as in the spectrum for WMAP. For ` ≥ 4 it can be seen that the
contribution in the power increases a bit, but fluctuates around zero, decreasing almost
complete for ` ∼ 30, which is the same behaviour found in WMAP.

In the second case, in which we assume that temperatures in the galactic plane are
zero in both data sets, the cross-correlation and the angular power spectrum can be seen
in right panels of Figure 4.13 and Figure 4.14, respectively. For the cross-correlation,
the peak between 60◦ < θ < 100◦ increases almost twice to reach a value very near to
w(θ) ∼ 1 (µK)2. The rest of the values, continue to fall below zero, so the same result is
found here. In the case of the angular power spectrum without galactic plane, the result
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Figure 4.13: Left panel: Cross-correlation function between Planck and our ISW estimate.
Most of the values are below zero, but a slight peak can be seen in θ between 60◦ and 100◦.
Again, it looks like no correlation can be found between our ISW data set and Planck mission
in spite of this slight peak and the resolution used. The right panel shows the cross-correlation
function of Planck and our ISW estimation without the contribution to the temperatures in the
region of the galactic plane. The same peak for 60◦ < θ < 100◦ is notable, but as the rest of
the values are below zero, our conclusion about no correlation is maintained.

is basically the same found for WMAP; the only difference is that the variance decreases

slightly in Planck, but for small multipoles it continues to be large enough and the power

low enough to make the total contribution negligible.

Those results using the Planck mission data, being so similar to those obtained with

WMAP reassert our discussed conclusion: using the 2MASS density field alone, it is

not possible to have enough large structures that span enough redshift range to obtain

a non-negligible ISW contribution. Even, it was also noticed that with Planck data at

higher multipoles, the power spectrum lacks from any structure that can allow to estimate

a contribution from Rees-Sciama effect. For that reason, we performed a logarithmic

bining of our data between ` = 102.8 until the maximum that PolSPICE allows us with

our Planck data (` ∼ 6000) to study the power of Rees-Sciamma at high multipoles. In

Figure 4.15 it can be seen how all the bins of multipoles fluctuate around zero taking both

positive and negative values, as seen throughout all our previous analysis; in this plot

we ommited the error bars by clarity on the figure, but the majority of the symmetrical

error bars are below |0.05| (µK)2. It can be noticed how the power is concentrated inside

the range |`(` + 1)C`/(2π)| < 0.05 (µK)2, and even below this range, for both cases,

using the complete map (upper panel) and assuming as zero the contribution inside the

galactic plane (right panel). According to the analysis made in [30] about their Figures

5 and 6, they found an upper limit for the Rees-Sciama power spectrum for ` > 102.8 of
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Figure 4.14: Left panel: Angular power spectrum for the correlation between Planck and our
ISW estimate. This spectrum has almost the same behaviour as the WMAP spectrum in Fig-
ure 4.12, in which a fluctuation around zero is seen for the lowest multipoles, with the highest
variances, and decreases rapidly to zero for ` > 30. In the right panel, the angular power
spectrum of Planck and our ISW estimation without the contribution to the temperatures in
the region of the galactic plane. The structure is almost the same that the obtained for WMAP
without galactic plane.

around their ∆T ∼ 0.2µK, i.e. `(`+ 1)C`/(2π) ∼ 0.04 (µK)2. A further analysis in this

paper, they stated that even with data from Planck mission, the estimation is well below

the cosmic variance, so the Rees-Sciama effect is too small to be detected with this probe.

From our results, due to the our upper limit very similar to the limite found by [30], we

cannot state that we have a detection of the Rees-Sciama effect.

In spite of this last result, the angular power spectrum associated to the auto-

correlation for Reconstruction 1 (Figure 4.10) have shown that indeed there is a con-

tribution on the largest values of ` (smallest structures) associated with the imprint of un-

derlying density field from 2MASS, i.e. with our 90 h−1Mpc 2MASS sample we obtained

the corresponding Rees-Sciama contribution, although as discussed before, the nowadays

available data from CMB surveys do not have enough resolution in order to sample those

contributions at smaller scales.

