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4Instituto de Fı́sica, Universidade Estadual de Campinas-UNICAMP, Campinas-SP, 13083-859, Brazil

(Received 2 February 2012; published 7 May 2012)

The localization properties of electromagnetic modes in one-dimensional disordered photonic superlattices are
theoretically studied. The multilayered system is considered to be composed of alternating stacks of two different
random-thickness slabs, characterized by nondispersive and/or frequency-dependent electric permittivities and
magnetic permeabilities. Results for the localization length are evaluated by using an analytical model for weakly
disordered systems as well as its general definition through the transmissivity properties of the heterostructure.
Good agreement between both results is observed only for small amplitudes of disorder. The critical frequencies
at which the localization length diverges are correctly predicted in the whole frequency spectrum by the analytical
model and confirmed via the corresponding numerical calculations. The λ2 dependence of the localization length,
previously observed in disordered heterostructures made of material of positive refractive indexes, are confirmed
in the present work. In addition, new λ4 and λ−4 dependencies of the localization length in positive-negative
disordered photonic superlattices are obtained, under certain specific conditions, in the long and short wavelength
limits, respectively. The asymptotic behavior of the localization length in these limits is essentially determined
by the particular frequency dispersion that characterizes the metamaterial used in the left-handed layers. When
the effects of absorption are considered, then a divergence of the localization length is still observed, under some
conditions, in the short wavelength limit.
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I. INTRODUCTION

The complex and fascinating physics behind Anderson
localization1 has stimulated a rich variety of theoretical
and experimental work, worldwide, on the nature of wave
propagation in random media. Characterized originally by
the vanishing of the electronic diffusion in disordered media,
this interference wave phenomenon has been investigated in
all sorts of waves, from electromagnetic to seismic ones.
Anderson localization has been observed in classical wave sys-
tems such as microwave, light, and ultrasound.2 The vectorial
character of the electromagnetic waves may provide interesting
phenomena not known in their electronic counterpart. The
microstructuring techniques of high-quality optical materials,
available nowadays, have given a new thrust to develop further
studies on this important and puzzling phenomenon. Disorder
and localization effects on light propagation in photonic
crystals (PC) have been investigated both theoretically and
experimentally.3,4 Due to the remarkable flexibility in the
fabrication of new materials, one is able to tailor the electro-
magnetic dispersion relation and mode structure of a material
to suit almost any need,5 such as the simultaneous negative
electric permittivity and magnetic permeability of a so-called
metamaterial or a left-handed material (LHM) in contrast with
the usual right-handed material (RHM), an allusion to the
vectorial product between the electric and magnetic fields.6

To ensure positiveness of the electromagnetic energy density,7

a LHM must be dispersive. Furthermore, it exhibits optical
magnetism.8,9 This particular feature induces new possibilities
for the control of light propagation, such as negative refraction,
superlens, and cloaking.10–12 A study on a one-dimensional
(1D) structure composed of alternate layers of air and a
nondispersive LHM, where the disorder was introduced by

randomizing the refractive indices of the layers, has indicated
strong suppression of Anderson localization13,14 and unusual
behavior of the localization length ξ at long wavelengths λ, in
contrast with the well-known ξ ∝ λ2 asymptotic behavior.15

Although in Refs. 13 and 14 it was shown that ξ ∝ λ6,
this result is essentially due to the insufficient size of the
systems considered in the numerical calculations, and a recent
analytical study16 indicated that, in such systems, the correct
asymptotic behavior of the localization length is ξ ∝ λ8.

An interesting example of the impact of optical magnetism
is given by the observation of Brewster angles in a transversal-
electric (TE) configuration of the electromagnetic field prop-
agating through a LHM, evidencing the role played by the
magnetic dipoles in the polarization of light. The influence of a
dispersive electromagnetic response on Anderson localization
in a long stack assembled by alternating a pair of materials,
a dispersive one (right or left handed) and a right-handed
nondispersive one, has been thoroughly investigated illustrat-
ing interesting new features that appears due to a combination
of oblique incidence and dispersion.17–20 By choosing incident
light through 1D disordered structures at Brewster angles, one
finds a polarization-induced delocalization effect.21 Indeed,
for specific combinations of angle of incidence and frequency,
Brewster anomalies are present (for both states of polarization
and not necessarily within the negative-refraction regime), thus
effectively delocalizing light. It was also found that the power-
of-λ asymptotic behavior of the localization length does not
hold for large angles of incidence. Furthermore, by taking into
account correlations effects, one finds that these do not modify
the asymptotic behavior of the localization length although
absorption tends to suppress the delocalized Brewster modes.18

Investigations on a RHM-LHM Fibonacci heterostructure
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have illustrated the influence of the combination dispersion-
quasiperiodicity on the localization length.19 The effects of the
absorption on the Anderson localization of electromagnetic
waves in weakly disordered systems were also theoretically
investigated.20 Such studies reveal that delocalized modes,
obtained from numerical simulations in nonabsorptive media,
are gradually suppressed as the absorption level is increased.

In the present work, we set out to investigate the influence
of the particular medium response on the localization length
of 1D stacks composed of nondispersive RHM-RHM or
RHM-LHM superlattices, in which the LHM layer is con-
sidered dispersive, in order to understand the behavior of the
localization length under various types of medium responses.
This paper is organized as follows: In Sec. II the theoretical
procedure is described. In Sec. III we show the results obtained
for various types of heterostructures: a nondispersive RHM-
RHM superlattice, a RHM-LHM superlattice in which the
LHM is characterized by Drude-type responses, and, finally,
a RHM-LHM superlattice with the LHM characterized by a
dispersive split-ring resonator (SRR) electric permittivity and
magnetic permeability, with and without absorption effects.
Section IV presents our conclusions that amounts to say that
the asymptotic behavior of the localization length depends
crucially on the particular medium response.

II. THEORETICAL FRAMEWORK

Here we consider a multilayered system composed of
alternating stacks of two different slabs of optical materials
A and B, which are characterized by electric permittivities
and magnetic permeabilities εA and μA, and εB and μB ,
respectively. The multilayered system under consideration is
supposed to be sandwiched between two semi-infinite layers
of material A. The width aj (bj ) of the layer A (B) at the
j th site of the multilayered system is defined as aj = a + δA

j

(bj = b + δB
j ), where δA

j (δB
j ) are random variables uniformly

distributed in the interval [−�A/2,�A/2] ([−�B/2,�B/2]).
Parameters �A and �B are then the amplitudes of disorder of
layers A and B, respectively. Further, we assume that there
is no correlation between the disorder of the heterostructure
slabs.22 In what follows, the symbol 〈...〉 represents the
configurational average of a given geometrical or physical
variable, i.e., the average taken over a sufficiently large
ensemble of multilayered systems, in which each element
of the ensemble corresponds to a system obtained for a
single realization of disorder. One may note that a = 〈aj 〉
and b = 〈bj 〉.

