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Unfolding of plasmon-polariton modes in one-dimensional layered systems containing anisotropic
left-handed materials
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The propagation of electromagnetic waves through a 1-dimensional layered system containing alternate layers
of air and a uniaxial, anisotropic, left-handed material is investigated. The optical axis of this material is
along the stacking direction and the components of the electric permittivity and magnetic permeability tensors
that characterize the metamaterial are described by Drude-type responses. Different plasmon frequencies are
considered for directions parallel and perpendicular to the optical axis. As in the isotropic case, plasmon polariton
modes are found in the neighborhood of the plasmon frequency corresponding to the optical axis. Moreover, it
is shown that, depending on the relation between the two plasmon frequencies of the metamaterial, anisotropy
leads to the unfolding of an infinite number of nearly dispersionless plasmon-polariton bands either above or
below the parallel plasmon frequency.
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In the last two decades, a number of both experimental
and theoretical studies have been devoted to understanding the
properties of wave propagation in photonic crystals, which are
artificial periodic arrays of materials with different refractive
indices. As a result, interesting properties of light confinement
and manipulation of electromagnetic waves in these matter
structures have attracted a great deal of interest, due to potential
applications to optical devices such as optical filters,1–3

optical switches,4 optical logic devices,5 and optical buffers.6,7

By producing sophisticated microstructured materials, one
may obtain artificial media with unusual features, such as
simultaneous negative dielectric permittivity ε and magnetic
permeability μ. These so-called metamaterials may be engi-
neered to enhance the role played by the magnetic component
of the electromagnetic field, giving rise to novel regimes of
light-matter interaction. An interface between a material with
positive permittivity and another with negative permittivity
may support surface plasmon polaritons,8 a result of the
coupling of the incident electromagnetic radiation with the
charge density of the material. Recent work on 1-dimensional
(1D) photonic heterostructures formed by alternating a right-
handed material (RHM), such as air, with an ideal isotropic
left-handed material (LHM) has evidenced the existence of a
zero-〈n〉 (null average of the refractive index) band gap9–15

that is insensitive to lattice parameter changes (in contrast
to the behavior exhibited by Bragg gaps), and exhibited bulk
plasmon polariton modes, whether the stacking arrangement
is periodic, quasiperiodic, or even disordered.16–23 However,
in practice, an isotropic LHM is still a great challenge for
researchers, as the available LHM structures are intrinsically
anisotropic. The reflection from a 1D photonic heterostructure
containing an anisotropic LHM has been investigated by
Wang and Gao.24 Moreover, Sun et al.25 have reported
on a two-dimensional (2D) complete photonic band gap
in this type of structure. Recently, the unfolding of nearly
dispersionless modes has been reported26 in a 2D, highly
anisotropic arrangement of hexagonal shell rods of n-doped

GaAs embedded in air. Furthermore, light-matter interaction
in quasiperiodic RHM-LHM stacks has also resulted in the
unfolding of plasmon-polariton modes in the neighborhood of
the plasmon frequency, in contrast with the periodic case.20–22

In this report we extend the investigations of RHM-LHM
photonic 1D superlattices by considering the substitution of
the dispersive isotropic LHM component by an anisotropic
one27–29 in order to answer the question of whether the
physical behavior of the anisotropic metamaterial changes as
compared to the isotropic ones. In the following development
we show that anisotropy leads to the appearance of essentially
dispersionless plasmon-polariton bands and we provide an
approximate analytical expression for such bands.

Here we consider a RHM-LHM photonic 1D superlattice
consisting of alternate layers of materials A and B, of widths
dA and dB , respectively, stacked along the z axis. Moreover, the
origin of this axis separates a layer B (to the left) from a layer
A (to the right) and the length of the unit cell is d = dA + dB .
Material A is a nondispersive isotropic RHM, with scalar
dielectric permittivity εA and magnetic permeability μA. For
simplicity, we assume that B is a uniaxial metamaterial with the
optical axis along the stacking direction. Accordingly, εB and
μB are diagonal tensors with εB,xx = εB,yy = εB,⊥, εB,zz =
εB,‖, μB,xx = μB,yy = μB,⊥, and μB,zz = μB,‖. Hence, the
relations between the intensity and induction vectors of
the electromagnetic field are described by the position-
dependent tensors ε(z) and μ(z), namely D = ε0 ε(z) · E and
B = μ0 μ(z) · H, where ε0 and μ0 are the permittivity and
permeability values of the vacuum, respectively. Moreover,
due to the periodicity of the 1D photonic superlattice, equations
ε(z + d) = ε(z) and μ(z + d) = μ(z) hold.