4.6 Summary of results
In this chapter we studied the ISW effect and the Rees-Sciama effect due to the pres-

ence of a density field associated with the 2MASS observations. We used a Halo-Based

Method [24] in order to reconstruct the dark-matter density field infered from the galax-

ies catalogue that the 2MASS survey provides (Reconstruction 1). Another reconstruction
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Figure 4.15: Angular power spectrum binned with 700 bins in the range 102.8 ≥ ` . 6000

for the comparison between Planck and our ISW estimation. Upper panel corresponds to
the complete maps and right panel to the maps without contribution to the temperatures in
the region of the galactic plane. In both panels, the power is below |`(` + 1)C`/(2π)| <
0.05 (µK)2, so we cannot state for a detection of the Rees-Sciama effect in our analysis.

was performed, but using the synthetic data from the simulation box of 400 h−1Mpc (Re-

construction 2). With these two reconstructions, we performed two experiments: first,

the integration along the three coordinate axes as in the previous chapter; second, radial

integrations assuming the observer at the center of the box that will resemble the ob-

served CMB maps using a Mollweide projection with HealPy. Furthermore, with results

from the second experiment and using PolSPICE software we are able to study the cross-

correlation functions and the associated angular power spectra between the estimated ISW

effect induced by 2MASS and CMB surveys. Those power spectra allows to study both,

the large scale fluctuations due to the ISW effect and the small scale temperature fluctua-

tions due to the Rees-Sciama effect. The results from this chapter are summarized in the

following items:

• ISW effect from integration along the three coordinate axis: When perfoming

an integration along the 3 coordinate axes using the linear approximation (Equa-

tion 2.31) for the solution of Φ̇, we obtained the maps shown in Figure 4.2. The left

panel (Reconstruction 1) shows in the central regions of the maps a slight different

structure compared with the right panel maps. For the first reconstruction although

at the center it looks like the ISW effect has a main contribution due to underdense

regions, it shows that our reconstruction technique provides an appropriate density

field to compute the ISW effect. When studying the temperature fluctuation along

the line of sight (dT/dr) and comparing the results from both reconstructions, we
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found that Reconstruction 1 provides a very similar behaviour than the obtained

with the Reconstruction 2 even at the central region, where both density fields are

different. This indicates that the temperature fluctuation due to the 2MASS den-

sity field is in agreement with the signal expected in ΛCDM universes, which is

expected because both density fields are realizations of the structures that may be

found in a ΛCDM universe.

• Radial integration of the reconstructions: Radial integration is also performed

for both reconstrucions; we put the observer at the center of the box and gener-

ate 100 million rays distributed in the sphere. The radial integrations are per-

formed in three ways: first, a complete integration from the origin until a radius

of 200 h−1Mpc was done for both reconstructions; second, Reconstruction 1 was

integrated completely, but Reconstruction 2 was integrated from 90 h−1Mpc until

200 h−1Mpc. In this second case, the difference between ∆TCRec1 − ∆T FRec2 will

give the actual contribution of the ISW due to the 2MASS density field. The third

integration case was integrated within a radius of 90 h−1Mpc, which in the case of

Reconstruction 1 the signal ∆TURec1 will also give the signal due to the 2MASS den-

sity field. Indeed we see that the difference ∆TCRec1 − ∆T FRec2 for the second case

and the signal ∆TURec1 from the third case are very similar and the actual behaviour

of the ISW effect induced by the 2MASS density field must lie between both maps.

This contribution tends to colder temperatures which, in agreement with the result

discussed in the previous item, indicates that the temperature fluctuation due to

2MASS is dominated by underdense regions.

Finally, we characterized the temperature distribution of the signals ∆TURec1 and

∆TURec2. Both distributions are quite different, showing that for Reconstruction 1

the tendency is to negative values (as described before) while Reconstruction 2

has a tendency towards positive values. This behaviour is due to the two different

underlying density fields. In spite of these noticeable differences, the range of tem-

peratures are in agreement with the expectation in ΛCDM , but narrower due to the

small integration domain. We may conclude that our 2MASS sample with a radius

of 90 h−1Mpc is not depth enough to have a good estimative of the ISW effect in

our Universe, so a more complete survey should be used in order to have better

results.

• Cross-correlation and angular power spectrum at large-scales (ISW effect):
Once the radial integrations were perfomed, we used this information in order to

compute the auto-correlation and angular power spectrum of the temperature field
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from the Reconstruction 1 integrated within the radius of 90 h−1Mpc, which are

shown in Figure 4.10. At the lower multipoles (largest scales) it can be noticed that

although the contribution is small and the error bars are very large, we found that

due to the 2MASS density field there is indeed a contribution to the temperature

fluctuation at larger scales, i.e. the density field from our 2MASS sample has a

non-negligible contribution to the ISW effect.