In order to calculate the localization length of the electro-
magnetic modes in the multilayered heterostructure, it is, first,
necessary to calculate the light-transmission coefficient T of
the photonic heterostructure. The transfer-matrix formalism
may be used for such purposes.17–19 Once the transmission
coefficient is obtained for each member of the ensemble,
the localization length ξ may be evaluated through the
expression15,23

ξ−1 = − lim
N→∞

〈
ln(T )

2L

〉
, (1)

where N is the number of double layers (AB) in the photonic
system and L = ∑N

j=1(aj + bj ) is the length of the photonic
heterostructure. For practical purposes, the limit N → ∞ in
Eq. (1) is reached for a sufficiently large number of layers
in each photonic heterostructure of the ensemble over which
the configurational average is taken.19 It is also necessary to
explain how the number of elements of such ensemble, i.e.,
the number of disorder realizations, is chosen. The single-
parameter scaling (SPS) principle dictates that var(l) = l,
where var(l) = 〈l2〉 − 〈l〉2 is the variance of the dimensionless
Lyapunov exponent l = 〈L〉/ξ , and 〈L〉 is the average system
length.24,25 The SPS principle indicates that large values of l

lead to large values of the variance var(l) and, therefore, to large
fluctuations of the Lyapunov exponent around its mean value.
It then would be important to set up an appropriate value of
the number of realizations to take the configurational average.
Nevertheless, the SPS principle is violated under some specific
conditions and, therefore, it cannot be straightforwardly used
to predict the behavior of var(l) from the value of the Lyapunov
exponent.24,25 Consequently, an estimation of the optimal
number of realizations sufficient to achieve the convergence of
Eq. (1) cannot be trivially obtained, by using the SPS principle,
from an a priori value of the localization length. The number of
realizations used in the present paper was chosen by studying
the convergence of the localization length, as a function of the
number of realizations, for a collection of some frequency
values. We noted that, in most of cases discussed below,
numerical results for the localization length stabilized around
50–90 realizations of disorder (the study of the convergence
will not be shown here).

Although Eq. (1) provides a general way to obtain the
localization length in 1D disordered heterostructures, for
weakly disordered systems it is possible to derive an analytical
expression for ξ in terms of parameters corresponding to a 1D
finite photonic crystal without disorder, with slabs A and B

of widths a and b, respectively. It has been shown17,22 that, in
this case, the localization length may be obtained as

ξ−1 = K

8d sin2(kd)
, (2)

where d = a + b, k is the 1D Bloch wave vector in the perfect
photonic crystal and

K = F 2
−

[
Q2

Aσ 2
A sin2(QBb) + Q2

Bσ 2
B sin2(QAa)

]
. (3)

The variances σ 2
A = 〈(δA

j )2〉 = �2
A/12 and σ 2

B = 〈(δB
j )2〉 =

�2
B/12 account for the degrees of disorder of the slabs A

and B, respectively, whereas sin2(kd) may be computed from
the transcendental equation giving the dispersion relation of
the periodic 1D photonic crystal, i.e.,

cos(kd) = cos(QAa) cos(QBb) − 1
2F+ sin(QAa) sin(QBb).

(4)

In the above expressions one has

F± = fA

fB

± fB

fA

, (5)
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where the functions fx (x = A,B), for the TE and TM
polarizations, are given by

f TE
x = ux

μx

and f TM
x = ux

εx

, (6)

respectively, ux =
√

εxμx − sin2 θ , Qx = (ω/c)ux , and θ is
the incidence angle relative to the vacuum. Equation (2)
was recently derived by Izrailev and Makarov22 and was
generalized by Mogilevtsev et al.17 to include the possibility
of oblique incidence. Hereafter we refer to this equation as the
Izrailev-Makarov (I-M) equation,22 which was perturbatively
obtained under the assumptions that, in the multilayered
system, the field phase is homogeneously distributed and the
disorder is weak. In other words, the disorder amplitudes
should be much less than the mean widths of the slabs
composing the heterostructure, and the conditions Q2

xσ
2
x � 1

(with x = A,B) should be satisfied22 in order to use Eq. (2).
This fact is of particular importance in dispersive superlattices,
where the product Q2

xσ
2
x may be divergent in the limit ω → 0,

ω → ∞ or even at a finite value of the frequency. Therefore,
the particular frequency dependencies of both ε(ω) and μ(ω)
in each material of the heterostructure will determine the
frequency regions where Eq. (2) is applicable.

We now consider the I-M equation in some detail and
refer to the localization length as obtained from Eq. (2). We
are interested in studying the frequency values at which the
localization length diverges, yielding extended states in the
disordered multilayered system. We denote such frequency
values as ωc critical frequencies. Of course, ωc should be real
and non-negative. By taking into account Eq. (4), one may
note that the inequality

| cos(QAa) cos(QBb) − 1
2F+ sin(QAa) sin(QBb)| � 1 (7)

should be satisfied in the limit ω → ωc.
We, first, analyze the case of normal incidence (θ = 0), a

situation in which one may expect that the condition

lim
ω→ωc

K(ω) = 0 (8)

should be accomplished. In this case (θ = 0), the function K

may be written as

K(ω) = ω2

c2
gN (ω) hN (ω), (9)

where

gN (ω) = [εA(ω)μB(ω) − εB(ω)μA(ω)]2 (10)

and

hN (ω) = σ 2
A

sin2
[

ωb
c

√
εB(ω)μB(ω)

]
εB(ω)μB(ω)

+ σ 2
B

sin2
[

ωa
c

√
εA(ω)μA(ω)

]
εA(ω)μA(ω)

. (11)

If the critical frequencies come from the zeros of gN , then one
may see that Z2

A(ωc) = Z2
B(ωc), where

Zx(ω) =
√

μx(ω)√
εx(ω)

(12)

is the optical impedance of medium x = A or x = B. In other
words, the suppression of the Anderson localization would be

due, in this case, to the matching of the square of the optical
impedance throughout the multilayered system. As it is known,
the impedance matching of two different media leads to the
vanishing of the reflectivity at the interface between them,22,26

a fact which results in an enhancement of the transmissivity
and, as a consequence, in an increase of the localization length.
The critical frequencies obtained from the condition gN (ω) =
0 do not depend on the geometrical parameters or degree of
disorder of the multilayered system and are determined by
the frequency dependence of the electric permittivities and
magnetic permeabilities of slabs A and B.