In order to investigate the propagation of monochromatic
electromagnetic waves, one may write E(r,t) = e−iωtE(r)
and H(r,t) = e−iωtH(r). In this way, the spatial parts of the
electromagnetic field satisfy

∇ × E = iωμ0 μ(z) · H (1)
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and

∇ × H = −iωε0 ε(z) · E. (2)

Because of the periodicity of ε(z) and μ(z), the intensities
of the electromagnetic field satisfy the Bloch condition, i.e.,
E(r + R) = eik·RE(r) and H(r + R) = eik·RH(r) for every
translation vector of the crystal lattice. Moreover, the wave
is assumed to propagate parallel to the xz plane; i.e., we take
k = qex + kez.

For the transversal magnetic (TM) polarization, we
take H(r) = H0 h(z) exp(iqx) ey , where h(z) is a di-
mensionless function. The Bloch condition reads h(z +
d) = eikd h(z). According to Eq. (2), the electric field
is E(r) = exp(iqx)[Ex(z) ex + Ez(z) ez], where Ex(z) =
−i H0 f (z)/(c ε0) and Ez(z) = −q H0 h(z)/[ω ε0 εzz(z)], with
f (z) = c h′(z)/[ω εxx(z)]. This dimensionless function also
satisfies the Bloch condition; i.e., f (z + d) = eikdf (z)
applies. Moreover, Eq. (1) leads to

−f ′(z) =
[
ω μyy(z)

c
− c q2

ω εzz(z)

]
h(z). (3)

Therefore, h(z) satisfies the following equation:

− d

dz

1

εxx(z)

d

dz
h(z) =

[
ω2μyy(z)

c2
− q2

εzz(z)

]
h(z). (4)

Also, for each pair (z0,z), there is a transfer matrix, T(ω,z,z0),
such that [

h(z)

f (z)

]
= T(ω,z,z0)

[
h(z0)

f (z0)

]
. (5)

For the investigated structure, the transfer matrix between
z0 and z > z0 is given by T(ω,z,z0) = Tl · Tl−1 · . . . · T2 · T1,

where Ti transfers across the ith among the l homogeneous
regions between z0 and z (i = 1, . . . ,l increases from z0 to
z). In particular, the transfer matrix between points z and
z + �z within a region of permittivities εL,⊥ and εL,‖ and
permeabilities μL,⊥ and μL,‖, where L may be either A or B,
is written as

TL(ω,�z) =
[

cos(QL�z) ωεL,⊥
cQL

sin(QL�z)
− cQL

ωεL,⊥
sin(QL�z) cos(QL�z)

]
, (6)

with QL =
√

ω2εL,⊥μL,⊥
c2 − q2 εL,⊥

εL,‖
.

To obtain the relation between the wave frequency and the
wave vector, it is useful to consider the matrix

M(ω) = T(ω,d,0) = TB(ω,dB) · TA(ω,dA), (7)

which connects h(0) and f (0) with h(d) and f (d). Hence, by
taking into account the Bloch condition, we get30

cos(kd) = m(ω), (8)

where

m(ω) = cos(QA dA) cos(QB dB)

− 1

2

(
εA QB

εB,⊥ QA

+ εB,⊥ QA

εA QB

)
sin(QA dA) sin(QB dB)

(9)

is the semitrace of M(ω). For each j = 1,2, . . . Eq. (8)
implicitly defines the frequency bands ωj (k).

In this paper, we limit the investigation to the electro-
magnetic modes above the light line of material A, such
that ω > q c/nA. In this case, the components of the wave
vector along the x and z axes take real values q and QA,
respectively. Thus, the allowed frequencies may be calculated
in terms of the angle θ between the z axis and the wave
vector within material A. It is worth noting that if a finite
RHM-LHM 1D layered sample is embedded in optical medium
A, then θ is the incidence angle of the electromagnetic waves.
This angle satisfies q = ωnA

c
sin(θ ), QA = ωnA

c
cos(θ ), and

QB = ω
c

√
εB,⊥μB,⊥ − n2

A sin2(θ ) εB,⊥
εB,‖

.

For the transversal electric (TE) polarization, we
take E(r) = E0 f (z) exp(iqx) ey , where f (z) is a di-
mensionless function that satisfies the Bloch con-
dition. According to Eq. (2), the magnetic field
is H(r) = exp(iqx)[Hx(z) ex + Hz(z) ez], where Hx(z) =
i E0 h(z)/(c μ0) and Hz(z) = qE0 f (z)/[ω μ0 μzz(z)], with
h(z) = c f ′(z)/[ω μxx(z)]. Again, h(z) is dimensionless and
satisfies the Bloch condition. Furthermore, Eq. (2) leads to

−h′(z) =
[
ωεyy(z)

c
− c q2

ω μzz(z)

]
f (z). (10)

Therefore, f (z) satisfies the following equation

− d

dz

1

μxx(z)

d

dz
f (z) =

[
ω2εyy(z)

c2
− q2

μzz(z)