Then we performed the cross-correlation and associated power spectra between the

temperature field from our ISW estimation and the temperature fields from the ILC

9th year WMAP survey and the SMICA Planck survey map. In general we found

no correlation between the ISW signal from the 2MASS density field and the CMB

surveys; this means that there will be no direct relation between our estimation and

the observations, i.e. hot (cold) spots in our estimated maps will not correspond

spatially with hot (cold) spots in the CMB surveys but maybe with the cold (hot)

spots from the survey. This result holds if we avoid the signal from the galactic

disk region. Furthermore, those results are supported by the angular power spectra

associated with the cross-correlations. For the power spectra, it was found that

for the smaller multipoles (` < 4) have negative values, while for (` ≥ 4) the

contribution fluctuates around zero and decreases very rapidly to zero. Then, for

larger scales it can be noticed that there is a contribution to the temperature field,

but the structure does not resembles the known power spectrum for the observations

and it looks like no relation between our ISW estimative and the CMB surveys could

be found.

• Cross-correlation and angular power spectrum at small-scales (Rees-Sciama
effect): When studying the angular power spectrum of the auto-correlation for Re-

construction 1 integrated within the radius of 90 h−1Mpc (Figure 4.10) at the larger

multipoles (small scale structures) it can be noticed that the power rises from zero

to values of the order of 0.1(µK)2. This rising is given for ` ≥ 103, which means

that the smallest scales in the 2MASS survey have a non-negligible contribution to

the temperature field associated with the Rees-Sciama effect.

For the power spectrum associated to the cross-correlation between our ISW signal

and the WMAP ILC map, we found that for those larger multipoles, the contribution

is basically zero due to the resolution used (NSIDE = 512). If the galactic plane

contribution is neglected, the largest multipoles have a slightly larger contribution,

but for a better analysis, the results for Planck are studied. The cross-correlation and

the associated angular power spectrum betwen the ISW signal and Planck (using
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a resolution of NSIDE = 2048) offers more information in the larger multipoles
(small scales). This contribution is more remarkable when avoiding the galactic
disk region. Indeed, the signal we found is of the order of 0.05 (µK)2 even with
the error bars. According to [30], they found that the Rees-Sciama power should be
of around ∼ 0.04(µK)2, but this signal is below the cosmic variance in this small-
scales region and even the Planck survey resolution is not enough to measure such
a signal. Our results are in agreement with this statement, so in order to measure
the actual contribution due to the Rees-Sciama effect we need surveys in the future
with enough resolution in such scales. In spite of this results, we can assure that our
2MASS sample contributes both to the large-scale temperature fluctuations (ISW
effect) and to the Rees-Sciama effect in the smallest scales.
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CHAPTER

5
Effects of the Linear and Exact

Solution of Φ̇(x) on the
Estimation of the Angular

Power Spectrum

With the aim to quantify the effects of the linear and exact solutions of Φ̇(x) field in

the ISW estimation and its angular power spectrum, we performed a similar comparison

of the cross-correlation function and the associated correlation-power spectrum between

data from observations (WMAP and Planck missions) and the estimation to the ISW ef-

fect using the MDPL density field. For that reason, a radial integration of the Φ̇(x) field

for MDPL was performed in the same way it as done for the Reconstructions from the

Halo-Based Method in the last chapter. In this new case, the radial integration was done

for both, the linear approximation to Φ̇(x) due to the linear growth of structures (Equa-

tion 2.26) and the exact solution (Equation 2.25) which takes into account the peculiar

velocity field.

In the following, we will show for each regime (linear approximation or exact so-

lution) the corresponding cross-correlation and correlation spectrum with WMAP and

Planck missions taking into account that the ISW from the integration of Φ̇(x) for the

MDPL simulation is performed until two different depths: first, an integral from the ori-

gin at the center of the simulation box until a radius of 100 h−1Mpc; for the second case
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the integral was made from this same origin until a radius of 500 h−1Mpc. These two

different upper limits in the integral allows us to understand the different contributions to

the power spectrum due to the travel of a light ray through more or less structures.

5.1 Angular Power spectrum for MDPL
As a previous analysis, we obtained the angular power spectrum associated with the auto-

correlation for the MDPL simulation in both regimes for the solution of Φ̇. In Figure 5.1

the angular power spectra for both radial integrations in the two solution regimes are

shown. As expected, the integration until 500 h−1Mpc (red and green curves), as is asso-

ciated with a larger travel of the photons through more structures, the a larger contribution

to the power spectrum can be appreciated; for the integration until 100 h−1Mpc (blue and

cyan curves) have a very little contribution, of the same order of magnitude as the auto-

correlation of Reconstruction 1 in Figure 4.10 at the previous chapter. It can be noticed

that the exact solution and linear approximations have basically the same behaviour, but

the linear approximation shows a slight smaller contribution to the power spectra than the

exact solution. Although it is not shown in the figure, there is also a very hardly noticeable

larger contribution in some smaller scales for the exact solution for 500 h−1Mpc; while

in the linear approximation the power spectrum for 500 h−1Mpc decreases to zero more

rapidly.