In the absence of absorption effects, i.e., for electric εx and
magnetic μx responses assumed as real functions, a careful
analysis of Eq. (11) indicates that the zeros of hN are not
critical frequencies. In fact, the equation hN (ω) = 0 has no real
solutions unless the conditions ωa

c

√
εA(ω)μA(ω) = m1π and

ωb
c

√
εB(ω)μB(ω) = m2π are simultaneously met for a certain

value of the frequency, where m1 and m2 are nonzero integer
numbers. According to Eq. (4), the above conditions lead to
cos(kd) = ±1 and, therefore, to the vanishing of sin2(kd) in
the denominator of Eq. (2). Nevertheless, it is possible to show
that the localization length remains finite as the frequency
approaches the zeros of hN .

As the I-M equation was obtained under the condition
Q2

xσ
2
x � 1, with x = A and B, one may expect that it would

not be valid in a frequency region where the above condition
does not hold. However, the I-M equation may still be useful
to predict the critical frequencies when Q2

xσ
2
x � 1. The reason

is the equivalence between the conditions gN (ωc) = 0 and
Z2

A(ωc) = Z2
B(ωc) satisfied by the critical frequency in the case

of normal incidence: The former one is derived from the I-M
equation, whereas the second one is general and independent
on the degree of disorder.7,22 In this way, apart from the positive
real zeros of gN and the case ω = 0 [cf. Eq. (9)], one has that
ω → ∞ is a possible candidate to take into account. If ωc = 0
is a critical frequency, then one may expect a suppression of the
Anderson localization in the limit λ → ∞, where λ = 2πc/ω

is the vacuum wavelength associated with the electromagnetic
wave. If ωc → ∞ is a critical frequency, then one may expect a
suppression of the Anderson localization in the limit λ → 0. Of
course, these frequency values are actual critical frequencies
only if condition (7) is satisfied.

A similar reasoning applies for oblique incidence. In this
case, the delocalization process is often explained in terms
of Brewster anomalies17–19: If the incidence angle coincides
with the Brewster angle θB , the reflected electromagnetic
wave is suppressed when the incoming monochromatic wave
is incident with TM or TE polarization, a fact which gives
rise to maximum transmission. In this case the localization
length may become larger than the system length and the
electromagnetic modes are then delocalized. It is important
to stress that, for a given Brewster angle, a set of different
frequencies may satisfy the Brewster condition. An important
keystone to identify when a critical frequency corresponds to
a Brewster anomaly17,18 is its strong dependence on θB .

For oblique incidence, one may note that K in Eq. (2) is
given by

K(ω,θ ) = ω2

c2
gO(ω,θ ) hO(ω,θ ), (13)
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where

hO(ω,θ ) = σ 2
A

sin2
[

ωb
c

√
εB(ω)μB(ω) − sin2 θ

]
εB(ω)μB(ω) − sin2 θ

+ σ 2
B

sin2
[

ωa
c

√
εA(ω)μA(ω) − sin2 θ

]
εA(ω)μA(ω) − sin2 θ

(14)

and gO is defined for TE and TM modes as

gTE
O (ω,θ ) =

[
[εA(ω)μA(ω) − sin2 θ ]

μB(ω)

μA(ω)

− [εB(ω)μB(ω) − sin2 θ ]
μA(ω)

μB(ω)

]2

(15)

and

gTM
O (ω,θ ) =

[
[εA(ω)μA(ω) − sin2 θ ]

εB(ω)

εA(ω)

− [εB(ω)μB(ω) − sin2 θ ]
εA(ω)

εB(ω)

]2

, (16)

respectively. For a given value of the Brewster angle θB , the
critical frequencies should satisfy

lim
ω→ωc

K(ω,θB) = 0. (17)

As in the case of normal incidence, for oblique incidence it is
possible to see that, for a given value of the incidence angle
θ , the frequency values corresponding to the zeros of hO(ω,θ )
are not critical frequencies in the absence of absorption. In this
case, the possible candidates to critical frequencies are ω = 0,
ω → ∞, and the positive real values of ω satisfying equation
gX

O(ω,θ ) = 0, with X = TE or X = TM.
Frequencies ω = 0 and ω → ∞ may be critical frequencies

provided that condition (7) is satisfied, that ξ diverges in the
limits ω → 0 and ω → ∞, respectively, and under conditions
that we shall discuss below. In any case, ω = 0 and ω → ∞
should not be considered as related with Brewster anomalies.
In order to expand on this, we suppose that functions εA, μA,
εB , and μB have positive finite limits ε∞

A , μ∞
A , ε∞

B , and μ∞
B ,

respectively, as ω → ∞. Moreover, we take (Z∞
A )2 = (Z∞

B )2,
where Z∞

A and Z∞
B are the optical impedances of the slabs A

and B, respectively, in the high-frequency limit. In this case we
expect a suppression of the Anderson localization for normal
incidence as ω → ∞ due to the matching of the square of the
optical impedances of the system at this limit. In addition,
if condition μ∞

A = μ∞
B is satisfied, then the function gTE

O

becomes independent of θ . This fact, combined with condition
(Z∞

A )2 = (Z∞
B )2, leads to the vanishing of gTE

O as ω → ∞ and,
therefore, to the suppression of the Anderson localization for
TE modes in the high-frequency region. A similar situation
takes place for TM waves. If ε∞

A = ε∞
B , then gTM

O becomes
independent of θ and tends toward zero as ω → ∞, leading
to the suppression of the Anderson localization at this limit.
These are cases in which the delocalization process should not
be explained in terms of a Brewster anomaly, but one may
classify this singularity of ξ as omnidirectional. Furthermore,
if μ∞

A 	= μ∞
B (ε∞

A 	= ε∞
B ) then the localization of TE (TM)

waves occurs for oblique incidence in the high-frequency
limit. This analysis may also be extended to the low-frequency
region provided that the functions εA, μA, εB , and μB have

finite limits ε0
A, μ0

A, ε0
B , and μ0

B , respectively, as ω → 0.
Moreover, there may be a physical case in which functions,
μA, εA, μB , and εB have positive or negative finite limits
μ

j

A, ε
j

A, μ
j

B , and ε
j

B , respectively, at some finite value ωj

of the wave frequency, and that such value of the frequency
satisfies inequality (7). If condition Z2

A(ωj ) = Z2
B(ωj ) is valid,

then ωj may be a critical frequency for normal incidence. If
we also have μA(ωj ) = ±μB(ωj ) [εA(ωj ) = ±εB(ωj )], then
the function gTE

O (ωj ,θ ) = 0 [gTM
O (ωj ,θ ) = 0] regardless of

the value of θ . Consequently, the TE modes (TM) may be
delocalized in such a case and delocalization should not be
interpreted as a Brewster anomaly as, although ωj is finite,
it is independent of θ . As in the limits ω → 0 and ω → ∞
analyzed above, delocalization would be omnidirectional at
this frequency value. If the remaining positive real zeros of ω

satisfying equation gX
O(ω,θ ) = 0 (X = TE or X = TM) also

satisfy condition (7), then they may be identified as the usual
Brewster anomalies obtained for a given value of the incidence
angle.

