
Journal of Electrical and Computer Engineering

Design of High Throughput and Cost-
Efficient Data Center Networks

Guest Editors: Vincenzo Eramo, Xavier Hesselbach-Serra, Yan Luo, 
and Juan Felipe Botero



Design of High Throughput and Cost-Efficient
Data Center Networks



Journal of Electrical and Computer Engineering

Design of High Throughput and Cost-Efficient
Data Center Networks

Guest Editors: Vincenzo Eramo, Xavier Hesselbach-Serra,
Yan Luo, and Juan Felipe Botero



Copyright © 2016 Hindawi Publishing Corporation. All rights reserved.

This is a special issue published in “Journal of Electrical and Computer Engineering.” All articles are open access articles distributed under
the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.



Circuits and Systems

Muhammad Abuelma’atti, KSA
Ishfaq Ahmad, USA
Dhamin Al-Khalili, Canada
Wael M. Badawy, Canada
Ivo Barbi, Brazil
Martin A. Brooke, USA
Tian-Sheuan Chang, Taiwan
M. Jamal Deen, Canada
Andre Ivanov, Canada
Wen B. Jone, USA
H. Kuntman, Turkey
Bin-Da Liu, Taiwan

Shen-Iuan Liu, Taiwan
João Antonio Martino, Brazil
Pianki Mazumder, USA
Sing Kiong Nguang, New Zealand
Shun Ohmi, Japan
Mohamed A. Osman, USA
Ping Feng Pai, Taiwan
Marco Platzner, Germany
Dhiraj K. Pradhan, UK
Gabriel Robins, USA
Mohamad Sawan, Canada
Raj Senani, India

Gianluca Setti, Italy
Nicolas Sklavos, Greece
Ahmed M. Soliman, Egypt
Dimitrios Soudris, Greece
Charles E. Stroud, USA
Ephraim Suhir, USA
Hannu A. Tenhunen, Finland
George S. Tombras, Greece
Spyros Tragoudas, USA
Chi Kong Tse, Hong Kong
Chin-Long Wey, USA
Fei Yuan, Canada

Communications

Sofiène Affes, Canada
Edward Au, China
Enzo Baccarelli, Italy
Stefano Basagni, USA
Jun Bi, China
René Cumplido, Mexico
Luca De Nardis, Italy
M.-G. Di Benedetto, Italy
Jocelyn Fiorina, France
Zabih F. Ghassemlooy, UK
K. Giridhar, India

Amoakoh Gyasi-Agyei, Ghana
Yaohui Jin, China
Peter Jung, Germany
Adnan Kavak, Turkey
Rajesh Khanna, India
Kiseon Kim, Republic of Korea
Tho Le-Ngoc, Canada
Cyril Leung, Canada
Petri Mähönen, Germany
Jit S. Mandeep, Malaysia
Montse Najar, Spain

Adam Panagos, USA
Samuel Pierre, Canada
John N. Sahalos, Greece
Christian Schlegel, Canada
Vinod Sharma, India
Iickho Song, Republic of Korea
Ioannis Tomkos, Greece
Chien Cheng Tseng, Taiwan
George Tsoulos, Greece
Jian-Kang Zhang, Canada
M. Abdul Matin, Brunei Darussalam

Signal Processing

Sos Agaian, USA
Panajotis Agathoklis, Canada
Jaakko Astola, Finland
Anthony Constantinides, UK
Paul Dan Cristea, Romania
Petar M. Djuric, USA
Igor Djurović, Montenegro
Karen Egiazarian, Finland
Woon-Seng Gan, Singapore

Zabih Ghassemlooy, UK
Martin Haardt, Germany
Jiri Jan, Czech Republic
S. Jensen, Denmark
Chi Chung Ko, Singapore
James Lam, Hong Kong
Riccardo Leonardi, Italy
Sven Nordholm, Australia
Cédric Richard, France

William Sandham, UK
Ravi Sankar, USA
Andreas Spanias, USA
Yannis Stylianou, Greece
Ioan Tabus, Finland
Ari J. Visa, Finland
Jar Ferr Yang, Taiwan



Contents

Design of HighThroughput and Cost-Efficient Data Center Networks
Vincenzo Eramo, Xavier Hesselbach-Serra, Yan Luo, and Juan Felipe Botero
Volume 2016, Article ID 4695185, 2 pages

Virtual Networking Performance in OpenStack Platform for Network Function Virtualization
Franco Callegati, Walter Cerroni, and Chiara Contoli
Volume 2016, Article ID 5249421, 15 pages

Server Resource Dimensioning and Routing of Service Function Chain in NFV Network Architectures
V. Eramo, A. Tosti, and E. Miucci
Volume 2016, Article ID 7139852, 12 pages

A Game for Energy-Aware Allocation of Virtualized Network Functions
Roberto Bruschi, Alessandro Carrega, and Franco Davoli
Volume 2016, Article ID 4067186, 10 pages

A Processor-Sharing Scheduling Strategy for NFV Nodes
Giuseppe Faraci, Alfio Lombardo, and Giovanni Schembra
Volume 2016, Article ID 3583962, 10 pages



Editorial
Design of High Throughput and Cost-Efficient Data Center
Networks

Vincenzo Eramo,1 Xavier Hesselbach-Serra,2 Yan Luo,3 and Juan Felipe Botero4

1Department of Information Engineering, Electronics and Telecommunications (DIET), Sapienza University of Rome,
00184 Rome, Italy
2Network Engineering Department (ENTEL), Universitat Politecnica de Catalunya, 08034 Barcelona, Spain
3Department of Electronics and Computers Engineering (DECE), University of Massachusetts Lowell, Lowell, MA 01854, USA
4Department of Electronic and Telecomunications Engineering (DETE), Universidad de Antioquia, Oficina 19-450,
Medellın, Colombia

Correspondence should be addressed to Vincenzo Eramo; vincenzo.eramo@uniroma1.it

Received 20 April 2016; Accepted 20 April 2016

Copyright © 2016 Vincenzo Eramo et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Data centers (DC) are characterized by the sharing of
compute and storage resources to support Internet services.
Today, many companies (Amazon, Google, Facebook, etc.)
use data centers to offer storage, web search, and large-
computations services with multibillion dollars business.The
servers are interconnected by elements (switches, routers,
interconnection systems, etc.) of a network platform that is
referred to as Data Center Network (DCN).

Network Function Virtualization (NFV) technology
introduced by European Telecommunications Standards
Institute (ETSI) applies the cloud computing techniques in
the telecommunication field allowing for a virtualization of
the network functions to be executed on software modules
running in data centers. Any network service is represented
by a Service Function Chain (SFC) that is a set of VNFs to be
executed according to a given order. The running of VNFs
needs the instantiation of VNF instances (VNFI) that in
general are software modules executed on virtual machines.

The support of NFV needs high performance servers due
to higher requirements by the network services with respect
to classical cloud applications.

The purpose of this special issue is to study and evaluate
new solution for the support of NFV technology.

The special issue consists of four papers whose brief
summaries are listed below.

“Server Resource Dimensioning and Routing of Service
Function Chain in NFVNetwork Architectures” by V. Eramo
et al. focuses on the resource dimensioning and SFC routing
problems in NFV architecture. The objective of the problem
is to minimize the number of SFCs dropped. The authors
formulate the optimization problem and due to its NP-hard
complexity, heuristics are proposed for both cases of offline
and online traffic demand.

“A Game for Energy-Aware Allocation of Virtualized
Network Functions” by R. Bruschi et al. presents and evalu-
ates an energy-aware game theory based solution for resource
allocation of Virtualized Network Functions (VNFs) within
NFV environments. The authors consider each VNF as a
player of the problem that competes for the physical network
node capacity pool, seeking the minimization of individual
cost functions. The physical network nodes dynamically
adjust their processing capacity according to the incoming
workload flows, by means of an Adaptive Rate strategy that
aims at minimizing the product of energy consumption and
processing delay.

“A Processor-Sharing Scheduling Strategy for NFV
Nodes” by G. Faraci et al. focuses on the allocation strategies
of processing resources to the virtual machines running the
VNF. The main contribution of the paper is the definition
of a processor-sharing policy, referred to as Network-Aware

Hindawi Publishing Corporation
Journal of Electrical and Computer Engineering
Volume 2016, Article ID 4695185, 2 pages
http://dx.doi.org/10.1155/2016/4695185

http://dx.doi.org/10.1155/2016/4695185


2 Journal of Electrical and Computer Engineering

Round Robin (NARR). The proposed strategy dynamically
changes the slices of theCPUassigned to eachVNF according
to the state of the output network interface card queues. In
order to not waste output link bandwidth, more process-
ing resources are assigned to the VNF whose packets are
addressed towards the least loaded output NIC.

“Virtual Networking Performance in OpenStack Plat-
form for Network Function Virtualization” by F. Callegati
et al. evaluates the performance evaluation of an Open
Source Virtual Infrastructure Manager (VIM) as OpenStack
focusing in particular on packet forwarding performance
issues. A set of experiments are presented that refer to a
number of scenarios inspired by the cloud computing and
NFV paradigms, considering both single- and multitenant
scenarios.

Vincenzo Eramo
Xavier Hesselbach-Serra

Yan Luo
Juan Felipe Botero



Research Article
Virtual Networking Performance in OpenStack Platform for
Network Function Virtualization

Franco Callegati, Walter Cerroni, and Chiara Contoli

DEI, University of Bologna, Via Venezia 52, 47521 Cesena, Italy

Correspondence should be addressed to Walter Cerroni; walter.cerroni@unibo.it

Received 19 October 2015; Revised 19 January 2016; Accepted 30 March 2016

Academic Editor: Yan Luo

Copyright © 2016 Franco Callegati et al.This is an open access article distributed under theCreativeCommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The emerging Network Function Virtualization (NFV) paradigm, coupled with the highly flexible and programmatic control of
network devices offered by Software Defined Networking solutions, enables unprecedented levels of network virtualization that
will definitely change the shape of future network architectures, where legacy telco central offices will be replaced by cloud data
centers located at the edge. On the one hand, this software-centric evolution of telecommunications will allow network operators to
take advantage of the increased flexibility and reduced deployment costs typical of cloud computing. On the other hand, it will pose
a number of challenges in terms of virtual network performance and customer isolation.This paper intends to provide some insights
on how an open-source cloud computing platform such as OpenStack implements multitenant network virtualization and how it
can be used to deploy NFV, focusing in particular on packet forwarding performance issues. To this purpose, a set of experiments is
presented that refer to a number of scenarios inspired by the cloud computing and NFV paradigms, considering both single tenant
and multitenant scenarios. From the results of the evaluation it is possible to highlight potentials and limitations of running NFV
on OpenStack.

1. Introduction

Despite the original vision of the Internet as a set of net-
works interconnected by distributed layer 3 routing nodes,
nowadays IP datagrams are not simply forwarded to their
final destination based on IP header and next-hop informa-
tion. A number of so-called middle-boxes process IP traffic
performing cross layer tasks such as address translation,
packet inspection and filtering, QoS management, and load
balancing. They represent a significant fraction of network
operators’ capital and operational expenses. Moreover, they
are closed systems, and the deployment of new communi-
cation services is strongly dependent on the product capa-
bilities, causing the so-called “vendor lock-in” and Internet
“ossification” phenomena [1]. A possible solution to this
problem is the adoption of virtualized middle-boxes based
on open software and hardware solutions. Network virtual-
ization brings great advantages in terms of flexible network
management, performed at the software level, and possible
coexistence of multiple customers sharing the same physical
infrastructure (i.e., multitenancy). Network virtualization

solutions are already widely deployed at different protocol
layers, includingVirtual Local AreaNetworks (VLANs),mul-
tilayer Virtual Private Network (VPN) tunnels over public
wide-area interconnections, and Overlay Networks [2].

Today the combination of emerging technologies such as
Network Function Virtualization (NFV) and Software Defined
Networking (SDN) promises to bring innovation one step
further. SDN provides a more flexible and programmatic
control of network devices and fosters new forms of vir-
tualization that will definitely change the shape of future
network architectures [3], while NFV defines standards to
deploy software-based building blocks implementing highly
flexible network service chains capable of adapting to the
rapidly changing user requirements [4].

As a consequence, it is possible to imagine a medium-
term evolution of the network architectures where middle-
boxes will turn into virtual machines (VMs) implementing
network functions within cloud computing infrastructures,
and telco central offices will be replaced by data centers
located at the edge of the network [5–7]. Network operators
will take advantage of the increased flexibility and reduced

Hindawi Publishing Corporation
Journal of Electrical and Computer Engineering
Volume 2016, Article ID 5249421, 15 pages
http://dx.doi.org/10.1155/2016/5249421

http://dx.doi.org/10.1155/2016/5249421


2 Journal of Electrical and Computer Engineering

deployment costs typical of the cloud-based approach, paving
the way to the upcoming software-centric evolution of
telecommunications [8]. However, a number of challenges
must be dealt with, in terms of system integration, data
center management, and packet processing performance. For
instance, if VLANs are used in the physical switches and in
the virtual LANs within the cloud infrastructure, a suitable
integration is necessary, and the coexistence of different
IP virtual networks dedicated to multiple tenants must be
seamlessly guaranteed with proper isolation.

Then a few questions are naturally raised: Will cloud
computing platforms be actually capable of satisfying the
requirements of complex communication environments such
as the operators edge networks? Will data centers be able
to effectively replace the existing telco infrastructures at the
edge?Will virtualized networks provide performance compa-
rable to those achievedwith current physical networks, orwill
they pose significant limitations? Indeed the answer to this
questionwill be a function of the cloudmanagement platform
considered. In this work the focus is on OpenStack, which
is among the state-of-the-art Linux-based virtualization and
cloudmanagement tools. Developed by the open-source soft-
ware community, OpenStack implements the Infrastructure-
as-a-Service (IaaS) paradigm in a multitenant context
[9].

To the best of our knowledge, not much work has been
reported about the actual performance limits of network
virtualization in OpenStack cloud infrastructures under the
NFV scenario. Some authors assessed the performance of
Linux-based virtual switching [10, 11], while others inves-
tigated network performance in public cloud services [12].
Solutions for low-latency SDN implementation on high-
performance cloud platforms have also been developed [13].
However, none of the above works specifically deals with
NFV scenarios on OpenStack platform. Although some
mechanisms for effectively placing virtual network functions
within an OpenStack cloud have been presented [14], a
detailed analysis of their network performance has not been
provided yet.

This paper aims at providing insights on how the Open-
Stack platform implements multitenant network virtual-
ization, focusing in particular on the performance issues,
trying to fill a gap that is starting to get the attention
also from the OpenStack developer community [15]. The
paper objective is to identify performance bottlenecks in the
cloud implementation of the NFV paradigms. An ad hoc
set of experiments were designed to evaluate the OpenStack
performance under critical load conditions, in both single
tenant and multitenant scenarios. The results reported in
this work extend the preliminary assessment published in
[16, 17].

The paper is structured as follows: the network virtual-
ization concept in cloud computing infrastructures is further
elaborated in Section 2; the OpenStack virtual network
architecture is illustrated in Section 3; the experimental test-
bed that we have deployed to assess its performance is
presented in Section 4; the results obtained under different
scenarios are discussed in Section 5; some conclusions are
finally drawn in Section 6.

2. Cloud Network Virtualization

Generally speaking network virtualization is not a new con-
cept. Virtual LANs, Virtual Private Networks, and Overlay
Networks are examples of virtualization techniques already
widely used in networking, mostly to achieve isolation of
traffic flows and/or of whole network sections, either for
security or for functional purposes such as traffic engineering
and performance optimization [2].