5.2 Cross-correlation and Angular power spectrum in
Linear approximation
The case we will study in this section corresponds to the ISW effect from MDPL sim-

ulation in the linear approximation with WMAP and Planck missions. The ISW effect

induced from MDPL is compared for the two depths presented before, 100 h−1Mpc and

500 h−1Mpc using the linear approximation to Φ̇.

5.2.1 MDPL simulation integrated until 100 h−1Mpc

Performing the radial integration of the Φ̇(x) field of the MDPL simulation in the linear

approximation and finding the correlation spectrum with WMAP (Planck), gives the cor-

relation spectrum shown in the right panel of Figure 5.2. For both cases, WMAP (cyan

curve) and Planck (green curve), the correlation spectrum has almost the same behaviour

for ` > 2, with the only difference that WMAP presents larger values of variance (not
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Figure 5.1: Angular power spectrum associated with the auto-correlation function for
the MDPL simulation. Blue (cyan) curve is associated with the radial integration until
100 h−1Mpc with the exact (linear) solution. Red (green) curve is associated with the in-
tegration until 500 h−1Mpc in the exact (linear) solution of Φ̇.

shown for clarity). If this spectrum is compared with Figure 4.12 or Figure 4.14, it can

be noticed that the range of values in the vertical axis are higher for MDPL than for the

reconstruction, but still in the same order of magnitude. This difference is due to the

slightly larger integration domain in MDPL than in the reconstruction.

In the case of the angular cross-correlation function (left panel in Figure 5.2), although

we do not show it for clarity, there is an overlapping between the variances regions for

WMAP and Planck. This overlapping is given for angles θ < 90◦, while for angles

θ > 90◦ the differences are considerable but not shown here. At low angles, the variance

for WMAP is very high, but contains the estimated value of Planck. It can also be noticed

a gap of around ∼ 3(µK)2 between the estimated values of WMAP and Planck.
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Figure 5.2: Cross-correlation function and correlation-power spectrum for MDPL integrated
until 100 h−1Mpc with WMAP and Planck. This integration was done for both regimes in
the solution of Φ̇. Left panel shows the cross-correlation function with red (green) curve for
Planck-MDPL using the exact (linear) solution and the blue (cyan) curve for WMAP-MDPL
using the exact (linear) solution. The same color code holds for the correlation spectrum in the
right panel. It can be noticed for the power spectrum that while linear approximation decays
to zero for ` > 30, the exact solution presents a slight higher contribution, which is associated
with the evolution of the smallest structures due to the presence of the velocity field in this
exact solution.

5.2.2 MDPL simulation integrated until 500 h−1Mpc

For the case of the integration domain between the origin until 500 h−1Mpc for MDPL,

the angular power spectrum between MDPL and WMAP or Planck is shown in the right

panel of Figure 5.3. A notable difference with the linear spectrum shown in Figure 5.2

is the range of values in the y-axis, which is wider in this case, due to a largest integra-

tion domain, allowing rays to pass through more structures, and then contributing more

to temperature and to the power of the spectrum (the error bars have also a notable in-

crease, but we do not show them by clarity). The estimated values increase up to 10 times

the estimated power for the integral until 100 h−1Mpc. This is, obviously, an expected

behaviour, due to the contribution of even more and more structures to the temperature

estimate.

The corresponding cross-correlation is shown the left panel of the same figure. In

this case at the smallest degrees, we obtain that the variances present an increase of up

to 10 times the estimated variances for the 100 h−1Mpc case (variances not shown here),

but in this small-angles region the gap continues to be of around ∼ 3(µK)2. Although

we do not show the complete range of values for θ, in this case the overlapping is given

up to θ ∼ 120◦, a region from which the variance region becomes narrower. The fact
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that the overlapping on the variance region is maintained until an upper angle may be

due to a higher contribution of the structures along each ray in a largest path. We expect

that for even wider integration domains, the overlapping should be maintained until even

higher angles, but we do not have an enough big data set to prove this hypothesis. It is

important to notice that the cross-correlation values become negative for the integraion

until 500 h−1Mpc for both CMB surveys, while for 100 h−1Mpc only Planck shows this

negative cross-correlation.