III. RESULTS AND DISCUSSION

A. RHM-RHM nondispersive systems

We, first, consider slabs A and B composed of two
different nondispersive materials, for which both magnetic
permeabilities and electric permittivities are positive and
independent of the wave frequency. For normal incidence one
may see that, if Z2

A = Z2
B , then the localization length diverges

for all values of the wave frequency, as expected.22 One may
note that if condition Z2

A 	= Z2
B is satisfied, there is only one

value of the critical frequency, ωc = 0. Furthermore, according
to Eq. (4) and Eqs. (9)–(11), it is possible to show that

ξ
λ→∞−→ 2

π2

ε μ

[εAμB − εBμA]2

d5

σ 2
Ab2 + σ 2

Ba2

(
λ

d

)2

, (18)

where ε = (εAa + εBb)/d and μ = (μAa + μBb)/d. We note
that the λ2 asymptotic behavior of the localization length as
λ → ∞ is a well-known result already reported for RHM-
RHM nondispersive multilayered systems.22

To compare the analytical predictions for the localization
length obtained from the I-M equation with the numerical
results calculated from Eq. (1), we display in Fig. 1, for normal
incidence, the localization length, as a function of the vacuum
wavelength, in a RHM-RHM multilayered system of N = 106

double layers, with the localization length expressed in units
of the average system length 〈L〉 = N d. For simplicity, we
have used the same disorder amplitude for both slabs A and
B, i.e., �A = �B = �. Calculations were performed for a =
b = 12 μm, and we have chosen the electric permittivities and
magnetic permeabilities as in an air-silicon stack (εA = μA =
μB = 1 and εB = 13.1827). Solid lines in Figs. 1(a) and 1(b)
correspond to the localization length obtained from the I-M
equation for � = 1 μm and � = 12 μm, respectively, whereas
circles and squares are the numerical results obtained from
Eq. (1) also for � = 1 μm and � = 12 μm, respectively, and
for 100 realizations of disorder. In addition, we have displayed
the λ2 asymptotic behavior of the localization length evaluated
by using Eq. (18) (cf. oblique dashed-dotted lines in Fig. 1).
Notice that, in contrast with the I-M results, the localization
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FIG. 1. (Color online) Localization length for normal incidence,
in units of the average system length 〈L〉, as a function of the vacuum
wavelength (expressed in units of d = a + b) in a RHM-RHM multi-
layered system of N = 106 double layers, with a = b = 12 μm, εA =
μA = μB = 1, and εB = 13.18. Circles and squares correspond to nu-
merical results obtained from Eq. (1) for � = 1 μm and � = 12 μm,
respectively, and for 100 realizations of disorder. In panels (a) and
(b), solid curves correspond to calculations obtained from Eq. (2) for
� = 1 μm and � = 12 μm, respectively, and oblique dashed-dotted
lines depict the λ2 asymptotic behavior from Eq. (18), for � = 1 μm
and � = 12 μm, respectively. The horizontal dashed lines separate
localized and delocalized states. Results are also depicted in the insets
for a narrow window of vacuum wavelengths.

length obtained from Eq. (1) remains constant in the limit
λ → 0. A similar result was reported by Asatryan et al..13,14

Discrepancies are essentially due to the inapplicability of the I-
M equation at the short wavelength (or high-frequency) limit in
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FIG. 2. (Color online) As in Fig. 1, for oblique incidence (with
incidence angle θ = π/12). Results were obtained for the TE [panels
(a) and (b)] and TM [panels (c) and (d)] modes.

nondispersive superlattices. In this limit the condition Q2
xσ

2
x �

1 (x = A,B), under which the I-M equation was obtained, is
not fulfilled. In the long wavelength limit the I-M equation
leads to ξ ∝ λ2. Numerical calculations obtained from Eq. (1)
also display such behavior of ξ in that limit. As Q2

xσ
2
x → 0

(x = A,B) as λ → ∞, one may expect a good agreement
between the theoretical model and numerical calculations in
such a wavelength region. However, for the larger values of
λ and for low disorder amplitudes [cf. Fig. 1(a)] one may
observe a slight dispersion of the numerical results around the
λ2 curve. This behavior is essentially due to the finiteness of the
system length, which artificially affects the numerical results
obtained from Eq. (1) mainly in the case of � � d, where the
localization length is greater than that obtained for � ∼ d. One
may note from Fig. 1(b) that, for larger disorder amplitude,
the λ2 prediction derived from the I-M equation is in good
agreement with numerical results computed from Eq. (1). On
the other hand, for intermediate wavelengths, the I-M results
and numerical calculations agree only for the smallest value
of the disorder amplitude (cf. the insets of Fig. 1). A similar
situation takes place for oblique incidence, as one may clearly
see from Fig. 2, where the localization lengths corresponding
to TE and TM polarizations are depicted as functions of λ.

It is apparent from Figs. 1 and 2 that the I-M equation de-
scribes very well the frequency dependence of the localization
length for intermediate wavelengths and in the limit λ → ∞.
In the limit λ → 0, however, the localization length remains
independent of the wavelength (or frequency), and the I-M
model is not applicable.

B. RHM-LHM superlattices with dispersive Drude responses

Let us now consider RHM-LHM multilayered systems
in which layers A are nondispersive RHMs and layers B
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TABLE I. Conditions for which ωc [cf. Eq. (21)] is a critical
frequency, obtained for photonic systems composed by layers A of
a nondispersive RHM and LHM layers B with dispersives electric
permittivity and magnetic permeability given by a Drude-like model.

Case 1 ωm < ωeZA/Z∞ and Z∞ < ZA

Case 2 ωm > ωeZA/Z∞ and Z∞ > ZA

Case 3 ωm = ωeZA/Z∞ and Z∞ 	= ZA

Case 4 ωm 	= ωeZA/Z∞ and Z∞ = ZA

consist of dispersive LHMs with both electric permittivity and
magnetic permeability given by the Drude model,28,29 i.e.,

εB(ω) = ε∞

(
1 − ω2

e

ω2

)
(19)

and

μB(ω) = μ∞

(
1 − ω2

m

ω2

)
, (20)

where ωe and ωm are the electric and magnetic plasmon
frequencies, respectively, and ε∞ and μ∞ are the positive
electric permittivity and magnetic permeability, respectively,
of material B in the limit ω → ∞.

Let us, first, consider the case of normal incidence. By
defining Z∞ = √

μ∞/
√

ε∞ as the optical impedance of the
layers B at infinite frequency, it may be shown that the critical
frequency is given by

ωc =
√

ω2
m − ω2

eZ
2
A/Z2∞

1 − Z2
A/Z2∞

(21)

under any of the conditions summarized in Table I. Each
of such conditions guarantees a real value of ωc and an
optical impedance Z(ωc) independent on the growth-direction
coordinate. One may note that, if ωm = ωeZA/Z∞ and,
simultaneously, ZA = Z∞, the function gN [cf. Eq. (10)]
vanishes and ξ goes to infinity for all values of the wave
frequency ω.