Upon considering cloud computing infrastructures the
concept of network virtualization evolves even further. It
is not just that some functionalities can be configured in
physical devices to obtain some additional functionality in
virtual form. In cloud infrastructures whole parts of the
network are virtual, implemented with software devices
and/or functions running within the servers. This new
“softwarized” network implementation scenario allows novel
network control and management paradigms. In particular,
the synergies between NFV and SDN offer programmatic
capabilities that allow easily defining and flexibly managing
multiple virtual network slices at levels not achievable before
[1].

In cloud networking the typical scenario is a set of
VMs dedicated to a given tenant, able to communicate with
each other as if connected to the same Local Area Network
(LAN), independently of the physical server/servers they are
running on. The VMs and LAN of different tenants have
to be isolated and should communicate with the outside
world only through layer 3 routing and filtering devices. From
such requirements stem two major issues to be addressed
in cloud networking: (i) integration of any set of virtual
networks defined in the data center physical switches with the
specific virtual network technologies adopted by the hosting
servers and (ii) isolation among virtual networks that must
be logically separated because of being dedicated to different
purposes or different customers. Moreover these problems
should be solved with performance optimization inmind, for
instance, aiming at keeping VMs with intensive exchange of
data colocated in the same server, keeping local traffic inside
the host and thus reducing the need for external network
resources and minimizing the communication latency.

The solution to these issues is usually fully supported
by the VM manager (i.e., the Hypervisor) running on the
hosting servers. Layer 3 routing functions can be executed by
taking advantage of lightweight virtualization tools, such as
Linux containers or network namespaces, resulting in isolated
virtual networks with dedicated network stacks (e.g., IP
routing tables and netfilter flow states) [18]. Similarly layer
2 switching is typically implemented by means of kernel-
level virtual bridges/switches interconnecting a VM’s virtual
interface to a host’s physical interface. Moreover the VMs
placing algorithms may be designed to take networking
issues into account thus optimizing the networking in the
cloud together with computation effectiveness [19]. Finally
it is worth mentioning that whatever network virtualization
technology is adopted within a data center, it should be
compatible with SDN-based implementation of the control
plane (e.g., OpenFlow) for improved manageability and
programmability [20].



Journal of Electrical and Computer Engineering 3

External network

Management network

Compute node 1 Storage nodeController node Network node

Internet

p

Cloud
customers

gCompute node 2 

Instance/tunnel (data) network

Figure 1: Main components of an OpenStack cloud setup.

For the purposes of this work the implementation of
layer 2 connectivity in the cloud environment is of particular
relevance. Many Hypervisors running on Linux systems
implement the LANs inside the servers using Linux Bridge,
the native kernel bridging module [21]. This solution is
straightforward and is natively integrated with the powerful
Linux packet filtering and traffic conditioning kernel func-
tions. The overall performance of this solution should be at
a reasonable level when the system is not overloaded [22].
The Linux Bridge basically works as a transparent bridge
with MAC learning, providing the same functionality as a
standard Ethernet switch in terms of packet forwarding. But
such standard behavior is not compatible with SDNand is not
flexible enough when aspects such as multitenant traffic iso-
lation, transparent VM mobility, and fine-grained forward-
ing programmability are critical. The Linux-based bridging
alternative is Open vSwitch (OVS), a software switching
facility specifically designed for virtualized environments and
capable of reaching kernel-level performance [23]. OVS is
also OpenFlow-enabled and therefore fully compatible and
integrated with SDN solutions.

3. OpenStack Virtual Network Infrastructure

OpenStack provides cloud managers with a web-based dash-
board as well as a powerful and flexible Application Pro-
grammable Interface (API) to control a set of physical hosting
servers executing different kinds of Hypervisors (in general,
OpenStack is designed to manage a number of computers,
hosting application servers: these application servers can
be executed by fully fledged VMs, lightweight containers,
or bare-metal hosts; in this work we focus on the most
challenging case of application servers running on VMs) and
to manage the required storage facilities and virtual network
infrastructures.TheOpenStack dashboard also allows instan-
tiating computing and networking resources within the data

center infrastructure with a high level of transparency. As
illustrated in Figure 1, a typical OpenStack cloud is composed
of a number of physical nodes and networks:

(i) Controller node: managing the cloud platform.
(ii) Network node: hosting the networking services for the

various tenants of the cloud and providing external
connectivity.

(iii) Compute nodes: asmany hosts as needed in the cluster
to execute the VMs.

(iv) Storage nodes: to store data and VM images.
(v) Management network: the physical networking infras-

tructure used by the controller node to manage
the OpenStack cloud services running on the other
nodes.

(vi) Instance/tunnel network (or data network): the phys-
ical network infrastructure connecting the network
node and the compute nodes, to deploy virtual tenant
networks and allow inter-VM traffic exchange and
VM connectivity to the cloud networking services
running in the network node.

(vii) External network: the physical infrastructure enabling
connectivity outside the data center.

OpenStack has a component specifically dedicated to
network service management: this component, formerly
known as Quantum, was renamed as Neutron in the Havana
release. Neutron decouples the network abstractions from the
actual implementation and provides administrators and users
with a flexible interface for virtual network management.
The Neutron server is centralized and typically runs in the
controller node. It stores all network-related information
and implements the virtual network infrastructure in a
distributed and coordinated way. This allows Neutron to
transparently manage multitenant networks across multiple



4 Journal of Electrical and Computer Engineering

compute nodes and to provide transparent VM mobility
within the data center.

Neutron’s main network abstractions are

(i) network, a virtual layer 2 segment;
(ii) subnet, a layer 3 IP address space used in a network;
(iii) port, an attachment point to a network and to one or

more subnets on that network;
(iv) router, a virtual appliance that performs routing

between subnets and address translation;
(v) DHCP server, a virtual appliance in charge of IP

address distribution;
(vi) security group, a set of filtering rules implementing a

cloud-level firewall.

A cloud customer wishing to implement a virtual infras-
tructure in the cloud is considered an OpenStack tenant and
can use the OpenStack dashboard to instantiate computing
and networking resources, typically creating a new network
and the necessary subnets, optionally spawning the related
DHCP servers, then starting as many VM instances as
required based on a given set of available images, and speci-
fying the subnet (or subnets) to which the VM is connected.
Neutron takes care of creating a port on each specified subnet
(and its underlying network) and of connecting the VM to
that port, while the DHCP service on that network (resident
in the network node) assigns a fixed IP address to it. Other
virtual appliances (e.g., routers providing global connectivity)
can be implemented directly in the cloud platform, by means
of containers and network namespaces typically defined in
the network node. The different tenant networks are isolated
by means of VLANs and network namespaces, whereas the
security groups protect the VMs from external attacks or
unauthorized access.When someVM instances offer services
that must be reachable by external users, the cloud provider
defines a pool of floating IP addresses on the external
network and configures the network node with VM-specific
forwarding rules based on those floating addresses.

OpenStack implements the virtual network infrastruc-
ture (VNI) exploiting multiple virtual bridges connecting
virtual and/or physical interfaces that may reside in different
network namespaces. To better understand such a complex
system, a graphical tool was developed to display all the
network elements used by OpenStack [24]. Two examples,
showing the internal state of a network node connected to
three virtual subnets and a compute node running two VMs,
are displayed in Figures 2 and 3, respectively.

Each node runs OVS-based integration bridge named
br-int and, connected to it, an additional OVS bridge for
each data center physical network attached to the node.
So the network node (Figure 2) includes br-tun for the
instance/tunnel network and br-ex for the external network.
A compute node (Figure 3) includes br-tun only.

Layer 2 virtualization and multitenant isolation on the
physical network can be implemented using either VLANs
or layer 2-in-layer 3/4 tunneling solutions, such as Virtual
eXtensible LAN (VXLAN) orGeneric Routing Encapsulation
(GRE), which allow extending the local virtual networks also

to remote data centers [25]. The examples shown in Figures
2 and 3 refer to the case of tenant isolation implemented
with GRE tunnels on the instance/tunnel network. Whatever
virtualization technology is used in the physical network,
its virtual networks must be mapped into the VLANs used
internally by Neutron to achieve isolation. This is performed
by taking advantage of the programmable features available
in OVS through the insertion of appropriate OpenFlow
mapping rules in br-int and br-tun.

Virtual bridges are interconnected by means of either
virtual Ethernet (veth) pairs or patch port pairs, consisting
of two virtual interfaces that act as the endpoints of a pipe:
anything entering one endpoint always comes out on the
other side.

From the networking point of view the creation of a new
VM instance involves the following steps:

(i) The OpenStack scheduler component running in the
controller node chooses the compute node that will
host the VM.

(ii) A tap interface is created for each VM network
interface to connect it to the Linux kernel.

(iii) A Linux Bridge dedicated to each VM network inter-
face is created (in Figure 3 two of them are shown)
and the corresponding tap interface is attached to it.

(iv) A veth pair connecting the new Linux Bridge to the
integration bridge is created.

The veth pair clearly emulates the Ethernet cable that would
connect the two bridges in real life. Nonetheless, why the
new Linux Bridge is needed is not intuitive, as the VM’s tap
interface could be directly attached to br-int. In short, the
reason is that the antispoofing rules currently implemented
by Neutron adopt the native Linux kernel filtering functions
(netfilter) applied to bridged tap interfaces, which work only
under Linux Bridges. Therefore, the Linux Bridge is required
as an intermediate element to interconnect the VM to the
integration bridge.The security rules are applied to the Linux
Bridge on the tap interface that connects the kernel-level
bridge to the virtual Ethernet port of theVM running in user-
space.

4. Experimental Setup

The previous section makes the complexity of the OpenStack
virtual network infrastructure clear. To understand optimal
design strategies in terms of network performance it is of
great importance to analyze it under critical traffic conditions
and assess the maximum sustainable packet rate under
different application scenarios. The goal is to isolate as much
as possible the level of performance of the main OpenStack
network components and determine where the bottlenecks
are located, speculating on possible improvements. To this
purpose, a test-bed including a controller node, one or two
compute nodes (depending on the specific experiment), and
a network node was deployed and used to obtain the results
presented in the following. In the test-bed each compute node
runs KVM, the native Linux VMHypervisor, and is equipped



Journal of Electrical and Computer Engineering 5

Physical interface

OVS bridge

l2tp tunnel

VLAN alias

Linux Bridge

TUN/TAP

OVS-internal

GRE tunnel

Patch port

veth pair

LinBr mgmgt iface

Other OVS ports

External network

External router interface

Subnet 1 router interface

Subnet 1 DHCP server

Subnet 2 router interface

Subnet 2 DHCP server

Subnet 3 router interface

Subnet 3 DHCP server

Management
network

Instance/tunnel
network

qg-9326d793-0f

qr-dcaace0c-ab

tapf9c1bdb7-55

qr-6df34d1e-10

tapf2027a28-f0

qr-decba8c2-53

tapc6e53a07-fe

eth2

eth0

br-ex(bridge)

phy-br-ex

int-br-ex

br-int(bridge)

patch-tun

patch-int

br-tun(bridge)

gre-0a7d0001

eth1

br-ex

br-int

br-tun

Figure 2: Network elements in an OpenStack network node connected to three virtual subnets. Three OVS bridges (red boxes) are
interconnected by patch port pairs (orange boxes). br-ex is directly attached to the external network physical interface (eth0), whereas GRE
tunnel is established on the instance/tunnel network physical interface (eth1) to connect br-tun with its counterpart in the compute node. A
number of br-int ports (light-green boxes) are connected to four virtual router interfaces and three DHCP servers. An additional physical
interface (eth2) connects the network node to the management network.

with 8GB of RAM and a quad-core processor enabled to
hyperthreading, resulting in 8 virtual CPUs.

The test-bed was configured to implement three possible
use cases:

(1) A typical single tenant cloud computing scenario.
(2) A multitenant NFV scenario with dedicated network

functions.
(3) A multitenant NFV scenario with shared network

functions.

For each use case multiple experiments were executed as
reported in the following. In the various experiments typ-
ically a traffic source sends packets at increasing rate to
a destination that measures the received packet rate and
throughput. To this purpose the RUDE & CRUDE tool was
used, for both traffic generation and measurement [26].

In some cases, the Iperf3 tool was also added to generate
background traffic at a fixed data rate [27]. All physical
interfaces involved in the experiments were Gigabit Ethernet
network cards.

4.1. Single Tenant Cloud Computing Scenario. This is the
typical configuration where a single tenant runs one or
multiple VMs that exchange traffic with one another in
the cloud or with an external host, as shown in Figure 4.
This is a rather trivial case of limited general interest but
is useful to assess some basic concepts and pave the way
to the deeper analysis developed in the second part of this
section. In the experiments reported, asmentioned above, the
virtualization Hypervisor was always KVM. A scenario with
OpenStack running the cloud environment and a scenario
without OpenStack were considered to assess some general



6 Journal of Electrical and Computer Engineering

tap03b80be1-55 tapfe856de0-44

qbr03b80be1-55 qbr03b80be1-55(bridge) qbrfe856de0-44(bridge) qbrfe856de0-44

qvb03b80be1-55 qvbfe856de0-44

qvo03b80be1-55 qvofe856de0-44

br-int(bridge) br-int

patch-tun

patch-int

br-tun(bridge) br-tun

gre-0a7d0002

eth3 eth0

Management
network

Instance/tunnel
network

VM1 interface VM2 interface

Figure 3: Network elements in an OpenStack compute node running two VMs. Two Linux Bridges (blue boxes) are attached to the VM tap
interfaces (green boxes) and connected by virtual Ethernet pairs (light-blue boxes) to br-int.

comparison and allow a first isolation of the performance
degradation due to the individual building blocks, in par-
ticular Linux Bridge and OVS. The experiments report the
following cases:

(1) OpenStack scenario: it adopts the standardOpenStack
cloud platform, as described in the previous section,
with two VMs, respectively, acting as sender and
receiver. In particular, the following setups were
tested:

(1.1) A single compute node executing two colocated
VMs.

(1.2) Two distinct compute nodes, each executing a
VM.

(2) Non-OpenStack scenario: it adopts physical hosts
running Linux-Ubuntu server and KVMHypervisor,
using either OVS or Linux Bridge as a virtual switch.
The following setups were tested:

(2.1) One physical host executing two colocated
VMs, acting as sender and receiver and directly
connected to the same Linux Bridge.

(2.2) The same setup as the previous one, but with
OVS bridge instead of a Linux Bridge.

(2.3) Two physical hosts: one executing the sender
VM connected to an internal OVS and the other
natively acting as the receiver.



Journal of Electrical and Computer Engineering 7

Single tenant 

Customer VM

Virtual switch

External host

Figure 4: Reference logical architecture of a single tenant virtual
infrastructure with 5 hosts: 4 hosts are implemented as VMs in
the cloud and are interconnected via the OpenStack layer 2 virtual
infrastructure; the 5th host is implemented by a physical machine
placed outside the cloud but still connected to the same logical LAN.

Tenant 2

Virtual
router

Tenant 1

Customer VM DPI

· · ·

Tenant N

Figure 5: Multitenant NFV scenario with dedicated network func-
tions tested on the OpenStack platform.

4.2. Multitenant NFV Scenario with Dedicated Network Func-
tions. Themultitenant scenariowewant to analyze is inspired
by a simple NFV case study, as illustrated in Figure 5: each
tenant’s service chain consists of a customer-controlled VM
followed by a dedicated deep packet inspection (DPI) virtual
appliance and a conventional gateway (router) connecting the
customer LAN to the public Internet. The DPI is deployed
by the service operator as a separate VM with two network
interfaces, running a traffic monitoring application based on
the nDPI library [28]. It is assumed that the DPI analyzes
the traffic profile of the customers (source and destination IP
addresses and ports, application protocol, etc.) to guarantee
the matching with the customer service level agreement
(SLA), a practice that is rather common among Internet
service providers to enforce network security and traffic
policing. The virtualization approach executing the DPI in
a VM makes it possible to easily configure and adapt the
inspection function to the specific tenant characteristics. For
this reason every tenant has its own DPI with dedicated con-
figuration. On the other hand the gateway has to implement
a standard functionality and is shared among customers. It
is implemented as a virtual router for packet forwarding and
NAT operations.