]
f (z). (11)

Moreover, the transfer matrix is defined by[
f (z)

h(z)

]
= T(ω,z,z0)

[
f (z0)

h(z0)

]
, (12)

and the transfer between z and z + �z within layer L is given
by

TL(ω,�z) =
(

cos(QL�z) ωμL,⊥
cQL

sin(QL�z)

− cQL

ωμL,⊥
sin(QL�z) cos(QL�z)

)
,

(13)

with QL =
√

ω2εL,⊥μL,⊥
c2 − q2 μL,⊥

μL,‖
(see Sun et al.25) Moreover,

the semitrace of M(ω) = T(ω,d,0) is

m(ω)= cos(QA dA) cos(QB dB)

− 1

2

(
μA QB

μB,⊥ QA

+ μB,⊥ QA

μA QB

)
sin(QA dA) sin(QB dB).

(14)

In this case, the component of the wave vector along
the z-axis direction in the metamaterial is QB =
ω
c

√
εB,⊥μB,⊥ − n2

A sin2(θ )μB,⊥
μB,‖

.

We present numerical results for the TM modes in a RHM-
LHM photonic 1D superlattice whose unit cell consists of an
air layer denoted by A (εA = μA = 1) and an anisotropic left-
handed material denoted by B. The dielectric permittivity εB

and magnetic permeability μB are given by εB,α = ε∞,α(1 −
ω2

e,α/ω2) and μB,α = μ∞,α(1 − ω2
m,α/ω2), where α =⊥ or

‖. Moreover, in what follows, we use frequency values ν =
ω/(2π ), νe,α = ωe,α/(2π ) and νm,α = ωm,α/(2π ).

The case of isotropic layer B has already been studied by
Reyes-Gómez et al.20 For comparison purposes, we calculate
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FIG. 1. (Color online) Frequency of TM modes as a func-
tion of wave vector k, for θ = π/12 in a RHM-LHM pho-
tonic 1D superlattice with dA = dB = 12 mm and νm,⊥ = νm,‖ = 3
GHz. (a) Isotropic metamaterial with νe,‖ = νe,⊥ = 2.7273 GHz.
(b) Anisotropic metamaterial with νe,⊥ = 2.7273 GHz and νe,‖ =
2.2727 GHz.

the TM modes for θ = π/12 in a RHM-LHM photonic 1D
superlattice with dA = dB = 12 mm, ε∞,⊥ = ε∞,‖ = 1.21,
μ∞,⊥ = μ∞,‖ = 1.00, νe,⊥ = νe,‖ = 2.7273 GHz, and νm,⊥ =
νm,‖ = 3 GHz, as in Ref. 20 with results displayed in Fig. 1(a).
This is in agreement with the discussion in Ref. 20 of
light-matter interaction leading to coupled plasmon-polariton
modes. To probe the effects of anisotropy on the TM modes,
we perform the calculations for the same set of parameters as
above, except for νe,‖ = 5

6νe,⊥ = 2.2727 GHz. One may note
that the two lowest-frequency bands shown in panels 1(a) and
1(b) are separated by the 〈n〉 = 0 gap, near 2 GHz [as this
gap is rather small, it is not easily seen in 1(b)]. The width of
this gap is affected by anisotropy, but the gap survives in all
cases.

As shown in Fig. 1(b), the essentially dispersionless
plasmon-polariton bands occur near the plasmon frequency
νe,‖. Solid lines in Fig. 2 display the four highest among
the nearly flat plasmon-polariton bands around νe,‖. In this
frequency range, it is straightforward to show that

QB ≈ π

dB

√
β

ν
νe,‖

− 1
, (15)

with β = 2 d2
B n2

A sin2(θ ) (ν2
e,⊥ − ν2

e,‖) ε∞,⊥/(c2 ε∞,‖). Then,
the second term of m(ω) in Eq. (9) will diverge to infinity
unless QAdA ≈ nπ or QBdB ≈ nπ , for a positive integer
n. However, the first of these two conditions applies for
frequencies far away from νe,‖. In fact, it leads to ν ≈
n c/[2nA dA cos(θ )] � n c/(2nA dA) > 4.1 GHz. The second
condition, QBdB ≈ nπ , since we are dealing with the case
β ≈ 0.0005 > 0, applies only for frequencies above νe,‖. To
obtain the approximate shape of the corresponding bands, we
write QBdB = [n + δn(k)]π . Then, we take ν ≈ νe,‖, make a

FIG. 2. (Color online) Solid lines are the four highest nearly
dispersionless plasmon-polariton bands just above the frequency νe,‖
in Fig. 1(b). Dots are for n = 1, . . . ,4 in Eq. (17).