The first two cases shown in Table I lead to finite and
nonzero values of the critical frequency, whereas the third
and fourth cases lead to critical frequencies equal to zero
and infinity, respectively. As a consequence of the Drude-like
electric and magnetic responses given by Eqs. (19) and (20),
respectively, one may note that Q2

Bσ 2
B diverges as ω → 0 (or

λ → ∞) and ω → ∞ (or λ → 0), whereas Q2
Aσ 2

A diverges
in the limit ω → ∞ (λ → 0). It must be emphasized that, at
these two limits, the I-M equation could not be applied to
describe the frequency dependence of the localization length.
Nevertheless, it is interesting to obtain the asymptotic behavior
of the localization length as a function of the frequency
(or vacuum wavelength) by taking the corresponding limits
λ → ∞ or λ → 0 in Eq. (2). In this sense, if the third condition
of Table I is satisfied, one may show, for Drude-like responses,
that

ξ
λ→∞−→ sin2

[
2π

λ
|n(λ)| d

]
ξmax(λ), (22)

where

ξmax(λ) = �∞

(
λ

d

)4

, (23)

�∞ = d5

2 π4 ε2
A μ2∞

(
1 − Z2

A

Z2∞

)2
σ 2

B a2
, (24)

|n(λ)| = nA a + |nB(λ)| b
d

, (25)

and |nB(λ)| = |√εB(2πc/λ)| |√μB(2πc/λ)|. It is apparent
from Eq. (22) that the I-M equation predicts a rapid oscillatory
behavior of the localization length in the limit λ → ∞,
provided that the third condition of Table I is fulfilled. The
oscillatory part of the localization length is modulated by
λ4, which governs the behavior of the maxima of ξ as
functions of λ [cf. Eq. (23)]. The λ4 dependence of the
localization length in the long wavelength limit, which is a
consequence of the Drude-like frequency dependence of both
the electric permittivity and magnetic permeability of layers B

[cf. Eqs. (19) and (20)], differs from the asymptotic behavior
of ξ previously reported by Asatryan and coworkers13,14 and
by Torres-Herrera et al.16 in photonic heterostructures made
of layers with random refractive indices. We should also
mention that the behavior ξ ∝ λ4 was obtained for RHM-RHM
1D disordered photonic crystals,22 in the limit λ → ∞, by
introducing a linear correlation between the fluctuations of the
layer widths. Such a physical situation differs from the one
studied in the present work, where no correlation between the
disorder of the photonic slabs was taken into account.

If the fourth condition of Table I is satisfied, then one may
obtain, for Drude-like responses, that

ξ
λ→0−→ �0 G0(λ)

(
λ

d

)−2

, (26)

where

�0 = 32 π2 c4

ε2
A μ2∞ d

(
ω2

e − ω2
m

)2 , (27)

G0(λ) = sin2
[

2π
λ

n∞ d
]

σ 2
A

sin2[ 2π
λ

b
√

ε∞μ∞]
ε∞μ∞

+ σ 2
B

sin2[ 2π
λ

a
√

εAμA]
εAμA

, (28)

and

n∞ =
√

εA μA a + √
ε∞ μ∞ b

d
. (29)

The localization length may be expressed as a bounded and
highly oscillatory function of λ [�0 G0(λ)] modulated by a
power-of-λ function. Maxima of ξ are then given by

ξmax(λ) = �0

(
λ

d

)−2

, (30)

where �0 = �0 β and β is the amplitude of the oscillations
of G0(λ). The above-obtained theoretical results may be
generalized for the case of oblique incidence, with critical
frequencies obtained similarly as in Sec. II. Here we mention
that Case 3 in Table I was analyzed by Mogilevtsev et al..17

We now compare the above theoretical I-M predictions
with the numerical results obtained from Eq. (1). We have
supposed the same disorder amplitude � for both the photonic
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FIG. 3. (Color online) Localization length for normal incidence in units of the average system length 〈L〉 as a function of the vacuum
wavelength (expressed in units of d = a + b) for N = 500 000 double layers in a RHM-LHM photonic system with a = b = 12 μm. Layers A

are composed by a nondispersive RHM, whereas in dispersive layers B both the electric permittivity and magnetic permeability are described by
a Drude-like model [cf. Eqs. (19) and (20), respectively]. Circles and squares correspond to numerical results obtained from Eq. (1) for � = 1 μm
and � = 12 μm, respectively, and for 100 realizations of disorder. Calculations displayed in (a) and (b) were performed for ε∞ = 1.21, μ∞ = 1,
and εA = μA = 1 and correspond to the physical situations described in the first and third rows, respectively, of Table I. Results depicted in (c)
are obtained for εA = ε∞ = 1.21 and μA = μ∞ = 1 and correspond to Case 4 of Table I. In all cases, the corresponding plasmon frequencies
νe = ωe/(2π ) and νm = ωm/(2π ) are given in each panel. Upper (� = 1 μm) and lower (� = 12 μm) oblique dashed-dotted lines depicted in
panels (b) and (c) correspond, respectively, to the λ4 and λ−2 behaviors [cf. Eqs. (23) and (30), respectively]. Panels (d), (e), and (f) display the
localization length, shown in panels (a), (b), and (c), respectively, in a short range of intermediate wavelengths, where solid and dashed curves
are obtained from the I-M equation for � = 1 μm and � = 12 μm, respectively. Horizontal dashed lines represent the separation between
localized and delocalized states.

layers A and B. Numerical results for ξ , in units of the
average system length, are depicted in Fig. 3 as functions
of λ for normal incidence, for N = 500 000 double layers in a
RHM-LHM photonic system, and for a = b = 12 μm. Circles
and squares correspond to numerical results obtained from
Eq. (1) for � = 1 μm and � = 12 μm, respectively, and for
100 realizations of disorder. Calculations shown in Figs. 3(a)
and 3(b) were performed for ε∞ = 1.21, μ∞ = 1, and εA =
μA = 1 (Z∞ < ZA) and correspond to the physical situations
described in Cases 1 and 3 of Table I, respectively. Results
shown in Fig. 3(c) were obtained for εA = ε∞ = 1.21 and
μA = μ∞ = 1 (Z∞ = ZA) and for parameters taken according
to Case 4 of Table I. Upper (� = 1 μm) and lower (� = 12
μm) dashed-dotted oblique lines depicted in Figs. 3(b) and
3(c) result from the asymptotic Eqs. (23) and (30), respectively.
Horizontal dashed lines represent the border between localized
and delocalized states. As one may note from Fig. 3, in all
cases the I-M equation correctly predicts the critical-frequency
values, i.e., a non-null and finite value of ωc (or λc = 2πc/ωc)

in Fig. 3(a), ωc = 0 (λc → ∞) in Fig. 3(b), and an infinite
value of ωc (λc = 0) in Fig. 3(c).