The implementation of the test scenarios has been done
following the OpenStack architecture. The compute nodes
of the cluster run the VMs, while the network node runs
the virtual router within a dedicated network namespace. All
layer 2 connections are implemented by a virtual switch (with
proper VLAN isolation) distributed in both the compute and
network nodes. Figure 6 shows the view provided by the
OpenStack dashboard, in the case of 4 tenants simultaneously
active, which is the one considered for the numerical results
presented in the following. The choice of 4 tenants was made
to provide meaningful results with an acceptable degree of
complexity, without lack of generality. As results show this is
enough to put the hardware resources of the compute node
under stress and therefore evaluate performance limits and
critical issues.

It is very important to outline that the VM setup shown
in Figure 5 is not commonly seen in a traditional cloud
computing environment. The VMs usually behave as single
hosts connected as endpoints to one or more virtual net-
works, with one single network interface andnopass-through
forwarding duties. In NFV the virtual network functions
(VNFs) often perform actions that require packet forwarding.
NetworkAddress Translators (NATs),DeepPacket Inspectors
(DPIs), and so forth all belong to this category. If such
VNFs are hosted in VMs the result is that VMs in the
OpenStack infrastructure must be allowed to perform packet
forwarding which goes against the typical rules implemented
for security reasons in OpenStack. For instance, when a
new VM is instantiated it is attached to a Linux Bridge to
which filtering rules are applied with the goal of avoiding
that the VM sends packet with MAC and IP addresses
that are not the ones allocated to the VM itself. Clearly
this is an antispoofing rule that makes perfect sense in a
normal networking environment but impairs the forwarding
of packets originated by another VM as is the case of the NFV
scenario. In the scenario considered here, it was therefore
necessary to permanently modify the filtering rules in the
Linux Bridges, by allowing, within each tenant slice, packets
coming from or directed to the customer VM’s IP address to
pass through the Linux Bridges attached to the DPI virtual
appliance. Similarly the virtual router is usually connected
just to one LAN. Therefore its NAT function is configured
for a single pool of addresses. This was also modified and
adapted to serve the whole set of internal networks used in
the multitenant setup.

4.3. Multitenant NFV Scenario with Shared Network Func-
tions. We finally extend our analysis to a set of multitenant
scenarios assuming different levels of shared VNFs, as illus-
trated in Figure 7. We start with a single VNF, that is, the
virtual router connecting all tenants to the external network
(Figure 7(a)). Then we progressively add a shared DPI
(Figure 7(b)), a shared firewall/NAT function (Figure 7(c)),
and a shared traffic shaper (Figure 7(d)).The rationale behind
this last group of setups is to evaluate how NFV deployment
on top of an OpenStack compute node performs under a
realistic multitenant scenario where traffic flows must be
processed by a chain of multiple VNFs.The complexity of the



8 Journal of Electrical and Computer Engineering

10.0.3.0/24

10.1.4.0/24

10.0.6.0/24

10.1.5.0/24

10.0.5.0/24

10.1.3.0/24

10.1.6.0/24

10.0.4.0/24

10.250.0.0/24

DPInet3

InVMnet4

DPInet6

InVMnet5

DPInet5

InVMnet3

InVMnet6

DPInet4

pub

Figure 6: The OpenStack dashboard shows the tenants virtual networks (slices). Each slice includes VM connected to an internal network
(InVMnet𝑖) and a second VM performing DPI and packet forwarding between InVMnet𝑖 and DPInet𝑖. Connectivity with the public Internet
is provided for all by the virtual router in the bottom-left corner.

virtual network path inside the compute node for the VNF
chaining of Figure 7(d) is displayed in Figure 8. The peculiar
nature of NFV traffic flows is clearly shown in the figure,
where packets are being forwarded multiple times across br-
int as they enter and exit the multiple VNFs running in the
compute node.

5. Numerical Results

5.1. Benchmark Performance. Before presenting and dis-
cussing the performance of the study scenarios described
above, it is important to set some benchmark as a reference
for comparison. This was done by considering a back-to-
back (B2B) connection between two physical hosts, with the

same hardware configuration used in the cluster of the cloud
platform.

The former host acts as traffic generator while the latter
acts as traffic sink. The aim is to verify and assess the
maximum throughput and sustainable packet rate of the
hardware platform used for the experiments. Packet flows
ranging from 103 to 105 packets per second (pps), for both
64- and 1500-byte IP packet sizes, were generated.

For 1500-byte packets, the throughput saturates to about
970Mbps at 80Kpps. Given that the measurement does not
consider the Ethernet overhead, this limit is clearly very close
to the 1 Gbps which is the physical limit of the Ethernet
interface. For 64-byte packets, the results are different since
the maximum measured throughput is about 150Mbps.
Therefore the limiting factor is not the Ethernet bandwidth



Journal of Electrical and Computer Engineering 9

Virtual
router

Tenant 2

Tenant 1

Customer VM

· · ·

Tenant N

(a) Single VNF

Virtual
router

Tenant 2

Tenant 1

Customer VM DPI

· · ·

Tenant N

(b) Two VNFs’ chaining

Firewall
NAT

Virtual
router

Tenant 2

Tenant 1

Customer VM DPI

· · ·

Tenant N

(c) Three VNFs’ chaining

Firewall
NAT

Traffic
shaper

Virtual
router

Tenant 2

Tenant 1

Customer VM
DPI

· · ·

Tenant N

(d) Four VNFs’ chaining

Figure 7: Multitenant NFV scenario with shared network functions tested on the OpenStack platform.

but the maximum sustainable packet processing rate of the
computer node. These results are shown in Figure 9.

This latter limitation, related to the processing capabilities
of the hosts, is not very relevant to the scopes of this work.
Indeed it is always possible, in a real operation environment,
to deploy more powerful and better dimensioned hardware.
This was not possible in this set of experiments where the
cloud cluster was an existing research infrastructure which
could not be modified at will. Nonetheless the objective
here is to understand the limitations that emerge as a
consequence of the networking architecture, resulting from
the deployment of the VNFs in the cloud, and not of the
specific hardware configuration. For these reasons as well as
for the sake of brevity, the numerical results presented in the
followingmostly focus on the case of 1500-byte packet length,
which will stress the network more than the hosts in terms of
performance.

5.2. Single Tenant Cloud Computing Scenario. The first series
of results is related to the single tenant scenario described in
Section 4.1. Figure 10 shows the comparison of OpenStack

setups (1.1) and (1.2) with the B2B case. The figure shows
that the different networking configurations play a crucial
role in performance. Setup (1.1) with the two VMs colocated
in the same compute node clearly is more demanding since
the compute node has to process the workload of all the
components shown in Figure 3, that is, packet generation and
reception in two VMs and layer 2 switching in two Linux
Bridges and two OVS bridges (as a matter of fact the packets
are both outgoing and incoming at the same time within the
same physical machine). The performance starts deviating
from the B2B case at around 20Kpps, with a saturating effect
starting at 30Kpps. This is the maximum packet processing
capability of the compute node, regardless of the physical
networking capacity, which is not fully exploited in this
particular scenario where the traffic flow does not leave the
physical host. Setup (1.2) splits the workload over two phys-
ical machines and the benefit is evident. The performance is
almost ideal, with a very little penalty due to the virtualization
overhead.

These very simple experiments lead to an important
conclusion that motivates the more complex experiments



10 Journal of Electrical and Computer Engineering

VM
interface

tap4345870b-63

qbr4345870b-63(bridge)

qbr4345870b-63

qvb4345870b-63

qvo4345870b-63

DPI
interface 1
tap77f8a413-49

qbr77f8a413-49(bridge)

qbr77f8a413-49

qvb77f8a413-49

qvo77f8a413-49

DPI
interface 2
tapf0b115c8-48

qbrf0b115c8-48(bridge)

qbrf0b115c8-48

qvbf0b115c8-48

qvof0b115c8-48

FW/NAT
interface 1
tap17e04cf5-94

qbr17e04cf5-94(bridge)

qbr17e04cf5-94

qvb17e04cf5-94

qvo17e04cf5-94

FW/NAT
interface 2
tap7e8dfe63-c6

qbr7e8dfe63-c6(bridge)

qbr7e8dfe63-c6

qvb7e8dfe63-c6

qvo7e8dfe63-c6

Tr. shaper
interface 1
tapaf24b66d-15

qbraf24b66d-15(bridge)

qbraf24b66d-15

qvbaf24b66d-15

qvoaf24b66d-15

br-int(bridge)
br-int

patch-tun

patch-int

br-tun
br-tun(bridge)

eth3 eth0

gre-0a7d0005gre-0a7d0002gre-0a7d0004

Tr. shaper
interface 2
tap6b9d95d4-95

qbr6b9d95d4-95(bridge)

qbr6b9d95d4-95

qvb6b9d95d4-95

qvo6b9d95d4-95

Figure 8: A view of the OpenStack compute node with the tenant VM and the VNFs installed including the building blocks of the virtual
network infrastructure. The red dashed line shows the path followed by the packets traversing the VNF chain displayed in Figure 7(d).

0

200

400

600

800

1000

100

Th
ro

ug
hp

ut
 re

ce
iv

ed
 (M

bp
s)

Traffic generated (Kpps)

Ideal, 1500 bytes
B2B, 1500 bytes
B2B, 64 bytes

0 10 20 30 40 50 60 70 80 90

Figure 9:Throughput versus generated packet rate in the B2B setup
for 64- and 1500-byte packets. Comparison with ideal 1500-byte
packet throughput.

that follow: the standard OpenStack virtual network imple-
mentation can show significant performance limitations. For
this reason the first objective was to investigate where the
possible bottleneck is, by evaluating the performance of the
virtual network components in isolation. This cannot be
done with OpenStack in action; therefore ad hoc virtual
networking scenarios were implemented deploying just parts

Tr
affi

c r
ec

ei
ve

d 
(K

pp
s)

Traffic generated (Kpps)

B2B
2 VMs in 2 compute nodes
2 VMs in 1 compute node

1000 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

Figure 10: Received versus generated packet rate in the OpenStack
scenario setups (1.1) and (1.2), with 1500-byte packets.

of the typicalOpenStack infrastructure.These are calledNon-
OpenStack scenarios in the following.

Setups (2.1) and (2.2) compare Linux Bridge, OVS, and
B2B, as shown in Figure 11. The graphs show interesting and
important results that can be summarized as follows:

(i) The introduction of some virtual network component
(thus introducing the processing load of the physical



Journal of Electrical and Computer Engineering 11
Tr

affi
c r

ec
ei

ve
d 

(K
pp

s)

Traffic generated (Kpps)

B2B
2 VMs with OVS
2 VMs with LB

1000 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

Figure 11: Received versus generated packet rate in the Non-
OpenStack scenario setups (2.1) and (2.2), with 1500-byte packets.

hosts in the equation) is always a cause of perfor-
mance degradation but with very different degrees of
magnitude depending on the virtual network compo-
nent.

(ii) OVS introduces a rather limited performance degra-
dation at very high packet rate with a loss of some
percent.

(iii) Linux Bridge introduces a significant performance
degradation starting well before the OVS case and
leading to a loss in throughput as high as 50%.

The conclusion of these experiments is that the presence of
additional Linux Bridges in the compute nodes is one of the
main reasons for the OpenStack performance degradation.
Results obtained from testing setup (2.3) are displayed in
Figure 12 confirming that with OVS it is possible to reach
performance comparable with the baseline.

5.3. Multitenant NFV Scenario with Dedicated Network Func-
tions. The second series of experiments was performed with
reference to the multitenant NFV scenario with dedicated
network functions described in Section 4.2. The case study
considers that different numbers of tenants are hosted in the
same compute node, sending data to a destination outside the
LAN, therefore beyond the virtual gateway. Figure 13 shows
the packet rate actually received at the destination for each
tenant, for different numbers of simultaneously active tenants
with 1500-byte IP packet size. In all cases the tenants generate
the same amount of traffic, resulting in as many overlapping
curves as the number of active tenants. All curves grow
linearly as long as the generated traffic is sustainable, and
then they saturate. The saturation is caused by the physical
bandwidth limit imposed by the Gigabit Ethernet interfaces
involved in the data transfer. In fact, the curves become flat
as soon as the packet rate reaches about 80Kpps for 1 tenant,
about 40Kpps for 2 tenants, about 27Kpps for 3 tenants, and

Tr
affi

c r
ec

ei
ve

d 
(K

pp
s)

Traffic generated (Kpps)

B2B
OVS with sender VM only

1000 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

Figure 12: Received versus generated packet rate in the Non-
OpenStack scenario setup (2.3), with 1500-byte packets.

Tr
affi

c r
ec

ei
ve

d 
pe

r t
en

an
t (

Kp
ps

)

Traffic generated per tenant (Kpps)

Single tenant
2 tenants, T1
2 tenants, T2
3 tenants, T1
3 tenants, T2

3 tenants, T3
4 tenants, T1
4 tenants, T2
4 tenants, T3
4 tenants, T4

1000 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

100

90

Figure 13: Received versus generated packet rate for each tenant (T1,
T2, T3, and T4), for different numbers of active tenants, with 1500-
byte IP packet size.

about 20Kpps for 4 tenants, that is, when the total packet rate
is slightly more than 80Kpps, corresponding to 1 Gbps.

In this case it is worth investigating what happens for
small packets, therefore putting more pressure on the pro-
cessing capabilities of the compute node. Figure 14 reports
the 64-byte packet size case. As discussed previously in
this case the performance saturation is not caused by the
physical bandwidth limit, but by the inability of the hardware
platform to cope with the packet processing workload (in fact
the single compute node has to process the workload of all
the components involved, including packet generation and
DPI in the VMs of each tenant, as well as layer 2 packet



12 Journal of Electrical and Computer Engineering
Tr

affi
c r

ec
ei

ve
d 

pe
r t

en
an

t (
Kp

ps
)

Traffic generated per tenant (Kpps)
1000 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

70

80

100

90

Single tenant
2 tenants, T1
2 tenants, T2
3 tenants, T1
3 tenants, T2

3 tenants, T3
4 tenants, T1
4 tenants, T2
4 tenants, T3
4 tenants, T4

Figure 14: Received versus generated packet rate for each tenant (T1,
T2, T3, and T4), for different numbers of active tenants, with 64-byte
IP packet size.

processing and switching in three Linux Bridges per tenant
and two OVS bridges). As could be easily expected from
the results presented in Figure 9, the virtual network is not
able to use the whole physical capacity. Even in the case of
just one tenant, a total bit rate of about 77Mbps, well below
1Gbps, is measured. Moreover this penalty increases with the
number of tenants (i.e., with the complexity of the virtual
system). With two tenants the curve saturates at a total of
approximately 150Kpps (75 × 2), with three tenants at a total
of approximately 135Kpps (45 × 3), and with four tenants at
a total of approximately 120Kpps (30 × 4).This is to say that
an increase of one unit in the number of tenants results in a
decrease of about 10% in the usable overall network capacity
and in a similar penalty per tenant.