5.3 Cross-correlation and Angular power spectrum in the
Exact solution
In this section, results correspond to the ISW effect from MDPL simulation obtained

through the exact solution and the corresponding cross-correlation and correlation spec-

trum with the WMAP and Planck surveys. The ISW effect induced from MDPL is com-

pared for the two aformentioned depths of 100 h−1Mpc and 500 h−1Mpc.

5.3.1 MDPL simulation integrated until 100 h−1Mpc

In the same way as in subsection 5.2.1, the radial integral from MDPL was performed until

100 h−1Mpc but using the exact solution for Φ̇. This correlation spectrum is shown in the

right panel of Figure 5.2 and is very similar to the linear case with only few differences: in

the exact solution, the variances (not shown here) of the lowest multipoles are larger, but

for multipoles larger than ` ∼ 30, for which the linear approximation showed no power,

in the exact solution there is a small increase in this power until multipoles ` ∼ 200 for

WMAP (blue curve), and even until larger multipoles for Planck (red curve), although we

do not show this region in the mentioned figures. We may conclude that for multipoles ` >

30, i.e. in the smaller scales, the exact solution plays an important role in the estimation

of the contribution of the temperature fluctuations in those scales. As we have mentioned

in previous chapters, the linear approximation offers a good estimative of the contribution

to the temperature fluctuation at larger scales, with a very similar behaviour than the exact

solution, but the information of the smallest scales is erased in the linear approximation,

which is evident in the lack of power for smaller multipoles ` < 30.

In the case of the cross-correlation function, at the left panel of Figure 5.2, there is

not too much to be said, because the behaviour is basically the same as for the linear

approximation. Furthermore, in this analysis the cross-correlation plays no important

role because we are interested in the contribution to the temperature fluctuation according
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to the scales. The cross-correlation function will tell us if there is a direct relationship
between the temperature fluctuation due to MDPL and those found in the CMB surveys;
such a relation will, obviously, not be found here because we are comparing two different
realizations of the CMB in ΛCDM universes, one due to the MDPL contribution and the
other the one found in our Universe.

5.3.2 MDPL simulation integrated until 500 h−1Mpc
For the radial integration of Φ̇(x) field in the exact regime until 500 h−1Mpc from MDPL
simulation and its comparison with the observational surveys, the correlation power spec-
trum presented in the right panel of Figure 5.3 shows a similar behaviour than the case
for linear approximation. Just a slight increase in the power for the largest multipoles
can also be noticed, but due to the wider range in the y-axis, this contribution is hardly
noticeable. In this case, the difference between solution regimes is not as notable as for
the integration until 100 h−1Mpc, because the larger integration domain will make that
all scales will contribute even more to the power spectrum; in spite of this, there is indeed
a slight increase in the power at larger multipoles (small scales) for the exact solution
regime.

Finally, the cross-correlation (left panel of Figure 5.3), as in the case of 100 h−1Mpc,
has almost the same behaviour than in the linear approximation case, in which the de-
parture between both estimated values is given for θ > 120◦. Besides, the range at the
vertical axis is just a bit larger than in the linear approximation, but with no more notice-
able differences.

Although the contribution at low multipoles in the correlation power spectrum looks
to be so small, and even using Planck data the Rees-Sciama contribution is below the
cosmic variance according to [30], the use of the exact solution for the estimation of the
Φ̇(x) field could be an important tool. As this exact solution to Φ̇(x) makes use of the
peculiar velocities of the haloes, and those velocities are well related to the local evolution
of the smallest of the structures, taking into account this small contribution could allow
to obtain a better estimation of the Rees-Sciama temperature, which also contributes to
the power of the correlation spectrum at larger multipoles. If with future galaxy surveys
it is possible to create methods to estimate the peculiar velocities of the galaxies, or the
velocities of the host haloes, this information with the help of a future CMB survey with
higher resolution than Planck would allow to study in greater detail the Rees-Sciama
effect.
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Figure 5.3: Cross-correlation function and correlation-power spectrum for MDPL integrated
until 500 h−1Mpc with WMAP and Planck. This integration was done for both regimes in
the solution of Φ̇. Left panel shows the cross-correlation function with red (green) curve for
Planck-MDPL using the exact (linear) solution and the blue (cyan) curve for WMAP-MDPL
using the exact (linear) solution. The same color code holds for the correlation spectrum in the
right panel. It can be noticed for the power spectrum that while linear approximation decays
to zero for ` > 30, the exact solution presents a slight higher contribution, which is associated
with the evolution of the smallest structures due to the presence of the velocity field in this
exact solution.
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CHAPTER

6
Discussion and Conclusions

In this chapter, we discuss the results and conclusions obtained throughout this work.