One should note that the numerical results represented by
open symbols in Fig. 3(b) follow, in the long wavelength
limit, the approximated expression ξ/〈L〉 = �∞ (λ/d)α∞ . The
values of �∞ and α∞ may be obtained for any value of
the disorder amplitude by performing a statistical analysis. A
detailed study of the results shown in Fig. 3(b) leads to �∞ =
(8.7 ± 0.9) × 10−5 and α∞ = 4.06 ± 0.03 for � = 1 μm,
whereas for � = 12 μm one obtains �∞ = (7.2 ± 0.6) ×
10−5 and α∞ = 4.08 ± 0.02. In spite that the I-M model is not
strictly applicable in the long wavelength limit, it is remarkable
that the values of α∞ are found in good agreement with the
λ4 behavior predicted by Eq. (23). According to Eq. (23), the
quantity equivalent to �∞ is �∞/〈L〉, where �∞ is given by
Eq. (24). We have straightforwardly obtained that �∞/〈L〉 =
6.4 × 10−3 and �∞/〈L〉 = 4.5 × 10−5 for � = 1 μm and
� = 12 μm, respectively. It is noticeable that the quantity �∞
is not as dependent on � as �∞/〈L〉 is. In a similar way, the
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FIG. 4. (Color online) Localization length for normal incidence,
as in Fig. 3 (a), for plasmon frequencies νe = ωe/(2π ) and νm =
ωm/(2π ), which do not match any of the conditions of Table I.

numerical results of the localization length shown in Fig. 3(c)
may be approximated, in the short wavelength region, by the
expression ξ/〈L〉 = �0 (λ/d)α0 . In this case we found �0 =
(1.27 ± 0.08) × 10−2 and α0 = −3.98 ± 0.04 for � = 1 μm,
whereas �0 = (1.16 ± 0.05) × 10−2 and α0 = −4.01 ± 0.02
for � = 12 μm. Numerical results obtained from Eq. (1)
suggest a dependence ξ ∝ λ−4 of the localization length in
the limit λ → 0. Such behavior differs quantitatively from the
ξ ∝ λ−2 dependence of the localization length predicted by
the I-M equation [cf. Eq. (30)], a fact which is expected due
to the divergence of both Q2

Aσ 2
A and Q2

Bσ 2
B as λ → 0 and,

therefore, to the inapplicability of Eq. (2) at this limit. Even
though the description, by using Eq. (2), of the asymptotic
behavior of the localization length in the limits of short and
long wavelength is only qualitative in this particular case, such
equation correctly predicts the values of critical frequencies.
On the other hand, due to the particular frequency dependence
of both ε(ω) and μ(ω) [cf. Eqs. (19) and (20)], one may
note that the I-M may be used without difficulties in a finite
window of the wavelength spectrum. In this sense, the good
agreement between the I-M results and numerical calculations
from Eq. (1) may be observed in Figs. 3(d), 3(e), and 3(f).

We have depicted in Fig. 4 the localization length, for
normal incidence, as a function of the vacuum wavelength.
Both the electric and magnetic plasmon frequencies were
chosen so that none of the conditions shown in Table I are
satisfied. The rest of parameters are the same as those used
in Figs. 3(a) and 3(b). One may note that Z∞ < ZA and
ωm > ωeZA/Z∞ in this case. According to Eq. (21), the
critical frequency ωc is an imaginary number in this case and,
as expected, the suppression of the Anderson localization is
not observed.

In order to consider the effects of the oblique incidence
on the localization length, we have investigated whether the
behavior of ξ , obtained from the conditions of Fig. 3, survives
with θ 	= 0. To this end, we depict in Figs. 5(a), 5(b), and
5(c) the localization length, as a function of the vacuum
wavelength, calculated with the same sets of parameters as
in Figs. 3(a), 3(b), and 3(c), respectively, for TE modes and
incidence angle θ = π/3. Brewster anomalies at finite values
of the vacuum wavelength may be clearly observed in all panels
of Fig. 5. Numerical values of such critical wavelengths (or
frequencies) may be obtained by using the procedure described
by Mogilevtsev et al..17 One may note in Figs. 5(d), 5(e), and
5(f) the very good agreement, in a segment of the applicability
region of Eq. (2), between the numerical results obtained
from Eq. (1) and those obtained from the I-M equation. In
contrast to the case of normal incidence in which Case 3
of Table I is satisfied [cf. Fig. 3(b)], the localization length
does not diverge in the limit λ → ∞ when θ = π/3 [cf.
Fig. 5(b)]. Numerical results depicted in Fig. 5(b) indicate
that the asymptotic behavior of ξ in the long wavelength limit
is not robust for oblique incidence, i.e., it is strongly dependent
on the incidence angle θ . Here we note that, when Case 4 of
Table I is fulfilled, the diverging behavior of the localization
length in the limit λ → 0 still survives for oblique incidence,
as one may note in Fig. 5(c). This particular situation is due to
the choice of μA = μ∞ = 1 in the numerical calculations, as
we have mentioned in Sec. II. As a consequence, the function
gTE

O becomes independent of θ in the short wavelength limit
which, together with the condition ZA = Z∞, leads to gTE

O = 0
as λ → 0 and, therefore, to the suppression of the Anderson
localization at this limit.

C. RHM-LHM superlattices with dispersive SRR responses

Numerical results for the localization length in the long
wavelength limit may not be reliable when the Drude-like
model is used for the magnetic response of the metamaterial
layers B. A more realistic model for describing the frequency
dependence of the magnetic permeability of the slabs B

is, therefore, advisable in order to study photonic-crystal
properties in the low-frequency limit. We have then considered
a split-ring resonator (SRR) response for the metamaterial
slabs B, where the electric permittivity is still given by the
Drude model [cf. Eq. (19)] and the magnetic permeability has
the form30–32

μB(ω) = μ0

(
1 − F

ω2

ω2 − ω2
m

)
, (31)

where 0 < F < 1 is a factor which depends on the geometry of
the split rings31 and ωm plays the role of a magnetic-resonance
frequency.

We now proceed, as in the above subsection, to find
the critical frequencies from the I-M equation. For normal
incidence the critical frequencies come from the condition
gN (ωc) = 0 and, therefore, are the real and positive solutions
of the equation(

Z2
∞

Z2
A

− 1

)
ω4

c +
[
ω2

e + ω2
m

(
1 − Z2

∞
Z2

A

1

1 − F

)]
ω2

c

−ω2
eω

2
m = 0, (32)
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FIG. 5. (Color online) As in Fig. 3 but for TE modes and oblique incidence (θ = π/3).

where ZA = √
μA/

√
εA is the optical impedance of slabs

A and Z∞ = √
μ∞/

√
ε∞ is the optical impedance of meta-

material layers B in the limit ω → ∞. Here we note that
μ∞ = μ0(1 − F ) is the high-frequency magnetic permeability
of slabs B. The above equation, together with Eqs. (9)–(11),
indicates that ω = 0 is not a critical frequency and, therefore,
we find localized states in the long wavelength limit.