Given the results of the previous section, it is likely
that the Linux Bridges are responsible for most of this
performance degradation. In Figure 15 a comparison is pre-
sented between the total throughput obtained under normal
OpenStack operations and the corresponding total through-
put measured in a custom configuration where the Linux
Bridges attached to each VM are bypassed. To implement the
latter scenario, the OpenStack virtual network configuration
running in the compute node was modified by connecting
each VM’s tap interface directly to the OVS integration
bridge. The curves show that the presence of Linux Bridges
in normal OpenStack mode is indeed causing performance
degradation, especially when the workload is high (i.e., with
4 tenants). It is interesting to note also that the penalty related
to the number of tenants is mitigated by the bypass, but not
fully solved.

5.4. Multitenant NFV Scenario with Shared Network Func-
tions. The third series of experiments was performed with

To
ta

l t
hr

ou
gh

pu
t r

ec
ei

ve
d 

(M
bp

s)

Total traffic generated (Kpps)

3 tenants (LB bypass)
4 tenants (LB bypass)
2 tenants

3 tenants
4 tenants

0

10

20

30

40

50

60

70

80

100

90

0 50 100 150 200 250 300 350 400

Figure 15: Total throughput measured versus total packet rate
generated by 2 to 4 tenants for 64-byte packet size. Comparison
between normal OpenStack mode and Linux Bridge bypass with 3
and 4 tenants.

Tr
affi

c r
ec

ei
ve

d 
(K

pp
s)

Traffic generated (Kpps)

T1-VR-DEST
T1-DPI-VR-DEST

T1-DPI-FW-VR-DEST
T1-DPI-FW-TS-VR-DEST

1000 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

Figure 16: Received versus generated packet rate for one tenant
(T1) when four tenants are active, with 1500-byte IP packet size and
different levels of VNF chaining as per Figure 7. DPI: deep packet
inspection; FW: firewall/NAT; TS: traffic shaper; VR: virtual router;
DEST: destination.

reference to the multitenant NFV scenario with shared net-
work functions described in Section 4.3. In each experiment,
four tenants are equally generating increasing amounts of
traffic, ranging from 1 to 100Kpps. Figures 16 and 17 show the
packet rate actually received at the destination from tenant
T1 as a function of the packet rate generated by T1, for
different levels of VNF chaining, with 1500- and 64-byte
IP packet size, respectively. The measurements demonstrate
that, for the 1500-byte case, adding a single sharedVNF (even
one that executes heavy packet processing, such as the DPI)



Journal of Electrical and Computer Engineering 13
Tr

affi
c r

ec
ei

ve
d 

(K
pp

s)

Traffic generated (Kpps)

T1-VR-DEST
T1-DPI-VR-DEST

T1-DPI-FW-VR-DEST
T1-DPI-FW-TS-VR-DEST

1000 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

Figure 17: Received versus generated packet rate for one tenant
(T1) when four tenants are active, with 64-byte IP packet size and
different levels of VNF chaining as per Figure 7. DPI: deep packet
inspection; FW: firewall/NAT; TS: traffic shaper; VR: virtual router;
DEST: destination.

does not significantly impact the forwarding performance
of the OpenStack compute node for a packet rate below
50Kpps (note that the physical capacity is saturated by the
flows simultaneously generated from four tenants at around
20Kpps, similarly to what happens in the dedicated VNF
case of Figure 13). Then the throughput slowly degrades. In
contrast, when 64-byte packets are generated, even a single
VNF can cause heavy performance losses above 25Kpps,
when the packet rate reaches the sustainability limit of the
forwarding capacity of our compute node. Independently of
the packet size, adding another VNF with heavy packet pro-
cessing (the firewall/NAT is configuredwith 40,000matching
rules) causes the performance to rapidly degrade. This is
confirmedwhen a fourthVNF is added to the chain, although
for the 1500-byte case the measured packet rate is the one
that saturates the maximum bandwidth made available by
the traffic shaper. Very similar performance, which we do not
show here, was measured also for the other three tenants.

To further investigate the effect of VNF chaining, we
considered the case when traffic generated by tenant T1 is not
subject to VNF chaining (as in Figure 7(a)), whereas flows
originated from T2, T3, and T4 are processed by four VNFs
(as in Figure 7(d)). The results presented in Figures 18 and
19 demonstrate that, owing to the traffic shaping function
applied to the other tenants, the throughput of T1 can reach
values not very far from the case when it is the only active
tenant, especially for packet rates below 35Kpps.Therefore, a
smart choice of the VNF chaining and a careful planning of
the cloud platform resources could improve the performance
of a given class of priority customers. In the same situation,we
measured the TCP throughput achievable by the four tenants.
As shown in Figure 20, we can reach the same conclusions as
in the UDP case.

Th
ro

ug
hp

ut
 re

ce
iv

ed
 (M

bp
s)

Traffic generated (Kpps)

T1-VR-DEST single tenant
T1-VR-DEST
T2-DPI-FW-TS-VR-DEST
T3-DPI-FW-TS-VR-DEST
T4-DPI-FW-TS-VR-DEST

1000 10 20 30 40 50 60 70 80 90

0

100

200

300

400

500

600

700

800

900

Figure 18: Received throughput versus generated packet rate for
each tenant (T1, T2, T3, and T4) when T1 does not traverse the VNF
chain of Figure 7(d), with 1500-byte IP packet size. Comparison
with the single tenant case. DPI: deep packet inspection; FW: fire-
wall/NAT; TS: traffic shaper; VR: virtual router; DEST: destination.

Th
ro

ug
hp

ut
 re

ce
iv

ed
 (M

bp
s)

Traffic generated (Kpps)

T1-VR-DEST single tenant
T1-VR-DEST
T2-DPI-FW-TS-VR-DEST
T3-DPI-FW-TS-VR-DEST
T4-DPI-FW-TS-VR-DEST

1000 10 20 30 40 50 60 70 80 90

0

10

20

30

40

50

60

Figure 19: Received throughput versus generated packet rate for
each tenant (T1, T2, T3, and T4) when T1 does not traverse the
VNF chain of Figure 7(d), with 64-byte IP packet size. Comparison
with the single tenant case. DPI: deep packet inspection; FW: fire-
wall/NAT; TS: traffic shaper; VR: virtual router; DEST: destination.

6. Conclusion

Network Function Virtualization will completely reshape the
approach of telco operators to provide existing as well as
novel network services, taking advantage of the increased



14 Journal of Electrical and Computer Engineering

0

200

400

600

800

1000

TC
P 

th
ro

ug
hp

ut
 re

ce
iv

ed
 (M

bp
s)

Time (s)

T1-VR-DEST single tenant
T1-VR-DEST
T2-DPI-FW-TS-VR-DEST
T3-DPI-FW-TS-VR-DEST
T4-DPI-FW-TS-VR-DEST

0 20 40 60 80 100 120

Figure 20: Received TCP throughput for each tenant (T1, T2, T3,
and T4) when T1 does not traverse the VNF chain of Figure 7(d).
Comparison with the single tenant case. DPI: deep packet inspec-
tion; FW: firewall/NAT; TS: traffic shaper; VR: virtual router; DEST:
destination.

flexibility and reduced deployment costs of the cloud com-
puting paradigm. In this work, the problem of evaluating
complexity and performance, in terms of sustainable packet
rate, of virtual networking in cloud computing infrastruc-
tures dedicated to NFV deployment was addressed. An
OpenStack-based cloud platform was considered and deeply
analyzed to fully understand the architecture of its virtual
network infrastructure. To this end, an ad hoc visual tool was
also developed that graphically plots the different functional
blocks (and related interconnections) put in place by Neu-
tron, theOpenStack networking service. Some exampleswere
provided in the paper.

The analysis brought the focus of the performance inves-
tigation on the two basic software switching elements natively
adopted by OpenStack, namely, Linux Bridge and Open
vSwitch. Their performance was first analyzed in a single
tenant cloud computing scenario, by running experiments on
a standard OpenStack setup as well as in ad hoc stand-alone
configurations built with the specific purpose of observing
them in isolation. The results prove that the Linux Bridge is
the critical bottleneck of the architecture, whileOpen vSwitch
shows an almost optimal behavior.

The analysis was then extended to more complex scenar-
ios, assuming a data center hosting multiple tenants deploy-
ing NFV environments. The case studies considered first a
simple dedicated deep packet inspection function, followed
by conventional address translation and routing, and then
a more realistic virtual network function chaining shared
among a set of customers with increased levels of complexity.
Results about sustainable packet rate and throughput perfor-
mance of the virtual network infrastructure were presented
and discussed.

The main outcome of this work is that an open-source
cloud computing platform such as OpenStack can be effec-
tively adopted to deploy NFV in network edge data centers
replacing legacy telco central offices. However, this solution
poses some limitations to the network performance which
are not simply related to the hosting hardware maximum
capacity but also to the virtual network architecture imple-
mented by OpenStack. Nevertheless, our study demonstrates
that some of these limitations can be mitigated with a careful
redesign of the virtual network infrastructure and an optimal
planning of the virtual network functions. In any case, such
limitations must be carefully taken into account for any
engineering activity in the virtual networking arena.

Obviously, scaling up the system and distributing the
virtual network functions among several compute nodes will
definitely improve the overall performance. However, in this
case the role of the physical network infrastructure becomes
critical, and an accurate analysis is required in order to isolate
the contributions of virtual and physical components. We
plan to extend our study in this direction in our future work,
after properly upgrading our experimental test-bed.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This work was partially funded by EIT ICT Labs, Action Line
on Future Networking Solutions, Activity no. 15270/2015:
“SDN at the Edges.”The authors would like to thankMr. Giu-
liano Santandrea for his contributions to the experimental
setup.

References

[1] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: challenges and opportunities for innovations,”
IEEE Communications Magazine, vol. 53, no. 2, pp. 90–97, 2015.

[2] N.M.Mosharaf Kabir Chowdhury and R. Boutaba, “A survey of
network virtualization,” Computer Networks, vol. 54, no. 5, pp.
862–876, 2010.

[3] The Open Networking Foundation, Software-Defined Network-
ing: The New Norm for Networks, ONF White Paper, The Open
Networking Foundation, 2012.

[4] The European Telecommunications Standards Institute, “Net-
work functions virtualisation (NFV); architectural framework,”
ETSI GS NFV 002, V1.2.1, The European Telecommunications
Standards Institute, 2014.

[5] A. Manzalini, R. Minerva, F. Callegati, W. Cerroni, and A.
Campi, “Clouds of virtual machines in edge networks,” IEEE
Communications Magazine, vol. 51, no. 7, pp. 63–70, 2013.

[6] J. Soares, C. Goncalves, B. Parreira et al., “Toward a telco cloud
environment for service functions,” IEEE Communications
Magazine, vol. 53, no. 2, pp. 98–106, 2015.

[7] Open Networking Lab, Central Office Re-Architected as Data-
center (CORD), ON.Lab White Paper, Open Networking Lab,
2015.



Journal of Electrical and Computer Engineering 15

[8] K. Pretz, “Software already defines our lives—but the impact of
SDN will go beyond networking alone,” IEEE.The Institute, vol.
38, no. 4, p. 8, 2014.

[9] OpenStack Project, http://www.openstack.org.
[10] F. Sans and E. Gamess, “Analytical performance evaluation of

different switch solutions,” Journal of Computer Networks and
Communications, vol. 2013, Article ID 953797, 11 pages, 2013.

[11] P. Emmerich, D. Raumer, F. Wohlfart, and G. Carle, “Perfor-
mance characteristics of virtual switching,” in Proceedings of the
3rd International Conference on Cloud Networking (CloudNet
’13), pp. 120–125, IEEE, Luxembourg City, Luxembourg, Octo-
ber 2014.

[12] R. Shea, F. Wang, H. Wang, and J. Liu, “A deep investigation
into network performance in virtual machine based cloud
environments,” in Proceedings of the 33rd IEEE Conference on
Computer Communications (INFOCOM ’14), pp. 1285–1293,
IEEE, Ontario, Canada, May 2014.

[13] P. Rad, R. V. Boppana, P. Lama, G. Berman, and M. Jamshidi,
“Low-latency software defined network for high performance
clouds,” in Proceedings of the 10th System of Systems Engineering
Conference (SoSE ’15), pp. 486–491, San Antonio, Tex , USA,
May 2015.

[14] S. Oechsner and A. Ripke, “Flexible support of VNF place-
ment functions in OpenStack,” in Proceedings of the 1st IEEE
Conference on Network Softwarization (NETSOFT ’15), pp. 1–6,
London, UK, April 2015.

[15] G. Almasi, M. Banikazemi, B. Karacali, M. Silva, and J. Tracey,
“Openstack networking: it’s time to talk performance,” in
Proceedings of the OpenStack Summit, Vancouver, Canada, May
2015.

[16] F. Callegati, W. Cerroni, C. Contoli, and G. Santandrea,
“Performance of network virtualization in cloud computing
infrastructures: the Openstack case,” in Proceedings of the 3rd
IEEE International Conference on Cloud Networking (CloudNet
’14), pp. 132–137, Luxemburg City, Luxemburg, October 2014.

[17] F. Callegati, W. Cerroni, C. Contoli, and G. Santandrea, “Per-
formance of multi-tenant virtual networks in OpenStack-based
cloud infrastructures,” in Proceedings of the 2nd IEEE Work-
shop on Cloud Computing Systems, Networks, and Applications
(CCSNA ’14), in Conjunction with IEEE Globecom 2014, pp. 81–
85, Austin, Tex, USA, December 2014.

[18] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McK-
eown, “Reproducible network experiments using container-
based emulation,” in Proceedings of the 8th International Con-
ference on Emerging Networking Experiments and Technologies
(CoNEXT ’12), pp. 253–264, ACM, December 2012.

[19] P. Bellavista, F. Callegati, W. Cerroni et al., “Virtual network
function embedding in real cloud environments,” Computer
Networks, vol. 93, part 3, pp. 506–517, 2015.

[20] M. F. Bari, R. Boutaba, R. Esteves et al., “Data center network
virtualization: a survey,” IEEE Communications Surveys &
Tutorials, vol. 15, no. 2, pp. 909–928, 2013.

[21] The Linux Foundation, Linux Bridge, The Linux Foundation,
2009, http://www.linuxfoundation.org/collaborate/workgroups/
networking/bridge.

[22] J. T. Yu, “Performance evaluation of Linux bridge,” in Proceed-
ings of the Telecommunications SystemManagement Conference,
Louisville, Ky, USA, April 2004.

[23] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and S.
Shenker, “Extending networking into the virtualization layer,” in
Proceedings of the 8th ACMWorkshop onHot Topics in Networks
(HotNets ’09), New York, NY, USA, October 2009.

[24] G. Santandrea, Show My Network State, 2014, https://sites
.google.com/site/showmynetworkstate.

[25] R. Jain and S. Paul, “Network virtualization and software
defined networking for cloud computing: a survey,” IEEE
Communications Magazine, vol. 51, no. 11, pp. 24–31, 2013.

[26] “RUDE & CRUDE: Real-Time UDP Data Emitter & Collector
for RUDE,” http://sourceforge.net/projects/rude/.

[27] iperf3: a TCP, UDP, and SCTP network bandwidth measure-
ment tool, https://github.com/esnet/iperf.

[28] nDPI: Open and Extensible LGPLv3 Deep Packet Inspection
Library, http://www.ntop.org/products/ndpi/.