first-order Taylor expansion of m(ω) in δn(k), and substitute
into Eq. (8) to obtain

δn(k) =
2dBε∞,⊥

(
1 − ν2

e,⊥
ν2
e,‖

)
[cos(φ) − (−1)n cos(kd)]

nπ2dAεA sin(φ)/φ
,

(16)

with φ = 2πνe,‖nAdA cos(θ )/c. Moreover, following Eq. (15),
the investigated bands are essentially given by

ν ≈ νe,‖

{
1 + β

[n + δn(k)]2

}
. (17)

To assess this approximation, the results for n = 1,2,3, and
4 are displayed as dots in Fig. 2. We observe that Eq. (17)
is in good agreement with the exact results. Moreover, the
agreement is better for larger values of n. In fact, from Eq. (16),
the maximum value of |δn(k)| decreases as n increases, thus
making our approximations more reliable. This demonstrates
the existence of an infinite series of plasmon-polariton bands
in the small frequency range under consideration.

Now the diagonal permittivity along the z axis is taken as
νe,‖ = 7

6νe,⊥ = 3.1818 GHz, while all other parameters remain
the same. Figure 3(a) shows that the nondispersive parts of the
plasmon-polariton bands occur near the plasmon frequency
νe,‖. Moreover, since β ≈ −0.0006 < 0, the infinite series of
nearly flat plasmon-polariton bands is just below νe,‖ [see
Eq. (15)]. This is illustrated in Fig. 3(b), where dots correspond
to results of approximation in Eq. (17) for n = 1, . . . ,4.

It should be remarked that the width of the frequency
range containing the infinite series of nearly flat bands is of
the order of |β| νe,‖ ∝ d2

B n2
A sin2(θ ) |νe,⊥ − νe,‖|. Therefore,

this width tends to zero when either θ → 0 or νe,‖ → νe,⊥,
and the series of nearly dispersionless bands folds into an
infinitely degenerate frequency at νe,‖. Conversely, when
the metamaterial is anisotropic, oblique incidence produces
the unfolding of the degenerate plasmon frequency into the
investigated series of bands. Moreover, this unfolding
should be more noticeable for larger values of θ , dB ,
and nA.
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FIG. 3. (Color online) (a) Frequency of TM modes as a function
of wave vector k, for θ = π/12, in a RHM-LHM photonic 1D
superlattice with dA = dB = 12 mm. Metamaterial B is anisotropic
with νe,⊥ = 2.7273 GHz, νe,‖ = 3.1818 GHz, and νm,⊥ = νm,‖ =
3 GHz. (b) Solid lines are the four lowest plasmon-polariton bands
just below the frequency νe,‖ in panel (a). Dots are for results of
Eq. (17) when n = 1, . . . ,4.

It is important to stress that a fundamental limitation of
metamaterials is their absorptive nature, which would certainly
compromise, in real systems, the resolution of the sub-bands
found here. Nevertheless, besides the fact that the theoretical
prediction of these nearly dispersionless plasmon-polariton
modes should be relevant for a comprehensive understand-
ing of metamaterial structures, researchers worldwide are
putting efforts into fabrication techniques that compensate the
losses that dampen the plasmon polaritons in metamaterial
heterostructures. Thus, the combination of metamaterials
with electrically and optically pumped gain media, as well
as emerging graphene technology are expected to lead to
remarkable progress in metamaterial engineering, providing

low-loss materials suitable for use in optical devices and in the
electronic industry.31–35

Summing up, we have dealt theoretically with TM and TE
modes of a RHM-LHM photonic 1D superlattice with a unit
cell consisting of a layer of air and a layer of an anisotropic
LHM. Numerical results are shown here for TM modes only.
However, because of the equivalence between differential
equations (4) and (11), similar results should be obtained
for TE modes, provided the corresponding parameters of the
dielectric-permittivity and magnetic-permeability tensors are
interchanged. For TM (TE) configuration, the essentially dis-
persionless electric (magnetic) plasmon polariton bands occur
near the frequency where the diagonal dielectric permittivity
(magnetic permeability) along the stacking direction is zero,
hence the bulk character of the plasmon mode. When this
frequency is less (greater) than the plasmon frequency in the
perpendicular direction, an infinite series of dispersionless
bands is found just above (below) it. Simple analytic expres-
sions to estimate the shapes of those bands have been given
and analyzed. In comparison with the isotropic RHM-LHM
photonic 1D superlattice, we find that anisotropy leads to
the unfolding of essentially dispersionless plasmon-polariton
bands in the same fashion as in the case of the 2D anisotropic
GaAs photonic structure of dispersive rods embedded in air.
We do hope that the results obtained here might help in the
understanding of the physical reasons behind the appearance
of dispersionless bands in 2D photonic structures.
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