For simplicity, we have studied the two particular cases of
Eq. (32) which have been summarized in Table II. In Case 1 we
have supposed Z∞ = ZA, and as a consequence, the fourth-

order term in ωc of Eq. (32) vanishes. One has ωe > ωm

√
F

1−F

in order to obtain real solutions for ωc. The critical frequency

TABLE II. Two particular cases of Eq. (32). Conditions imposed
to Eq. (32) guarantees the suppression of Anderson localization,
for normal incidence, at the critical frequencies shown in the
right column. The photonic system is composed by layers A of a
nondispersive RHM, and by layers B of a SRR metamaterial with
electric permittivity and magnetic permeability given by Eqs. (19)
and (31), respectively.

Cases Conditions Critical frequency

1
ωe > ωm

√
F

1−F

Z∞ = ZA

ωc → ∞
ωc = ωeωm√

ω2
e−ω2

m
F

1−F

2
ωe = ωm

√
Z2∞

Z2
A

(1−F )
− 1

Z∞ > ZA

ωc =
√

ωeωm

4

√
Z2∞
Z2

A

−1

is then given by

ωc = ωeωm√
ω2

e − ω2
m

F
1−F

. (33)

Also, due to the matching of the optical impedance of slabs
A and B when ω → ∞, one may expect the suppression of
Anderson localization in such a limit. In this case, the behavior
of the localization length, predicted from the I-M equation, is
described by Eq. (26), where

�0 = 32 π2 c4

ε2
A μ2∞ d

(
ω2

e − ω2
m

F
1−F

)2 (34)

and G0 = G0(λ) is given by Eq. (28), with μ∞ = μ0(1 − F )
in Eq. (29). The function modulating the maxima of ξ is given
by Eq. (30), with the appropriate value of �0 obtained from
�0 and G0, as we have mentioned in the above subsection.

In Case 2 of Table II, we have imposed the condition ωe =
ωm

√
Z2∞

Z2
A(1−F )

− 1, with Z∞ > ZA

√
1 − F in order to ωe be

real. As a consequence, the quadratic term in ωc of Eq. (32)
vanishes, and Z∞ > ZA for obtaining real values of the critical
frequency. We have discarded the two imaginary solutions and
the negative real solution of Eq. (32), as none of them has a
physical meaning. The single positive solution for ωc reads,

ωc =
√

ωeωm

4

√
Z2∞
Z2

A

− 1
. (35)

We have numerically obtained the localization length from
Eq. (1) and compared it with the theoretical predictions
resulting from the I-M equation. We have supposed the same
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FIG. 6. (Color online) Localization length, for normal incidence,
in units of the average system length 〈L〉, as a function of the vacuum
wavelength expressed in units of d = a + b. Calculations were
performed using Eq. (1), a = b = 12 μm, N = 500 000, and 100
realizations of disorder. Circles and squares correspond to numerical
data obtained for � = 1 μm and � = 12 μm, respectively. The
electric and magnetic responses of layers B are described by Eqs. (19)
and (31), respectively, with εA = ε∞ = 1.21, μA = 1, F = 1/4, and
ωe

2π
= 3 THz. Results displayed in (a) were computed by setting

μ0 = 4/3 and ωm

2π

√
F

1−F
= 1 THz and correspond to Case 1 of Table II.

Parameters used in (b) were μ0 = 8/3 and ωm

2π

√
Z2∞
Z2

A

1
1−F

− 1 = 3 THz

and correspond to Case 2 of Table II. Upper and lower oblique lines
in panel (a) correspond to the asymptotic behavior of the localization
length, for � = 1 μm and � = 12 μm, respectively, obtained as
explained in the text. Horizontal dashed lines represent the separation
between localized and delocalized states.

disorder amplitude for both slabs A and B. Figure 6 shows
the normal-incidence localization length in a multilayered
system with the electric and magnetic dispersions of slabs B

given by Eqs. (19) and (31), respectively. Results depicted in
Figs. 6(a) and 6(b) are obtained by appropriately choosing
the superlattice parameters according to Cases 1 and 2,
respectively, of Table II. Circles and squares correspond
to � = 1 μm and � = 12 μm, respectively. As in the
previous subsection, the localization length may be written,
in the vicinity of λ = 0, as ξ/〈L〉 = �0 (λ/d)α0 . A statistical
analysis of the numerical data obtained from Eq. (1) reveals
that �0 = (1.34 ± 0.07) × 10−2 and α0 = −3.98 ± 0.03 for
� = 1 μm, whereas �0 = (1.08 ± 0.04) × 10−2 and α0 =
−4.03 ± 0.02 for � = 12 μm. Such results are in agreement
with those previously obtained for the Drude-like response
in metamaterial layers B and suggest a dependence ξ ∝ λ−4

in the limit λ → 0. The I-M equation correctly predicts the
singularity of the localization length as λ → 0, but such a
prediction is only qualitative. For finite values of the critical
frequency, however, the I-M equation quantitatively predicts
the position of the peaks displayed in both Figs. 6(a) and
6(b). The corresponding vacuum wavelength (λc = 2πc/ωc)
associated with those critical frequencies are λc/d ≈ 6.80 and
λc/d ≈ 4.73, respectively, and agree very well with the results
obtained from Eqs. (33) and (35), respectively.

We have also numerically studied the influence of oblique
incidence on the localization length. Results computed from
Eq. (1) are displayed in Fig. 7. In panels 7(a) and 7(b) we
have used the same set of parameters of Fig. 6(a), whereas
in panels 7(c) and 7(d) the corresponding parameters were
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FIG. 7. (Color online) TE and TM localization lengths, in units of
the average system length 〈L〉, for oblique incidence with θ = π/3.
Results depicted in (a) and (b) were performed for the same set of
parameters used in Fig. 6(a), whereas the data plotted in (c) and (d) are
evaluated using the parameters of Fig. 6(b). Horizontal dashed lines
represent the separation between localized and delocalized states.