Research Article
Server Resource Dimensioning and Routing of
Service Function Chain in NFV Network Architectures

V. Eramo,1 A. Tosti,2 and E. Miucci1

1DIET, “Sapienza” University of Rome, Via Eudossiana 18, 00184 Rome, Italy
2Telecom Italia, Via di Val Cannuta 250, 00166 Roma, Italy

Correspondence should be addressed to E. Miucci; 1kronos1@gmail.com

Received 29 September 2015; Accepted 18 February 2016

Academic Editor: Vinod Sharma

Copyright © 2016 V. Eramo et al.This is an open access article distributed under the Creative CommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Network Function Virtualization (NFV) technology aims at virtualizing the network service with the execution of the single
service components in Virtual Machines activated on Commercial-off-the-shelf (COTS) servers. Any service is represented by
the Service Function Chain (SFC) that is a set of VNFs to be executed according to a given order. The running of VNFs needs the
instantiation of VNF instances (VNFI) that in general are software components executed onVirtualMachines. In this paper we cope
with the routing and resource dimensioning problem in NFV architectures. We formulate the optimization problem and due to its
NP-hard complexity, heuristics are proposed for both cases of offline and online traffic demand. We show how the heuristics works
correctly by guaranteeing a uniform occupancy of the server processing capacity and the network link bandwidth. A consolidation
algorithm for the power consumption minimization is also proposed. The application of the consolidation algorithm allows for a
high power consumption saving that however is to be paid with an increase in SFC blocking probability.

1. Introduction

Today’s networks are overly complex, partly due to an
increasing variety of proprietary, fixed-function appliances
that are unable to deliver the agility and economics needed
to address constantly changing market requirements [1].
This is because network elements have traditionally been
optimized for high packet throughput at the expense of
flexibility, thus hampering the deployment of new services
[2]. Network Function Virtualization (NFV) can provide the
infrastructure flexibility and agility needed to successfully
compete in today’s evolving communications landscape [3].
NFV implements network functions in software running on a
pool of shared commodity servers instead of using dedicated
proprietary hardware. This virtualized approach decouples
the network hardware from the network function and results
in increased infrastructure flexibility and reduced hardware
costs. Because the infrastructure is simplified and stream-
lined, new and expended services can be created quickly and
with less expense. Implementation of the paradigm has also
been proposed [4] and the performance has been investigated
[5]. To support the NVF technology both ETSI [6, 7] and

IETF [8, 9] are defining novel network architectures able to
allocate resources for Virtualized Network Function (VNF)
as well as manage and orchestrate NFV to support services.
In particular the service is represented by a Service Function
Chain (SFC) [8] that is a set of VNFs that have to be executed
according to a given order. AnyVNF is run on aVNF instance
(VNFI) implemented with one Virtual Machine (VM) whose
resources (Vcores, RAM memory, etc.) are allocated to [10].
Some solutions have been proposed in the literature to solve
the problem of choosing the servers where to instantiate
VNF and to determine the network paths interconnecting
the VNFs [1]. A formulation of the optimization problem
is illustrated in [11]. Three greedy algorithms and a tabu
search-based heuristic are proposed in [12]. The extension
of the problem in the case in which virtual routers are also
considered is proposed in [13].

The innovative contribution of our paper is that dif-
ferently from [12] we follow an approach that allows for
both the resource dimensioning and the SFC routing. We
formulate the optimization problem whose objective is the
minimization of the number of dropped SFC requests with
the constraint that the SFCs are routed so as to respect both

Hindawi Publishing Corporation
Journal of Electrical and Computer Engineering
Volume 2016, Article ID 7139852, 12 pages
http://dx.doi.org/10.1155/2016/7139852

http://dx.doi.org/10.1155/2016/7139852


2 Journal of Electrical and Computer Engineering

the server processing capacity and network link bandwidth.
With the problem being NP-hard we introduce a heuristic
that allows for (i) the dimensioning of the Virtual Machines
in terms of number of Vcores assigned and (ii) the SFC
routing through the VNF instance implemented by the
Virtual Machines. The heuristic performs simultaneously
the dimensioning and routing operations. Furthermore we
propose a consolidation algorithm based on Virtual Machine
migrations and able to achieve power consumption savings.
The proposed algorithms are evaluated in scenarios charac-
terized by offline and online traffic demands.

The paper is organized as follows. The related work is
discussed in Section 2. Section 3 is devoted to illustrating
the optimization problem and the proposed heuristic for the
offline traffic demand case. In Section 4 we describe an SFC
planner in which the proposed heuristic is applied in the
case of online traffic demand. The planner also implements a
consolidation algorithm whose application allows for power
consumption savings. Some numerical results are shown in
Section 5 to prove the effectiveness of the proposed heuristics.
Finally the main conclusions and future research items are
mentioned in Section 6.

2. Related Work

The Internet Engineering Task Force (IETF) has formed the
SFCWorking Group [8, 9] to define Service Function Chain-
ing related problems and to standardize the architecture and
protocols. A Service Function Chain (SFC) is defined as a
set of abstract service functions [15] and ordering constraints
that must be applied to packets selected as a result of the clas-
sification. When virtual service functions are considered, the
SFC is referred to as Virtual Network Function Forwarding
Graph (VNFFG) within the ETSI [6]. To support the SFCs,
Virtual Network Function instances (VNFIs) are activated
and executed in COTS servers. To achieve the economics of
scale expected from NFV, network link and server resources
should be used efficiently. For this reason efficient algorithms
have to be introduced to determine where to instantiate the
VNFI and to route the SFCs by choosing the network paths
and the VNFI involved. The algorithms have to take into
account the limited resources of the network links and the
servers and pursued objectives of load balancing, energy
saving, recovery from failure, and so on [1]. The task of
placing SFC is closely related to virtual network embeddings
[16] and virtual data network embedding [17] and may
therefore be formulated as an optimization problem, with
a particular objective. The approach has been followed by
[11, 18–21]. For instance, Moens and Turck [11] formulate the
SFCplacement problem as a linear optimization problem that
has the objective of minimizing the number of active servers.
Other objectives are pursued in [19] (latency, remaining data
rate, number of used network nodes, etc.) and the SFCplacing
is formulated as a mixed integer quadratically constrained
program.

It has been proved that the SFC placing problem is NP-
hard. For this reason efficient heuristics have been proposed
and evaluated [10, 13, 22, 23]. For example, Xia et al. [22]

formulate the placement and chaining problem as binary
integer programming and propose a greedy heuristic in
which the SFCs are first sorted according to their resource
demands and the SFCs with the highest resource demands
are given priority for placement and routing.

In order to achieve energy consumption saving, the NFV
architecture should allow for migrations of VNFI, that is, the
migration of the Virtual Machine implementing the VNFI.
Though VNFI migrations allow for energy consumption
saving, they may impact the QoS performance received by
the users related to the migrated VNFs. A model has been
proposed in [24] to derive some performance indicators, such
as the whole service down time and the total migration time
so as to make function migrations decisions.

The contribution of this paper is twofold: (i) to pro-
pose and to evaluate the performance of an algorithm that
performs simultaneously resource dimensioning and SFC
routing and (ii) to investigate the advantages from the point
of view of the power consumption saving that the application
of server consolidation techniques allow us to achieve.

3. Offline Algorithms for SFC Routing in
NFV Network Architectures

We consider the case in which SFC requests are known
in advance. We formulate the optimization problem whose
objective is the minimization of the number of dropped SFC
requests with the constraint that the SFCs are routed so as to
respect both the server processing capacity and network link
bandwidth. With the problem being NP-hard we introduce a
heuristic that allows for (i) the dimensioning of the Virtual
Machines in terms of the number of Vcores assigned and (ii)
the SFC routing through the VNF instances implemented by
the Virtual Machines.The heuristic performs simultaneously
the dimensioning and routing operations.

The section is organized as follows. The network and
traffic model is introduced in Section 3.1. Sections 3.2 and 3.3
are devoted to illustrating the optimization problem and the
proposed heuristic, respectively.

3.1. Network and Traffic Model. Next we introduce the main
terminology used to represent the physical network, VNF,
and the SFC traffic request [25]. We represent the physical
network PN as a directed graph GPN

= (VPN
,EPN

),
whereVPN andEPN are the sets of physical nodes and links,
respectively. The set VPN of nodes is given by the union of
the three node setsVPN

A ,VPN
R , andVPN

S that are the sets of
access, switching, and server nodes, respectively. The server
nodes and links are characterized by the following:

(i) 𝑁PN
core (𝑤): processing capacity of the server node 𝑤 ∈

VPN
S in terms of the number of cores available;

(ii) 𝐶PN
(𝑑): bandwidth of the physical link 𝑑 ∈ EPN.

We assume that 𝐹 types of VNFs can be provisioned as
firewall, IDS, proxy, load balancers, and so on. We denote
by F = {𝑓

1
, 𝑓
2
, . . . , 𝑓

𝐹
} the set of VNFs, with 𝑓

𝑖
being the



Journal of Electrical and Computer Engineering 3

u
e1 e2 e3�1 �2 t

BSFC(�1) = 83.33 BSFC(�2) = 83.33

CSFC(e1) = 1 CSFC(e2) = 1 CSFC(e3) = 1

Figure 1: An example of graph representing an SFC request for a
flow characterized by the bandwidth of 1Mbps and packet length of
1500 bytes.

𝑖th VNF type. The packet processing time of the VNF 𝑓
𝑖
is

denoted by 𝑡proc
𝑖

(𝑖 = 1, . . . , 𝐹).
We also assume that the network operator is receiving 𝑇

Service Function Chain (SFC) requests known in advance.
The 𝑖th SFC request is characterized by the graph GSFC

𝑖
=

(VSFC
𝑖

,ESFC
𝑖

), where VSFC
𝑖

represents the set of access
and VNF nodes and ESFC

𝑖
(𝑖 = 1, . . . , 𝑇) denotes the links

between them. In particular the set VSFC
𝑖

is given by the
union ofVSFC

𝑖,𝐴
andVSFC

𝑖,𝐹
denoting the set of access nodes

and VNFs, respectively. The graph is characterized by the
following parameters:

(i) 𝛼V𝑤: assuming the value 1 if the access node V ∈

⋃

𝑇

𝑖=1
VSFC
𝑖,𝐴

characterizes an SFC request start-
ing/terminating from/to the physical access nodes
𝑤 ∈VPN

A ; otherwise its value is 0;
(ii) 𝛽V𝑘: assuming the value 1 if the VNF node V ∈

⋃

𝑇

𝑖=1
VSFC
𝑖,𝐹

needs the application of the VNF 𝑓
𝑘
(𝑘 ∈

[1, . . . , 𝐹]); otherwise its value is 0;
(iii) 𝐵SFC

(V): the processing capacity requested by the
VNF node V ∈ ⋃

𝑇

𝑖=1
VSFC
𝑖,𝐹

; the parameter value
depends on both the packet length and the bandwidth
of the packet flow incoming to the VNF node;

(iv) 𝐶SFC
(𝑒): bandwidth requested by the link 𝑒 ∈

⋃

𝑇

𝑖=1
ESFC
𝑖

.

An example of SFC request is represented in Figure 1 where
the traffic emitted by the ingress access node 𝑢 has to be
handled by the VNF nodes V

1
and V

2
and it is terminating

to the egress access node 𝑡. The access and VNF nodes are
interconnected by the links 𝑒

1
, 𝑒
2
, and 𝑒

3
. If the flow band-

width is 1Mbps and the packet length is 1500 bytes we obtain
the processing capacities 𝐵SFC

(V
1
) = 𝐵

SFC
(V
2
) = 83.33

while the bandwidths 𝐶SFC
(𝑒
1
), 𝐶SFC

(𝑒
2
), and 𝐶SFC

(𝑒
3
) of

all links equal 1.

3.2. Optimization Problem for the SFC Routing and VNF
Instance Dimensioning. The objective of the SFC Routing
and VNF Instance Dimensioning (SRVID) problem is to
maximize the number of accepted SFC requests. The output
of the problem is characterized by the following: (i) the
servers in which the VNF nodes are executed and (ii) the
network paths inwhich the virtual links of the SFC are routed.
This arrangement has to be accomplished without violating
both the server processing and the physical link capacities.
We assume that all of the servers create a VNF instance for

each type of VNF that will be shared by the SFCs using that
server and requesting that type of VNF. For this reason each
server will activate 𝐹 VNF instances, one for each type, and
another output of the problem is to determine the number of
Vcores to be assigned to each VNF instance.

We assume that one virtual link of the SFC graphs can be
routed through single physical network path. We introduce
the following notations:

(i) P: set of paths inGPN,

(ii) 𝛿
𝑑𝑝
: the binary function assuming value 1 or 0 if the

network link 𝑑 belongs or does not to the path 𝑝 ∈ P,
respectively,

(iii) 𝑎PN
(𝑝) and 𝑏PN

(𝑝): origin and destination nodes of
the path 𝑝 ∈ P,

(iv) 𝑎SFC
(𝑑) and 𝑏SFC

(𝑑): origin and destination nodes
of the virtual link 𝑒 ∈ ⋃𝑇

𝑖=1
ESFC
𝑖

.

Next we formulate the optimal SRVID problem characterized
by the following optimization variables:

(i) 𝑥
ℎ
: binary variable assuming the value 1 if the ℎth SFC

request is accepted; otherwise its value is zero;

(ii) 𝑦
𝑤𝑘
: integer variable characterizing the number of

Vcores allocated to the VNF instance of type 𝑘 in the
server 𝑤 ∈VPN

S ;

(iii) 𝑧𝑘V𝑤: binary variable assuming the value 1 if the VNF
node V ∈ ⋃𝑇

𝑖=1
VSFC
𝑖,𝐹

is served by the VNF instance
of type 𝑘 in the server 𝑤 ∈VPN

S ;

(iv) 𝑢
𝑑𝑝
: binary variable assuming the value 1 if the virtual

link 𝑒 ∈ ⋃

𝑇

𝑖=1
ESFC
𝑖

is embedded in the physical
network path 𝑝 ∈ P; otherwise its value is zero.

Next we report the constraints for the optimization variables:

𝐹

∑

𝑘=1

𝑦
𝑤𝑘
≤ 𝑁

PN
core (𝑤) ,

𝑤 ∈V
PN
S ,

(1)

𝐹

∑

𝑘=1

∑

𝑤∈VPN
S

𝑧

𝑘

V𝑤 ≤ 1, V ∈
𝑇

⋃

𝑖=1

V
SFC
𝑖,𝐹

, (2)

𝑧

𝑘

V𝑤 ≤ 𝛽V𝑘,

𝑘 ∈ [1, . . . , 𝐹] , V ∈
𝑇

⋃

𝑖=1

V
SFC
𝑖,𝐹

, 𝑤 ∈V
PN
S ,

(3)

∑

V∈⋃𝑇
𝑖=1

VSFC
𝑖,𝐹

𝑧

𝑘

V𝑤𝐵
SFC

(V) 𝑡proc
𝑘

≤ 𝑦
𝑤𝑘
,

𝑘 ∈ [1, . . . , 𝐹] , 𝑤 ∈V
PN
S ,

(4)



4 Journal of Electrical and Computer Engineering

𝑢
𝑑𝑝
≤ 𝑧

𝑘

𝑎
SFC
(𝑑)𝑎

PN
(𝑝)
,

𝑎

SFC
(𝑑) ∈

𝑇

⋃

𝑖=1

V
SFC
𝑖,𝐹

, 𝑘 ∈ [1, . . . , 𝐹] , 𝑝 ∈ P,

(5)

𝑢
𝑑𝑝
≤ 𝑧

𝑘

𝑏
SFC
(𝑑)𝑏

PN
(𝑝)
,

𝑏

SFC
(𝑑) ∈

𝑇

⋃

𝑖=1

V
SFC
𝑖,𝐹

, 𝑘 ∈ [1, . . . , 𝐹] , 𝑝 ∈ P,

(6)

𝑢
𝑑𝑝
≤ 𝛼

𝑘

𝑎
SFC
(𝑑)𝑎

PN
(𝑝)
,

𝑎

SFC
(𝑑) ∈

𝑇

⋃

𝑖=1

V
SFC
𝑖,𝐴

, 𝑘 ∈ [1, . . . , 𝐹] , 𝑝 ∈ P,

(7)

𝑢
𝑑𝑝
≤ 𝛼

𝑘

𝑏
SFC
(𝑑)𝑏

PN
(𝑝)
,

𝑏

SFC
(𝑑) ∈

𝑇

⋃

𝑖=1

V
SFC
𝑖,𝐴

, 𝑘 ∈ [1, . . . , 𝐹] , 𝑝 ∈ P,

(8)

∑

𝑝∈P

𝑢
𝑑𝑝
≤ 1, 𝑑 ∈

𝑇

⋃

𝑖=1

E
SFC
𝑖

, (9)

∑

𝑑∈⋃
𝑇

𝑖=1
ESFC
𝑖

𝐶

SFC
(𝑑) ∑

𝑝∈P

𝛿
𝑒𝑝
𝑢
𝑑𝑝
≤ 𝐶

PN
(𝑒) , (10)

𝑥
ℎ
≤

𝐹

∑

𝑘=1

∑

𝑤∈VPN
S

𝑧

𝑘

V𝑤,

ℎ ∈ [1, . . . , 𝑇] , V ∈VSFC
ℎ,𝐹

,

(11)

𝑥
ℎ
≤ ∑

𝑝∈P

𝑢
𝑑𝑝
,

ℎ ∈ [1, . . . , 𝑇] , 𝑑 ∈ E
SFC
ℎ

.