Our first results concerned the effects of the Mass-assigment scheme (MAS) in the estima-

tion of the density field and their influence in the estimation of the gravitational potential

and its time derivative, as shown in chapter 2. We see how both MASs give different re-

sults for the density field, but for the Φ̇ field those results do not differ as much as for the

density field; indeed the distributions are very similar regardless the MAS used, allowing

us to conclude that the use of CIC or TSC would give very similar estimations of the

underlying fields. Obviously the choice of the TSC rather than the CIC MAS is evident,

due to the smoother fields that TSC provides.

Extending the analysis of the effects of the MAS in the estimation of the ISW effect,

as shown in chapter 3, we conclude that the influence of the MAS in the computation of

the temperature field could almost be neglected. We find no larger differences between

the ISW signal from a CIC and the ISW from a TSC. We state that this feature is due to

the fact that being the ISW signal an effect integrated along the line of sight, the contribu-

tions due to different structures are compensated between them. In other words, although

CIC provides more positive (and more negative) values for Φ̇, those contributions are

compensated in the same way as if the structures are estimated with a TSC MAS, which

gives smoother values; this effect is due to the linear combination of values of Φ̇ when the

integration is performed.

Another important result is related with the effects of the resolution. As shown for

the MDR1 simulation, the computation of the underlying fields as Φ̇ using different reso-
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lutions also have little effect on the estimation of the temperature fluctuation of the ISW

effect. We discussed that the distribution of temperatures for two different resolutions are

so similar that in the case of a large-scale effect, as the ISW effect, the resolution plays

no important role. On the other hand, resolution allows to obtain a more detailed view of

the small-scale structures and then of the small-scale effects such as the Rees-Sciama.

For our theoretical expectation of the ISW signal in a ΛCDM universe, the results

from chapter 3 obtained only for the 3 cosmological simulations used are summarized

in Table 3.4. We obtained an estimated value for the ISW contribution of the order

of |∆T SimISW | ' 7 µK for the smallest of the simulations (cubical box of 400 h−1Mpc),

which is translated in a temperature fluctuation per unit of length of |∆TISW/∆L| ∼
0.02µK hMpc−1. For the two MultiDark simulations (cubical boxes of 1000 h−1Mpc) the

estimated contribution increases until the order of −40 µK < ∆TISW < 27 µK, which

is in agreement with previous works [13]. The temperature fluctuation per unit of length

for those MultiDark simulations are of the order of −0.04 µK hMpc−1 < ∆TISW/∆L <

0.027 µK hMpc−1, which is in agreement with the result for the previous simulation box.

Given these results and the restricted variance regions of the 〈dT/dr〉 plots, we can ensure

that we find a good estimation of the ISW effect at least using synthetic data sets, which

represent slightly different ΛCDM universes. Then, theoretically in a ΛCDM universe it

should be possible to detect this kind of gravitational redshifting in the expected orders of

magnitude [13]. We also characterized the behaviour of the mean temperature fluctuation

per unit of length 〈dT/dr〉. From this characterization, we found that the distribution of

values differs from a gaussian distribution, which is the expectation according to the prin-

ciples in which the concordance cosmological model is based, but such mean behaviour

fluctuates around zero, which is expected because both underdense and overdense regions

must contribute to this effect in the same way.

When using a data set of galaxies from a redshift survey as the 2MASS, the approach

is somewhat different. First, it is necessary to estimate the density field that hosts the

galaxies of the survey. This is done when applying an iterative method to construct the

halo catalogue and then, the Halo-Based Method (HBM) (as described in section 4.1) to

estimate the underlying density field. Two reconstructions are obtained with the HBM,

both inside the simulation box of 400 h−1Mpc. In the first reconstruction the central

synthetic data is changed by the 2MASS haloes (Reconstruction 1) and the second one

corresponds to the HBM applied to the complete synthetic data set of the simulation box

of 400 h−1Mpc (Reconstruction 2), as a control experiment. First of all, integrations along

the coordinates axes, as done for the 3 cosmological simulations, are perfomed. Also, the

integration to find 〈dT/dr〉 along the coordinates axes is used. Results obtained in these
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part (see Figure 4.3) are consistent with previous results using numerical cosmological

simulations (chapter 3). The mean values and the variances in both cases fluctuate very

near to zero, and the signal due to the Reconstruction 1 is very similar to the generic

signal from Reconstruction 2. This is an expected result because, in spite of the fact that

both signals are due to different density fields, those fields are different realizations of the

structures in a ΛCDM universe, so the mean behaviour of the temperature fluctuations

must be similar. This result allows us to conclude that the HBM provides an appropriate

density field, consitent with a ΛCDM universe, in order to compute correctly the ISW

temperature fluctuation.