chosen as in Fig. 6(b). Calculations shown in Figs. 7(a) and
7(c) [7(b) and 7(d)] were obtained for TE (TM) modes. It is
apparent from Figs. 7(a) and 7(b) that the singularity of ξ in
the limit λ → 0 still survives in the case of oblique incidence
for both the TE and TM modes. As discussed above, these
facts are due to the choice of μA = μ∞ = μ0(1 − F ) and
εA = ε∞ together with the matching of the optical impedances
of the slabs A and B in the high-frequency limit. In other
words, the delocalization in the limit λ → 0 is omnidirectional
for the photonic superlattice studied in Figs. 6(a), 7(a), and
7(b). Moreover, all the singularities of the localization length
appearing for positive finite values of λ correspond to Brewster
anomalies. As one may note from Fig. 7(c) for TE modes,
the oblique incidence may lead to a situation in which no
suppression of the Anderson localization is observed in the
whole range of wavelengths considered in the present study.
As mentioned before, the positions of the singularities of
ξ in the frequency (or wavelength) spectrum for both TE
and TM modes in the case of oblique incidence may be
fully understood by analyzing the functions gTE

O and gTM
O ,

respectively [cf. Eqs. (15) and (16), respectively], which
are displayed in Fig. 8 for the different cases depicted in
Fig. 7. For example, for the TE modes shown in Fig. 7(a)
the corresponding function gTE

O , represented as a solid line
in Fig. 8(a), vanishes at λc/d = 0, λc/d ≈ 6.525, and λc/d ≈
7.007. The two last values of λc are a doublet which is observed
in Fig. 7 (a), due to the scale of the figure, as a single peak
in the localization length. For the TM modes in Fig. 7(b)
we have two singularities corresponding to the zeros of gTM

O

[cf. dashed line in Fig. 8(a)] located at λc/d = 0 and λc/d ≈
6.679. In the same way, one may note that the function gTE

O
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FIG. 8. (Color online) Vacuum wavelength dependence of func-
tions gX

O for θ = π/3. Solid and dashed lines correspond to X = TE
and X = TM electromagnetic modes, respectively [cf. Eqs. (15)
and (16), respectively]. Results displayed in panel (a) correspond
to the first case of Table II with parameters used in Figs. 7(a) and
7(b), whereas in panel (b) we use the set of parameters of Figs. 7(c)
and 7(d), which correspond to the second case of Table II.

[see the solid line in Fig. 8(b)], corresponding to the TE modes
displayed in Fig. 7(c), does not vanish at λ = 0 or at other
values of λ and, therefore, the TE modes remain localized
in this case. Also, the TM modes displayed in Fig. 7(d) are
delocalized at λc/d ≈ 3.179 and λc/d ≈ 4.948, which are the
zeros of the corresponding function gTM

O [cf. dashed line in
Fig. 8(b)].

D. Absorption effects

As metamaterials are intrinsically dispersive materials, it
is also convenient to investigate the effects of absorption on
the localization length. Such effects may be appropriately
introduced by modifying the electric and magnetic responses
of the heterostructure slabs. Here we assume that slabs A are
nondispersive, whereas the electric susceptibility of slabs B is
given by

εB(ω) = ε∞

[
1 − ω2

e

ω(ω + i ωe γe)

]
, (36)

where γe is a phenomenological electric damping constant
expressed in units of the electric plasmon frequency. Within
the Drude-like model the magnetic permeability of the slabs

B is given by

μB(ω) = μ∞

[
1 − ω2

m

ω(ω + i ωm γm)

]
, (37)

where γm is the magnetic damping constant in units of the
magnetic plasmon frequency. Numerical calculations for the
localization length may then be obtained from Eq. (1).

To illustrate absorption effects on ξ , we depict in Fig. 9
the localization length for normal incidence, as a function
of λ, and for various values of the electric and magnetic
damping constants. Calculations displayed in Figs. 9(a), 9(b),
and 9(c) were performed for the same set of parameters used in
Figs. 3(a), 3(b), and 3(c), respectively. Here we have restricted
the range of λ to a vicinity of the critical frequencies. It is
apparent from Fig. 9(a) that the Brewster anomaly, obtained
in the absence of absorption, becomes smeared out as the
damping constants increase. This is related to the decrease of
the intensity of the transmitted beam due to the absorption in
the metamaterial layers. Moreover, the asymptotic behavior
of the localization length in the limit λ → ∞ observed in
Fig. 9(b) for γe = γm = 0 is dramatically modified in the
presence of the absorption. In this case, numerical calculations
indicate that the λ4 behavior of ξ does not survive when
the damping constants are introduced. Results in Fig. 9(c),
however, indicate that the divergence of ξ in the limit λ → 0
still remains in the presence of absorption.

IV. CONCLUSIONS

Summing up, we have investigated the localization prop-
erties of electromagnetic waves in 1D disordered photonic
superlattices in which the electric permittivity and magnetic
permeability of the different slabs composing the heterostruc-
ture may depend on the wave frequency. First, we have per-
formed a theoretical study of the properties of the localization
length by using the I-M model recently developed for weakly
disordered photonic systems.17,22 In addition, we carried out
numerical calculations of the localization length by using its
definition [cf. Eq. (1)] involving the transmissivity of the
heterostructure. Generally speaking, the I-M results for the
localization length agree with the numerical results obtained
from Eq. (1) only for small amplitudes of disorder, and in a
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FIG. 9. (Color online) As in Fig. 3, with � = 1 μm, and including effects of the absorption on the localization length. Results were displayed
in the vicinity of a critical frequency. Squares, circles, up-triangles, and down-triangles correspond to damping constants γe = γm = 0,
γe = γm = 10−4, γe = γm = 10−3, and γe = γm = 10−2, respectively. Horizontal dashed lines represent the border between localized and
delocalized states.
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region of the frequency spectrum where the I-M model is valid.
Such a region is determined by the frequency dependence
of both the electric permitivitty and magnetic permeability
of the materials composing the heterostructure. In all cases
studied in the present work, the I-M equation correctly predicts
the critical-frequency values at which the localization length
diverges and suppression of Anderson localization occurs.

For nondispersive RHM-RHM superlattices, present nu-
merical results confirm the λ2 dependence of the localization
length ξ in the long wavelength limit, whereas for LHM-RHM
photonic crystals we have shown that the asymptotic behavior
of the localization length is strongly dependent on both
electric and magnetic responses that characterize the LHM
slabs, i.e., it is essentially determined by the specific type
of metamaterial which constitutes the LHM layers. In this
sense, results obtained from Eq. (1) suggest, under certain
conditions discussed in Sec. III, a λ4 dependence of the
localization length, only for normal incidence, in the limit
λ → ∞. Moreover, in some specific cases the localization
length exhibits a λ−4 asymptotic behavior as λ → 0, which is

observed for both normal and oblique incidence and even in
the presence of absorption.

Here, one should point out that researchers worldwide
are making efforts to develop fabrication techniques that
compensate losses to produce more efficient photonic media.33

Therefore, the combination of metamaterials with electrically
and optically pumped gain media and emerging graphene
technology is expected to lead to low-loss materials suitable
to use in optical devices and in the electronics industry.
In that respect, we do hope the present theoretical study
will help to stimulate low-loss experimental studies and
further experimental and theoretical work on the subject of
suppression of Anderson localization in disordered photonic
heterostructures.
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