(12)

Constraint (1) establishes the fact that at most a number
of Vcores equal to the available ones are used for each server
node 𝑤 ∈ VPN

S . Constraint (2) expresses the condition
that a VNF can be served by one only VNF instance. To
guarantee that a node V ∈ VSFC

ℎ,𝐹
needing the application

of a VNF type is mapped to a correct VNF instance we
introduce constraint (3). Constraint (4) limits the number
of VNF nodes assigned to one VNF instance by taking into
account both the number of Vcores assigned to the VNF
instance and the required VNF node processing capacities.
Constraints (5)–(8) establish the fact that when the virtual
link 𝑑 is supported by the physical network path 𝑝 then
𝑎

PN
(𝑝) and 𝑏PN

(𝑝) must be the physical network nodes
that the nodes 𝑎SFC

(𝑑) and 𝑏SFC
(𝑑) of the virtual graph

are assigned to. The choice of mapping of any virtual link on
a single physical network path is represented by constraint
(9). Constraint (10) avoids any overloading on any physical
network link. Finally constraints (11) and (12) establish the
fact that an SFC request can be accepted when the nodes and

the links of the SFC graph are assigned to VNF instances and
physical network paths.

The problem objective is tomaximize the number of SFCs
accepted given by

max
𝑇

∑

ℎ=1

𝑥
ℎ
. (13)

The introduced optimization problem is intractable because
it requires solving a NP-hard bin packing problem [26]. Due
to its high complexity, it is not possible to solve the problem
directly in a timely manner given the large number of servers
and network nodes. For this reason we propose an efficient
heuristic in Section 3.3.

3.3.Maximizing the Accepted SFCRequests Number (MASRN)
Heuristic. The Maximizing the Accepted SFC Requests
Number (MASRN) heuristic is based on the embedding
algorithm proposed in [14] and has the objective of maxi-
mizing the number of accepted SFC requests. The MASRN
algorithm tries routing the SFCs one by one by using the least
loaded link and server resources so as to balance their use.
Algorithm 1 illustrates the operation mode of the MASRN
algorithm.The routing of a target SFC, the 𝑘tarth, is illustrated.
Themain inputs of the algorithmare (i) the set𝑇pre containing
the indexes of the SFC requests routed successfully before the
𝑘tarth SFC request; (ii) the 𝑘tarth SFC request graph GSFC

𝑘tar
=

(VSFC
𝑘tar

,ESFC
𝑘tar

); (iii) the values of the parameters 𝛼V𝑤 for the
𝑘tarth SFC request; (iv) the values of the variables 𝑧𝑘V𝑤 and 𝑢𝑑𝑝
for the SFC requests successfully routed before the 𝑘tarth SFC
request and defined in Section 3.2.

The operation mode of the heuristic is based on the
following variables:

(i) 𝐴𝑘(𝑤): the load of the cores allocated for the VNF
instance of type 𝑘 ∈ [1, . . . , 𝐹] in the server 𝑤 ∈

VPN
S ; the value of 𝐴𝑘(𝑤) is initialized by taking into

account the core resource amount used by the SFCs
successfully routed before the 𝑘tarth SFC request;
hence its initial value is

𝐴

𝑘
(𝑤) = ∑

V∈⋃
𝑖∈𝑇
𝑘tar

VSFC
𝑖,𝐹

𝑧

𝑘

V𝑤𝐵
SFC

(V) 𝑡proc
𝑘
. (14)

(ii) 𝑆
𝑁
(𝑤): defined as the stress of the node 𝑤 ∈ VPN

S

[14] and characterizing the server load; its value is
initialized to

𝑆
𝑁
(𝑤) =

𝐹

∑

𝑘=1

𝐴

𝑘
(𝑤) . (15)

(iii) 𝑆
𝐿
(𝑒): defined as the stress of the physical network link

𝑒 ∈ EPN [14] and characterizing the link load; its
value is initialized to

𝑆
𝐿
(𝑒) = ∑

𝑑∈⋃
𝑖∈𝑇
𝑘tar

ESFC
𝑖

𝐶

SFC
(𝑑) ∑

𝑝∈P

𝛿
𝑒𝑝
𝑢
𝑑𝑝
. (16)



Journal of Electrical and Computer Engineering 5

(1) Input: Physical Network GraphGPN
= (VPN

,EPN
); 𝑘tarth SFC request; 𝑘tarth SFC request Graph

GSFC
𝑘tar

= (VSFC
𝑘tar

,ESFC
𝑘tar

); 𝑇pre;
{𝛼V𝑤, V ∈V

SFC
𝑘tar ,𝐴

𝑤 ∈VPN
A };

{𝑧

𝑘

V𝑤, 𝑘 ∈ [1, . . . , 𝐹] V ∈ ⋃𝑖∈𝑇pre V
SFC
𝑖,𝐹

𝑤 ∈VPN
S };

{𝑢
𝑑𝑝
, 𝑑 ∈ ⋃

𝑖∈𝑇pre
ESFC
𝑖

𝑝 ∈ P};
(2) Variables: {𝐴𝑘(𝑤), 𝑘 ∈ [1, . . . , 𝐹] 𝑤 ∈VPN

S };
{𝑆
𝑁
(𝑤), 𝑤 ∈VPN

S };
{𝑆
𝐿
(𝑒), 𝑒 ∈ EPN

};
{𝑦
𝑤𝑘
, 𝑘 ∈ [1, . . . , 𝐹] 𝑤 ∈VPN

S };
/∗Evaluation of the candidate mapping of GSFC

𝑘tar
= (VSFC

𝑘tar
,ESFC
𝑘tar

) in GPN
= (VPN

,EPN
)

∗/
(3) assign the node V ∈VSFC

𝑘tar ,𝐴
to the physical network node 𝑤 ∈VPN

S according to the value of the parameter 𝛼V𝑤;
(4) select the nodes 𝑤 ∈VPN

S and the physical network paths 𝑝 ∈ P to be assigned to the server nodes V ∈VSFC
𝑘tar ,𝐹

and virtual links
𝑑 ∈ ESFC

𝑘tar ,𝑆
by applying the algorithm proposed in [14] and based on the values of the node and link stresses 𝑆

𝑁
(𝑤) and 𝑆

𝐿
(𝑒);

determine the variable values:
{𝑧

𝑘

V𝑤, 𝑘 ∈ [1, . . . , 𝐹] V ∈V
SFC
𝑘tar ,𝐹

𝑤 ∈VPN
S };

{𝑢
𝑑𝑝
, 𝑑 ∈ ESFC

𝑘tar
𝑝 ∈ P};

/∗Server Resource Availability Check Phase∗/
(5) for V ∈VSFC

𝑘tar ,𝐹
, 𝑤 ∈VPN

S , 𝑘 ∈ [1, . . . , 𝐹] do
(6) if ∑𝐹

𝑠=1(𝑠 ̸=𝑘)
𝑦
𝑤𝑠
+ ⌈𝐴

𝑘
(𝑤) + 𝑧

𝑘

V𝑤𝐵
SFC

(V)𝑡proc
𝑘
⌉ ≤ 𝑁

PN
core (𝑤) then

(7) 𝐴

𝑘
(𝑤) = 𝐴

𝑘
(𝑤) + 𝑧

𝑘

V𝑤𝐵
SFC

(V)𝑡proc
𝑘

;
(8) 𝑆

𝑁
(𝑤) = 𝑆

𝑁
(𝑤) + 𝑧

𝑘

V𝑤𝐵
SFC

(V)𝑡proc
𝑘

;
(9) 𝑦

𝑤𝑘
= ⌈𝐴

𝑘
(𝑤) + 𝑧

𝑘

V𝑤𝐵
SFC

(V)𝑡proc
𝑘
⌉;

(10) else
(11) REJECT the 𝑘tarth SFC request
(12) end if
(13) end for

/∗Link Resource Availability Check Phase∗/
(14) for 𝑒 ∈ EPN do
(15) if 𝑆

𝐿
(𝑒) + ∑

𝑑∈ESFC
𝑘tar

CSFC
(𝑑)∑

𝑝∈P 𝛿𝑒𝑝𝑢𝑑𝑝 ≤ 𝐶
PN
(𝑒) then

(16) 𝑆
𝐿
(𝑒) = 𝑆

𝐿
(𝑒) + ∑

𝑑∈ESFC
𝑘tar

CSFC
(𝑑)∑

𝑝∈P 𝛿𝑒𝑝𝑢𝑑𝑝;
(17) else
(18) REJECT the 𝑘tarth SFC request
(19) end if
(20) end for
(21)Output: {𝑧𝑘V𝑤, 𝑘 ∈ [1, . . . , 𝐹] V ∈V

SFC
𝑘tar ,𝐹

𝑤 ∈VPN
S };

{𝑢
𝑑𝑝
, 𝑑 ∈ ESFC

𝑘tar
𝑝 ∈ P}

Algorithm 1: MASRN algorithm.

The candidate physical network links and nodes in which
to embed the target SFC are evaluated. First of all the access
nodes are evaluated (line 3) according to the values of the
parameters 𝛼V𝑤, V ∈ VSFC

𝑘tar ,𝐴
, 𝑤 ∈ VPN

A . Next the MASRN
algorithm selects a cluster of server nodes (line 4) that are
not lightly loaded but also likely to result in low substrate link
stresses when they are connected. Details on the procedure
are reported in [14].

In the next phases the resource availability in the selected
cluster is checked. The resource availability in the server
nodes and physical network links is verified in the Server
(lines 5–13) and Link (lines 14–20) Resource Availability
Check Phases, respectively. If resources are not available in
either links or nodes, the target SFC request is rejected. In
particular, in the Server Resource Availability Check Phase,
the algorithm verifies whether the allocation of new Vcores is

needed and in this case their availability is checked (line 6).
The variable 𝑦

𝑤𝑘
is also updated in this phase (line 9).

Finally the outputs (line 21) of the MASRN algorithm are
the selected values for the variables {𝑧𝑘V𝑤, 𝑘 ∈ [1, . . . , 𝐹] V ∈
VSFC
𝑘tar ,𝐹

𝑤 ∈VPN
S } and {𝑢

𝑑𝑝
, 𝑑 ∈ ESFC

𝑘tar
𝑝 ∈ P}.

The computational complexity of the MASRN algorithm
depends on the procedure for the evaluation of the potential
nodes [14]. Let 𝑁

𝑠
be the total number of servers. The

complexity of the phase in which the potential nodes are
evaluated can be carried out according to the following
remarks: (i) as many servers as the number of the VNFs of
the SFC are determined and (ii) the ℎth server is selected
by evaluating the (𝑁

𝑠
− ℎ) shortest paths and by performing

a minimum operation of a list with (𝑁
𝑠
− ℎ) elements.

According to these remarks the computational complexity
is given by O(𝑉(𝑉 + 𝑁

𝑠
)𝑁
𝑙
log(𝑁

𝑠
+ 𝑁
𝑛
)), where 𝑉 is the



6 Journal of Electrical and Computer Engineering

Consolidation
Module SFC Scheduler Resource 

Monitor

SFC request

Migration 
decision

Scheduling
decision

Resource 
information

Orchestrator

Figure 2: SFC planner architecture.

maximum number of VNFs in an SFC and𝑁
𝑙
and𝑁

𝑛
are the

numbers of nodes and links of the network.

4. Online Algorithms for SFC Routing in NFV
Network Architectures

In the online approach the SFC requests arrive at the system
over the time and each of them is characterized by a certain
duration. In order to reduce the complexity of the online
SFC resource allocation algorithm we designed an SFC
plannerwhose general architecture is described in Section 4.1.
The operation mode of the SFC planner is based on some
algorithms that we describe in Section 4.2.

4.1. SFC Planner Architecture. The architecture of the SFC
planner is shown in Figure 2. It could make up the main
component of an orchestrator in the NFV architecture [6].
It is composed of three components: the SFC Scheduler, the
Resource Monitor, and the Consolidation Module.

Once the SFC Scheduler receives an SFC request, it
executes an algorithm to verify if resources are available and
to decide which resources to use.

The physical resource, as well as the Virtual Machines
running on the servers, ismonitored by theResourceMonitor.
If a failure of any physical/virtual node or link occurs it
notifies the event to the SFC Scheduler.

The Consolidation Module allows for the server resource
consolidation in low traffic periods. When the consolidation
technique is applied, VMs are migrated to as fewer servers
as possible; the remaining ones are turned off and power
consumption saving can be achieved.

4.2. SFC Scheduling and Consolidation Algorithms. In this
section we describe the algorithms executed by the SFC
Scheduler and the Consolidation Module.

Whenever a new SFC request arrives at the SFC planner,
the SFC scheduling algorithm is executed in order to find
the best embedding in the system, maintaining a uniform
usage of the network resource. The main steps of this
procedure are reported in the flow chart in Figure 3 and
are based on MASRN heuristic described in Section 3.3.
The algorithm starts selecting the set of servers on which
the VNFs requested by the SFC will be executed. In the
second step the physical paths on which the virtual links will
be mapped are selected. If there are not enough available

SFC request

Servers selection
using the potential

factor [26]

Enough
resources

?

Yes

No Drop the SFC
request

Path selection

Enough
resources

?

Yes

No Drop the SFC
request

Accept the SFC
request

Figure 3: Flow chart of the SFC scheduling algorithm.

resources in the first or in the second step the request is
dropped.

The flow chart of the consolidation algorithm is reported
in Figure 4. Each server 𝑠 ∈ VPN

S is characterized by
a parameter 𝜂

𝑠
defined as the ratio of the total amount

of incoming/outgoing traffic Λ
𝑠
that it is handling to the

power 𝑃
𝑠
it is consuming; that is, 𝜂

𝑠
= Λ
𝑠
/𝑃
𝑠
. The power

consumption model assumes a constant power contribution
and a variable one that linearly increases versus the handled
traffic. The server power consumption is expressed by

𝑃
𝑠
= 𝑃idle + (𝑃max − 𝑃idle)

𝐿
𝑠

𝐶
𝑠

, ∀𝑠 ∈V
PN
S , (17)

where 𝑃idle is the power consumed by the server when
no traffic is handled, 𝑃max is the maximum server power
consumption, 𝐿

𝑠
is the total load handled by the server 𝑠, and

𝐶
𝑠
is its maximum capacity. The maximum power that the

server can consume is expressed as𝑃max = 𝑃idle/𝑎, where 𝑎 is a
parameter characterizing how much the power consumption
is depending on the handled traffic. The power consumption
is as much more rate adaptive as 𝑎 is lower. For 𝑎 = 1 the
rate adaptive power consumption is absent and the consumed
power is constant.