In order to observe the actual contribution of the ISW due to our estimated 2MASS

dark-matter density field, we change the integration approach. We move the origin to

the center of the simulation box and integrate with 100 million radial rays uniformly

distributed in a sphere; this is performed for both reconstructions: the density field with

2MASS infered through HBM and to the synthetic density field of the simulation. We

integrated in different domains, so we can extract different ISW signals: the complete

synthetic ISW estimation, the spurious signal due to the combination of 2MASS plus the

synthetic density field and the contribution due only by 2MASS. The corresponding maps

are projected in Galactic coordinates with the help of the pixelation library HealPy. Those

results also tell us that the contribution due only to the 2MASS density field is very small;

this temperature fluctuation must lie in the range of −1.5 µ K < ∆T 2MASS
ISW < 0.15 µ K.

We hypothesized that this small signal is due to the small depth of the 2MASS survey,

which only allows to know the local structures. In order to obtain a better estimation,

more complete and larger data sets that spans to larger redshift depths must be used,

taking into account that the ISW effect is given nearly since z < 2.

To finish with the data associated to observations, the auto-correlation and the corre-

sponding angular power spectrum for the Reconstruction 1 was computed, alongside with

the cross-correlation function and the correlation-spectrum between the 2MASS-induced

ISW effect and the 9th year WMAP ILC and Planck SMICA maps is studied with Pol-

SPICE software. Those two CMB observational sets allow us to compare both the ISW

effect and a possible estimation of the Rees-Sciama effect through an analysis with Planck

data. In this case, the cross-correlation functions do not allow to conclude about a direct

correlation between our estimated ISW effect and the observational maps; fact that is also

evident in the correlation-power spectra because we found that the power takes negative

and positive values and fluctuates around zero, decreasing very rapidly. According to

those correlation-power spectra, although at small multipoles ` there is a contribution to

the power spectrum, the variances are to large and the power itself is too small that we
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cannot conclude about a good detection of the ISW effect in the 2MASS data set related

with any of the CMB surveys. In spite of this result, there is an actual contribution to

the ISW effect due to the local density field of 2MASS survey, which is found when

studying the smaller multipoles of the angular power spectrum of the auto-correlation for

Reconstruction 1. This contribution is very small due to the depth of the sample used, as

discussed before.

When studying the same power spectrum at the smaller multipoles (smaller scales) we

found that for the angular power spectrum of the auto-correlation for Reconstruction 1 the

smallest scales have a non-negligible contribution, even comparable in order of magnitude

with the contribution at the largest scales. This is associated with a Rees-Sciama signal in

our 2MASS sample; so in spite of the small contribution to the power spectrum, with our

2MASS density field we have obtained both contributions, at larger scales the ISW signal

and the Rees-Sciama effect for the smallest scales. When studying the cross-correlation

and the corresponding power spectrum with Planck, we again found no correlation, but at

the larger values of the multipole ` we reaffirmed the conclusions from the work of [30].

This means, at larger multipoles in which the Rees-Sciama effect must be presented, even

data from Planck survey are not enough to detect such effect, because the signal is still

below the cosmic variance at those multipoles.

Finally, an study about the influence of the approach to compute the Φ̇(x) field into

the angular power spectrum was done. According to previous works, in order to compute

Φ̇(x) using Fast-Fourier Transforms, it is possible to use and exact solution in which the

peculiar velocity field must be taken into account (see Equation 2.25). This approach has

a disadvantage which consists in the fact that in observational surveys it is not easy or even

not possible to extract information about the peculiar velocities from galaxies or haloes

that host those galaxies. For that reason, an approximation based on the linear growth of

structures should be used (Equation 2.26), as introduced by [6]. In order to compare the

results given by both approaches and their influences in the angular power spectrum, the

Φ̇(x) field from the MultiDark-Planck (MDPL) was used again, as we have computed it

in both approaches. The same radial integration with 100 million random radial rays is

applied, and the Mollweide-projected map is obtained. We compared this maps with the

WMAP and Planck maps to find the cross-correlations and correlation-power spectrums.