The proposed algorithm tries switching off the server
with minimum power consumption per bit carried. For this
reason when the consolidation algorithm is executed it starts
selecting the server 𝑠min with the minimum value of 𝜂

𝑠
as



Journal of Electrical and Computer Engineering 7

Resource consolidation request 

Enough
resources

?

NoNo

Perform migration

Remove the server
from the set

The set is 
empty?

Yes

Yes

Select the set of 
possible

destinations

Select the first 
server of the set

Select the server 
with minimum 𝜂s

Sort the set based 
on descending 

values of 𝜂s

Figure 4: Flow chart of the SFC consolidation algorithm.

the one to turn off. A set of possible destination servers
able to host the VMs executed on 𝑠min is then evaluated and
sorted in descending order based again on the value of 𝜂

𝑠
.The

algorithm proceeds selecting the first element of the ordered
set and evaluating if there are enough resources in the site to
reroute all the flows generated from or terminated to 𝑠min. If
it succeeds the migration is performed and the server 𝑠min is
turned off. If it fails the destination server is removed and the
next server of the list is considered. When the ordered set of
possible destinations becomes empty another server to turn
off is selected.

The SFC Consolidation Module also manages the
resource deconsolidation procedure when the reactivation
of physical servers/links is needed. Basically the
deconsolidation algorithm selects the most loaded VMs
already migrated to a new server and moves them to their
original servers. The flows handled by these VMs are
accordingly rerouted.

5. Numerical Results

We evaluate the effectiveness of the proposed algorithms
in the case of the network scenario reported in Figure 5.
The network is composed of five core nodes, five edge
nodes, and six access nodes in which the SFC requests are
randomly generated and terminated. A Network Function
Virtualization (NFV) site is connected to edge nodes 3 and
4 through two access routers 1 and 2. The NFV site is also
composed of two switches and eight servers. In the basic
configuration, 40Gbps links are considered except the links
connecting the server to the switches in the NFV sites whose

rate is equal to 10 Gbps.The sixteen servers are equipped with
48 Vcores each.

Each SFC request is composed of three Virtual Network
Functions (VNFs), that is, a firewall, a load balancer, andVPN
encryption whose packet processing times are assumed to be
equal to 7,08𝜇s, 0,65 𝜇s, and 1,64 𝜇s [27], respectively.We also
assume that the load balancer splits the input traffic towards
a number of output links chosen uniformly from 1 to 3.

An example of graph for a generated SFC is reported in
Figure 6 in which 𝑢

𝑡
is an ingress access node and V1

𝑡
, V2
𝑡
,

and V3
𝑡
are egress access nodes. The first and second VNFs

are a firewall and VPN encryption; the third VNF is a load
balancer splitting the traffic towards three output links. In the
considered case study we also assume that the SFC handles
traffic flows of packet length equal to 1500 bytes and required
bandwidth uniformly distributed from 500Mbps to 1 Gbps.

5.1. Offline SFC Scheduling. In the offline case we assume that
a given number 𝑇 of SFC requests are a priori known. For the
case study previously described we apply theMASRN heuris-
tic proposed in Section 3.3. We report the percentage of the
dropped SFCs in Figure 7 as a function of the offered number
of SFCs. We report the curve for the basic scenario and the
ones in which the link capacities are doubled, quadrupled,
and increased per ten times, respectively. From Figure 7 we
can see how, in order to have a dropped SFC percentage lower
than 10%, the number of SFCs requests has to be smaller than
60 in the case of basic scenario. This remarkable blocking is
due to the shortage of network capacity. In fact we can notice
from Figure 7 how the dropped SFC percentage significantly
decreases when the link bandwidth increases. For instance,
when the capacity is quadrupled, the network infrastructure
is able to accommodate up to 180 SFCs without any loss.

This is confirmed in Figure 8 where we report the number
of Vcores occupied in the servers in the case of 𝑇 = 360.
Each of the servers is represented on the 𝑥-axis with the
identification (ID) of Figure 5. We also show in Figure 8 the
number of Vcores allocated to each firewall, load balancer,
and VPN encryption VNF with the blue, green, and red
colors, respectively. The basic scenario case and the ones in
which the link capacity is doubled, quadrupled, and increased
by 10 times are reported in Figures 8(a), 8(b), 8(c), and
8(d), respectively. From Figure 8 we can notice how the
MASRN heuristic works correctly by guaranteeing a uniform
occupancy of the servers in terms of total number of Vcores
used. We can also notice how the firewall VNF is the one
needing the higher number of Vcores allocated. That is a
consequence of the higher processing time that the firewall
VNF requires with respect to the load balancer and VPN
encryption VNFs.

5.2. Online SFC Scheduling. The numerical results are
achieved in the following traffic scenario. The traffic pattern
we consider is supposed to be sinusoidal with a peak value
during daytime and minimum value during nighttime. We
also assume that SFC requests follow a Poisson process
and the SFC duration time is distributed according to an



8 Journal of Electrical and Computer Engineering

NFV site

Server
6

Server
5

Server
3

Server
1

Server
2

Server
4

Server
16

Server
10

3
Edge

Edge 1

2
Edge

5
Edge

4
Edge

Core 3

Core 1

Core 2 Core 5

Core 4

Access
node 5

Access
node 3

Access
node 6

Access
node 1

Access
node 2

Access
node 4

Server
7

Server
8

Server
9

1
Switch

2
Switch

1
Router

2
Router

Server
14

Server
12

Server
11

Server
13

Server
15

Figure 5: The network topology is composed of six access nodes, five edge nodes, and five core nodes. The NFV site is composed of two
routers, two switches, and sixteen servers.

exponential distribution.The following parameters define the
SFC requests in the Peak Hour Interval (PHI):

(i) 𝜆 is the arrival rate of SFC requests;

(ii) 𝜇 is the termination rate of an embedded SFC;

(iii) [𝛽min
, 𝛽

max
] is the range in which the bandwidth

request for an SFC is randomly selected.

We consider 𝐾 time intervals in a day and each of them is
characterized by a scaling factor 𝛼

ℎ
with ℎ = 0, . . . , 𝐾 − 1. In

order to capture the sinusoidal shape of the traffic in a day, 𝛼
ℎ

is evaluated with the following expression:
𝛼
ℎ

=

{
{
{
{
{
{
{

{
{
{
{
{
{
{

{

1, if ℎ = 0,

1 − 2

ℎ

𝐾

(1 − 𝛼min) , ℎ = 1, . . . ,

𝐾

2

,

1 − 2

𝐾 − ℎ

𝐾

(1 − 𝛼min) , ℎ =

𝐾

2

+ 1, . . . , 𝐾 − 1,

(18)

where 𝛼
0
and 𝛼min refer to the peak traffic and the minimum

traffic scenario, respectively.
The parameter 𝛼

ℎ
affects the SFC arrival rate and the

bandwidth requested. In particular we have the following



Journal of Electrical and Computer Engineering 9

FW EV LB

Firewall 
VNF

VPN encryption 
VNF

Load balancer
VNF

FW EV LB

ut

�1t

�2t

�3t

Figure 6: An example of SFC composed of one firewall VNF, one
VPN encryption VNF, and one load balancer VNF that splits the
input traffic towards three output logical links. 𝑢

𝑡
denotes the ingress

access node while V1
𝑡
, V2
𝑡
, and V3

𝑡
denote the egress access nodes.

30 60 120 180 240 300 360
Number of offered SFC requests

Link capacity × 1

Link capacity × 2

Link capacity × 4

Link capacity × 10

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Pe
rc

en
ta

ge
 o

f d
ro

pp
ed

 S
FC

 re
qu

es
ts

Figure 7: Dropped SFC percentage as a function of the number of
SFCs offered.The four curves are reported for the basic scenario case
and the ones in which the link capacities are doubled, quadrupled,
and increased by 10 times.

expression for the SFC request rate 𝜆
ℎ
and the minimum

and the maximum requested bandwidths 𝛽min
ℎ

and 𝛽max
ℎ

,
respectively, in the interval ℎ (ℎ = 0, . . . , 𝐾 − 1):

𝜆
ℎ
= 𝛼
ℎ
𝜆,

𝛽

min
ℎ

= 𝛼
ℎ
𝛽

min
,

𝛽

max
ℎ

= 𝛼
ℎ
𝛽

max
.

(19)

Next we evaluate the performance of SFC planner proposed
in Section 4 in dynamic traffic scenario and for parameter
values 𝛽min

= 500Mbps, 𝛽max
= 1Gbps, 𝜆 = 1 rich/min, and

𝜇 = 1/15min−1. We also assume 𝐾 = 24 with traffic change
and consequently application of the consolidation algorithm
every hour.

Finally we consider servers whose power consumption is
characterized by the expression (17) with parameters 𝑃max =
1000W and 𝐶

𝑠
= 10Gbps.

We report the SFC blocking probability as a function of
the average number of offered SFC requests during the PHI
(𝜆/𝜇) in Figure 9. We show the results in the case of basic

link capacity scenario and in the ones obtained considering a
capacity of the links that is twice and four times higher than
the basic one. We consider the case of server with no rate
adaptive power consumption (𝑎 = 1). As we can observe,
when the offered traffic is low, the degradation in terms of
SFC blocking probability introduced by the consolidation
technique increases. In fact in this low traffic scenario, more
resource consolidation is possible with the consequence of
higher SFC blocking probabilities. When the offered traffic
increases the blocking probability with or without applying
the consolidation technique does not change much because
the network is heavily loaded and only few servers can be
turned off. Furthermore, as we can expect, the blocking
probability decreases when the links capacity increases. The
performance loss due to the application of the consolidation
technique is what we have to pay in order to obtain benefits
in terms of power saved by turning off servers. The curves
in Figure 10 compare the power consumption percentage
savings that we can achieve in the cases 𝑎 = 0.1 and 𝑎 = 1.
The results show that when the offered traffic decreases and
the link capacity increases, higher power consumption saving
can be achieved. The reason is that we have more resources
on the links and less loaded VMs that allow for a higher
number of VM migrations and resource consolidation. The
other result to notice is that the use of rate adaptive servers
reduces the power consumption saving when we perform
resource consolidation. This is due to the lower value 𝑃idle of
the constant power consumption of the server that leads to
lower power consumption saving when a server is switched
off.

6. Conclusions

The aim of this paper has been to propose heuristics for the
resource dimensioning and the routing of Service Function
Chain in network architectures employing the Network
Function Virtualization technology. We have introduced the
optimization problem that has the objective of minimizing
the number of SFCs offered and the compliance of server pro-
cessing and link bandwidth capacity. With the problem being
NP-hard, we have proposed the Maximizing the Accepted
SFC Requests Number (MASRN) heuristic that is based on
the uniform occupancy of the server and link resources. The
heuristic is also able to dimension the Vcores of the servers by
evaluating the number of Vcores to be allocated to each VNF
instance.

An SFC planner has been already proposed for the
dynamic traffic scenario. The planner is based on a con-
solidation algorithm that allows for the switching off of
servers during the low traffic periods. A case study has
been analyzed in which we have shown that the heuristics
works correctly by uniformly allocating the server resources
and reserving a higher number of Vcores for the VNFs
characterized by higher packet processing time. Furthermore
the proposed SFC planner allows for a power consumption
saving dependent on the offered traffic and varying from
10% to 70%. Such a saving is to be paid with an increase
in SFC blocking probability. As future research we will
propose and investigate Virtual Machine migration policies



10 Journal of Electrical and Computer Engineering

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
um

be
r o

f V
co

re
s

Server ID

Load balancer VNF
VPN encryption VNF
Firewall VNF

T = 360

Link capacity × 1

0
6

12
18
24
30
36
42
48

al
lo

ca
te

d 
pe

r V
N

FI

(a)

Load balancer VNF
VPN encryption VNF
Firewall VNF

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
um

be
r o

f V
co

re
s

Server ID

T = 360

Link capacity × 2

0
6

12
18
24
30
36
42
48

al
lo

ca
te

d 
pe

r V
N

FI

(b)

Load balancer VNF
VPN encryption VNF
Firewall VNF

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
um

be
r o

f V
co

re
s

Server ID

T = 360

Link capacity × 4

0
6

12
18
24
30
36
42
48

al
lo

ca
te

d 
pe

r V
N

FI

(c)

Load balancer VNF
VPN encryption VNF
Firewall VNF

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
um

be
r o

f V
co

re
s

Server ID

T = 360

Link capacity × 10

0
6

12
18
24
30
36
42
48

al
lo

ca
te

d 
pe

r V
N

FI

(d)

Figure 8: Number of allocated Vcores in each server. The number of Vcores for firewall, load balancer, and encryption VPN VNFs are
represented with blue, green, and red colors.

Link capacity × 4 (cons.)
Link capacity × 4 (no cons.)
Link capacity × 2 (cons.)
Link capacity × 2 (no cons.)
Link capacity × 1 (cons.)
Link capacity × 1 (no cons.)

a = 1 (no rate adaptive)

60 120 180 240 300 36030
Average number of offered SFC requests

1.00E − 08

1.00E − 07

1.00E − 06

1.00E − 05

1.00E − 04

1.00E − 03

1.00E − 02

1.00E − 01

1.00E + 00

SF
C 

bl
oc

ki
ng

 p
ro

ba
bi

lit
y 

Figure 9: SFC blocking probability as a function of the average number of SFCs offered in the PHI for the cases in which the consolidation
technique is applied and it is not. The server power consumption is constant (𝑎 = 1).



Journal of Electrical and Computer Engineering 11

Link capacity × 1 (a = 1)
Link capacity × 1 (a = 0.1)
Link capacity × 2 (a = 1)
Link capacity × 2 (a = 0.1)
Link capacity × 4 (a = 1)
Link capacity × 4 (a = 0.1)

60 120 180 240 300 36030
Average number of offered SFC requests

0%

10%

20%

30%

40%

50%

60%

70%

80%

Po
w

er
 co

ns
um

pt
io

n 
sa

vi
ng

 (%
) 

Figure 10:The power consumption percentage saving achievedwith
the application of the consolidation technique versus the average
number of SFCs offered in the PHI. The cases 𝑎 = 1 and 𝑎 = 0.1
are considered.

allowing for the achievement of a right trade-off between
power consumption saving and SFC blocking probability
degradation.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

Thework described in this paper has been funded by Telecom
Italia within the research agreement titled “Definition and
Evaluation of Protocols and Architectures of a Network
Automation Platform for TI-NVF Infrastructure.”

References

[1] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck,
and R. Boutaba, “Network function virtualization: state-of-the-
art and research challenges,” IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 236–262, 2016.

[2] P.Veitch,M. J.McGrath, andV. Bayon, “An instrumentation and
analytics framework for optimal and robust NFV deployment,”
IEEE Communications Magazine, vol. 53, no. 2, pp. 126–133,
2015.

[3] R. Yu, G. Xue, V. T. Kilari, and X. Zhang, “Network function
virtualization in the multi-tenant cloud,” IEEE Network, vol. 29,
no. 3, pp. 42–47, 2015.

[4] Z. Bronstein, E. Roch, J. Xia, andA.Molkho, “Uniformhandling
and abstraction of NFV hardware accelerators,” IEEE Network,
vol. 29, no. 3, pp. 22–29, 2015.