Furthermore, for the two approaches in MDPL-Φ̇(x) field, two integration domains were

used: one of 100 h−1Mpc, similar to the distance domain of the observational data, and

the second of 500 h−1Mpc, comprising a total diameter equal to the complete size of the

MDPL simulation. From cross-correlation functions, not too much information should be
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obtained, because it is expected that the ISW maps from MDPL should not share informa-
tion with the CMB measurements in our Universe. From the correlation-power spectrums,
it can be noticed that the power in the spectrum increases for a larger integration domain,
which is expected due to a large amount of structures photons have to pass through. Also,
although all spectra fluctuate around zero and decreases rapidly to zero, the linear approx-
imation decreases even more rapid than the exact solution spectrum. In the exact solution
there is a small contribution to the power at the larger multipoles, which is due to the
fact that peculiar velocities are well associated with small structures, as they influence
the evolution of the structures at those scales. This fact can have a considerable effect in
future estimates of the Rees-Sciama effects, because if future surveys allows to measure
the CMB temperatures with even more resolution than Planck, the Rees-Sciama can be
estimated well above the cosmic variance. It also imposes a challenge to galaxy surveys
in the way that methods to have good estimates of the peculiar velocites of galaxies or
their associated dark matter haloes should be developed to help to improve the estimation
of the Φ̇(x) field and maybe, in a future, obtain the actual contribution of the Rees-Sciama
effect in the power spectrum.

6.1 Outlook
We expect to use a larger galaxy survey, such as the Sloan Digital Sky Survey, that spans
larger redshift-depths to estimate the underlying density field and use the same proposed
method in this work to estimate a possible contribution of the late Integrated Sachs-Wolfe
effect. We expect that, given the larger the survey, the temperature contribution should
be higher, and cross-correlation functions and correlation-power spectra should behave
similar to the observed CMB sky. This will allow to give further and stronger conclusions
about the ISW effect and its possible detection, constraining even more the values of
cosmological parameters and allowing to know even more their influence in the evolution
of our Universe.
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CHAPTER

7
Appendix

7.1 Fields from MDPL Simulation
In this appendix, we show the maps of the estimated fields for the MultiDark-Planck
(MDPL) simulation. Using a CIC MAS with a resolution of 1024 cells per axis, the
estimated density contrast field is shown in Figure 7.1. In this figure, it is possible to
appreciate the structures that comprise the simulation. After applying our algorithm that
makes use of Fast-Fourier Transforms (FFT), the estimated gravitational potential field
can be shown in Figure 7.2. It can be noticed how the most negative values of Φ are
associated with the most overdense regions of Figure 7.1, while positive values of Φ cor-
respond to underdense or even void regions. The high resolution used in this simulation
allows to obtain a detailed view of the smallest scales, even inside the most larger ones.

The estimated time derivative of the gravitational potential Φ̇ estimated using the exact
solution (Equation 2.25) is shown in the left panel of Figure 7.3. It can be appreciated
that the positive values of Φ̇ correspond to the most negative values of Φ (i.e., overdense
regions). This means that overdense regions tend to evolve more rapidly than underdense
regions. Those underdense regions are associated with zero or negative values of Φ̇.
The estimation of Φ̇ using the approximation based on the linear growth of structures
(Equation 2.26) is shown in the right panel of Figure 7.3. The main difference with the
estimation with the exact solution is that the linear approximation smooths the structures
at the smallest scales, but the global structure at larger scales is very similar in both
regimes.
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Figure 7.1: Maps of the density field of MDPL simulation in logarithmic scale:
log10 [δ(x) + 1]. Slices at different depths; from top to bottom and left to right: 0 − 10h−1

Mpc, 150− 160h−1 Mpc, 300− 310h−1 Mpc, 450− 460h−1 Mpc, 600− 610h−1 Mpc and
750− 760h−1 Mpc.
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7.1 Fields from MDPL Simulation

Figure 7.2: Gravitational potential maps for the MDPL simulation. From top to bottom and
left to right: 0− 10h−1 Mpc, 150− 160h−1 Mpc, 300− 310h−1 Mpc, 450− 460h−1 Mpc,
600− 610h−1 Mpc and 750− 760h−1 Mpc. Units [Φ] = Internal length2 Internal time−2.
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Figure 7.3: Maps of Φ̇ for the MDPL simulation. Left panel shows Φ̇ in the exact so-
lution, while the right panel corresponds to the linear approximation. From top to bot-
tom: 0 − 10h−1 Mpc, 300 − 310h−1 Mpc and 450 − 460h−1 Mpc. Units [Φ̇] =

Internal length2 Internal time−3.
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