[5] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network function
virtualization: challenges and opportunities for innovations,”
IEEE Communications Magazine, vol. 53, no. 2, pp. 90–97, 2015.

[6] ETSI Industry Specification Group (ISG) NFV, “ETSI Group
Specifications on Network Function Virtualization. 1st
Phase Documents,” January 2015, http://docbox.etsi.org/ISG/
NFV/Open/.

[7] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, “NFV: state
of the art, challenges, and implementation in next generation
mobile networks (vepc),” IEEE Network, vol. 28, no. 6, pp. 18–
26, 2014.

[8] The Internet Engineering Task Force (IETF), Service Function
Chaining (SFC) Working Group (WG), 2015, https://datatracker
.ietf.org/wg/sfc/charter/.

[9] The Internet Engineering Task Force (IETF), Service Function
Chaining (SFC) Working Group (WG), Documents, 2015,
https://datatracker.ietf.org/wg/sfc/documents/.

[10] M. Yoshida, W. Shen, T. Kawabata, K. Minato, and W. Imajuku,
“MORSA: a multi-objective resource scheduling algorithm for
NFV infrastructure,” in Proceedings of the 16th Asia-Pacific
Network Operations and Management Symposium (APNOMS
’14), pp. 1–6, Hsinchum, Taiwan, September 2014.

[11] H. Moens and F. D. Turck, “Vnf-p: a model for efficient
placement of virtualized network functions,” in Proceedings
of the 10th International Conference on Network and Service
Management (CNSM ’14), pp. 418–423, November 2014.

[12] R.Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck, and
S. Davy, “Design and evaluation of algorithms for mapping and
scheduling of virtual network functions,” in Proceedings of the
1st IEEE Conference on Network Softwarization (NetSoft ’15), pp.
1–9, University College London, London, UK, April 2015.

[13] S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca,
“The dynamic placement of virtual network functions,” in
Proceedings of the IEEE Network Operations and Management
Symposium (NOMS ’14), pp. 1–9, Krakow, Poland, May 2014.

[14] Y. Zhu and M. H. Ammar, “Algorithms for assigning substrate
network resources to virtual network components,” in Proceed-
ings of the 25th IEEE International Conference on Computer
Communications (INFOCOM ’06), pp. 1–12, IEEE, Barcelona,
Spain, April 2006.

[15] G. Lee, M. Kim, S. Choo, S. Pack, and Y. Kim, “Optimal flow
distribution in service function chaining,” in Proceedings of the
10th International Conference on Future Internet (CFI ’15), pp.
17–20, ACM, Seoul, Republic of Korea, June 2015.

[16] A. Fischer, J. F. Botero, M. T. Beck, H. De Meer, and X.
Hesselbach, “Virtual network embedding: a survey,” IEEE Com-
munications Surveys and Tutorials, vol. 15, no. 4, pp. 1888–1906,
2013.

[17] M. Rabbani, R. Pereira Esteves, M. Podlesny, G. Simon, L. Zam-
benedetti Granville, and R. Boutaba, “On tackling virtual data
center embedding problem,” in Proceedings of the IFIP/IEEE
International Symposium on Integrated Network Management
(IM ’13), pp. 177–184, Ghent, Belgium, May 2013.

[18] A. Basta, W. Kellerer, M. Hoffmann, H. J. Morper, and K. Hoff-
mann, “Applying NFV and SDN to LTE mobile core gateways,
the functions placement problem,” in Proceedings of the 4th
Workshop on All Things Cellular: Operations, Applications and
Challenges (AllThingsCellular ’14), pp. 33–38, ACM, Chicago, Ill,
USA, August 2014.



12 Journal of Electrical and Computer Engineering

[19] M. Bagaa, T. Taleb, and A. Ksentini, “Service-aware network
function placement for efficient traffic handling in carrier
cloud,” in Proceedings of the IEEE Wireless Communications
and Networking Conference (WCNC ’14), pp. 2402–2407, IEEE,
Istanbul, Turkey, April 2014.

[20] S.Mehraghdam,M. Keller, andH. Karl, “Specifying and placing
chains of virtual network functions,” in Proceedings of the IEEE
3rd International Conference on Cloud Networking (CloudNet
’14), pp. 7–13, October 2014.

[21] M. Bouet, J. Leguay, and V. Conan, “Cost-based placement of
vDPI functions in NFV infrastructures,” in Proceedings of the
1st IEEE Conference on Network Softwarization (NetSoft ’15), pp.
1–9, London, UK, April 2015.

[22] M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A.
Takacs, “Network function placement for NFV chaining
in packet/optical datacenters,” Journal of Lightwave Technology,
vol. 33, no. 8, Article ID 7005460, pp. 1565–1570, 2015.

[23] O.Hyeonseok, Y.Daeun, C. Yoon-Ho, andK.Namgi, “Design of
an efficient method for identifying virtual machines compatible
with service chain in a virtual network environment,” Interna-
tional Journal ofMultimedia and Ubiquitous Engineering, vol. 11,
no. 9, Article ID 197208, 2014.

[24] W. Cerroni and F. Callegati, “Live migration of virtual network
functions in cloud-based edge networks,” in Proceedings of the
IEEE International Conference on Communications (ICC ’14),
pp. 2963–2968, IEEE, Sydney, Australia, June 2014.

[25] P. Quinn and J. Guichard, “Service function chaining: creating
a service plane via network service headers,” Computer, vol. 47,
no. 11, pp. 38–44, 2014.

[26] M. F. Zhani, Q. Zhang, G. Simona, and R. Boutaba, “VDC
Planner: dynamicmigration-awareVirtualDataCenter embed-
ding for clouds,” in Proceedings of the IFIP/IEEE International
Symposium on Integrated NetworkManagement (IM ’13), pp. 18–
25, May 2013.

[27] M. Dobrescu, K. Argyraki, and S. Ratnasamy, “Toward pre-
dictable performance in software packet-processing platforms,”
in Proceedings of the 9th USENIX Symposium on Networked
Systems Design and Implementation, pp. 1–14, April 2012.



Research Article
A Game for Energy-Aware Allocation of
Virtualized Network Functions

Roberto Bruschi,1 Alessandro Carrega,1,2 and Franco Davoli1,2

1CNIT-University of Genoa Research Unit, 16145 Genoa, Italy
2DITEN, University of Genoa, 16145 Genoa, Italy

Correspondence should be addressed to Alessandro Carrega; alessandro.carrega@unige.it

Received 2 October 2015; Revised 22 December 2015; Accepted 11 January 2016

Academic Editor: Xavier Hesselbach

Copyright © 2016 Roberto Bruschi et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Network FunctionsVirtualization (NFV) is a network architecture concept where network functionality is virtualized and separated
into multiple building blocks that may connect or be chained together to implement the required services. The main advantages
consist of an increase in network flexibility and scalability. Indeed, each part of the service chain can be allocated and reallocated at
runtime depending on demand. In this paper, we present and evaluate an energy-aware Game-Theory-based solution for resource
allocation of Virtualized Network Functions (VNFs) within NFV environments. We consider each VNF as a player of the problem
that competes for the physical network node capacity pool, seeking the minimization of individual cost functions. The physical
network nodes dynamically adjust their processing capacity according to the incoming workload, by means of an Adaptive Rate
(AR) strategy that aims at minimizing the product of energy consumption and processing delay. On the basis of the result of the
nodes’ AR strategy, the VNFs’ resource sharing costs assume a polynomial form in the workflows, which admits a unique Nash
Equilibrium (NE). We examine the effect of different (unconstrained and constrained) forms of the nodes’ optimization problem
on the equilibrium and compare the power consumption and delay achieved with energy-aware and non-energy-aware strategy
profiles.

1. Introduction

In the last few years, power consumption has shown a grow-
ing and alarming trend in all industrial sectors, particularly in
Information and Communication Technology (ICT). Public
organizations, Internet Service Providers (ISPs), and telecom
operators started reporting alarming statistics of network
energy requirements and of the related carbon footprint since
the first decade of the 2000s [1]. The Global e-Sustainability
Initiative (GeSI) estimated a growth of ICT greenhouse gas
emissions (in GtCO

2
e, Gt of CO

2
equivalent gases) to 2.3%

of global emissions (from 1.3% in 2002) in 2020, if no Green
Network Technologies (GNTs) would be adopted [2]. On the
other hand, the abatement potential of ICT in other industrial
sectors is seven times the size of the ICT sector’s own carbon
footprint.

Only recently, due to the rise in energy price, the contin-
uous growth of customer population, the increase in broad-
band access demand, and the expanding number of services

being offered by telecoms and providers, has energy efficiency
become a high-priority objective also for wired networks and
service infrastructures (after having started to be addressed
for datacenters and wireless networks).

The increasing network energy consumption essentially
depends onnew services offered,which followMoore’s law, by
doubling every two years, and on the need to sustain an ever-
growing population of users and user devices. In order to sup-
port new generation network infrastructures and related ser-
vices, telecoms and ISPs need a larger equipment base, with
sophisticated architecture able to perform more and more
complex operations in a scalable way. Notwithstanding these
efforts, it is well known that most networks and networking
equipment are currently still provisioned for busy or rush
hour load, which typically exceeds their average utilization by
a wide margin. While this margin is generally reached in rare
and short time periods, the overall power consumption in
today’s networks remains more or less constant with respect
to different traffic utilization levels.

Hindawi Publishing Corporation
Journal of Electrical and Computer Engineering
Volume 2016, Article ID 4067186, 10 pages
http://dx.doi.org/10.1155/2016/4067186

http://dx.doi.org/10.1155/2016/4067186


2 Journal of Electrical and Computer Engineering

The growing trend toward implementing networking
functionalities by means of software [3] on general-purpose
machines and of making more aggressive use of virtualiza-
tion—as represented by the paradigms of Software Defined
Networking (SDN) [4] andNetwork FunctionsVirtualization
(NFV) [5]—would also not be sufficient in itself to reduce
power consumption, unless accompanied by “green” opti-
mization and consolidation strategies acting as energy-aware
traffic engineering policies at the network level [6]. At the
same time, processing devices inside the network need to be
capable of adapting their performance to the changing traffic
conditions, by trading off power andQuality of Service (QoS)
requirements. Among the various techniques that can be
adopted to this purpose to implement Control Policies (CPs)
in network processing devices, Dynamic Adaptation ones
consist of adapting the processing rate (AR) or of exploiting
low power consumption states in idle periods (LPI) [7].

In this paper, we introduce a Game-Theory-based solu-
tion for energy-aware allocation of Virtualized Network
Functions (VNFs) within NFV environments. In more detail,
in NFV networks, a collection of service chains must be allo-
cated on physical network nodes. A service chain is a set of
one or more VNFs grouped together to provide specific ser-
vice functionality and can be represented by an oriented
graph, where each node corresponds to a particular VNF and
each edge describes the operational flow exchanged between
a pair of VNFs.

A service request can be allocated on dedicated hardware
or by using resources deployed by the Service Provider
(SP) that processes the request through virtualized instances.
Because of this, two types of service deployments are possible
in an NFV network: (i) on physical nodes and (ii) on virtual-
ized instances.

In this paper, we focus on the second type of service
deployment. We refer to this paradigm as pure NFV. As
already outlined above, the SP processes the service request
by means of VNFs. In particular, we developed an energy-
aware solution to the problem ofVNFs’ allocation on physical
network nodes.This solution is based on the concept of Game
Theory (GT). GT is used to model interactions among self-
interested players and predict their choice of strategies to
optimize cost or utility functions, until a Nash Equilibrium
(NE) is reached, where no player can further increase its
corresponding utility through individual action (see, e.g., [8]
for specific applications in networking).

More specifically, we consider a bank of physical network
nodes (in this paper, we also use the terms node and resource
to refer to the physical network node) performing tasks on
requests submitted by players’ population. Hence, in this
game, the role of the players is represented by VNFs that
compete for the processing capacity pool, each by seeking the
minimization of an individual cost function. The nodes can
dynamically adjust their processing capacity according to
the incoming workload (the processing power required by
incoming VNF requests) by means of an AR strategy that
aims at minimizing the product of energy consumption and
processing delay. On the basis of the result of the nodes’ AR
strategy, the VNFs’ resource sharing costs assume a poly-
nomial form in the workloads, which admits a unique NE.

We examine the effect of different (unconstrained and con-
strained) forms of the nodes’ optimization problem on the
equilibrium and compare the power consumption and delay
achieved with energy-aware and non-energy-aware strategy
profiles.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 briefly summarizes the
powermodel andARoptimization thatwas introduced in [9].
Although the scenario in [9] is different, it is reasonable to
assume that similar considerations are valid here, too. On the
basis of this result, we derive a number of competitive strate-
gies for the VFNs’ allocation in Section 4. Section 5 presents
various numerical evaluations, and Section 6 contains the
conclusions.

2. Related Work

We now discuss the most relevant works that deal with the
resource allocation of VNFs within NFV environments. We
decided not only to describe solutions based on GT, but also
to provide an overview of the current state of the art in this
area. As introduced in the previous section, the key enabling
paradigms that will considerably affect the dynamics of ICT
networks are SDN and NFV, which are discussed in recent
surveys [10–12]. Indeed, SPs and Network Operators (NOs)
are facing increasing problems to design and implement
novel network functionalities, following rapid changes that
characterize the current ISPs and telecom operators (TOs)
[13].

Virtualization represents an efficient and cost-effective
strategy to exploit and share physical network resources.
In this context, the Network Embedding Problem (NEP)
has been considered in several recent works [14–19]. In
particular, the Virtual Network Embedding Problem (VNEP)
consists of finding the mapping between a set of requests
for virtual network resources and the available underlying
physical infrastructure (the so-called substrate), ensuring that
some given performance requirements (on nodes and links)
are guaranteed. Typical node requirements are computational
resources (i.e., CPU) or storage space, whereas links have a
limited bandwidth and introduce a delay. It has been shown
that this problem is NP-hard (it includes as subproblem
the multiway separator problem). For this reason, heuristic
approaches have been devised [20].

The consolidation of virtual resources is considered in
[18], by taking into account energy efficiency. The problem is
formulated as a mixed integer linear programming (MILP)
model, to understand the potential benefits that can be
achieved by packing many different virtual tasks on the same
physical infrastructure. The observed energy saving is up to
30% for nodes and up to 25% for link energy consumption.
Reference [21] presents a solution for the resilient deployment
of network functions, using OpenStack for the design and
implementation of the proposed service orchestrator mech-
anism.

An allocation mechanism, based on auction theory, is
proposed in [22]. In particular, the scheme selects the most
remunerative virtual network requests, while satisfying QoS
requirements and physical network constraints.The system is



Journal of Electrical and Computer Engineering 3

split into two network substrates modeling physical and vir-
tual resources, with the final goal of finding the best mapping
of virtual nodes and links onto physical ones according to the
QoS requirements (i.e., bandwidth, delay, and CPU bounds).

A novel network architecture is proposed in [23], to pro-
vide efficient coordinated control of both internal network
function state and network forwarding state, in order to
help operators achieve the following goals: (i) offering and
satisfying tight service level agreements (SLAs); (ii) accu-
rately monitoring and manipulating network traffic; and (iii)
minimizing operating expenses.

Various engineering problems, where the action of one
component has some impacts on the other components, have
been modeled by GT. Indeed, GT, which has been applied at
the beginning in economics and related domains, is gaining
much interest today as a powerful tool to analyze and design
communication networks [24]. Therefore, the problems can
be formulated in the GT framework, and a stable solution for
the components is obtained using the concept of equilibrium
[25]. In this regard, GT has been used extensively to develop
understanding of stable operating points for autonomous
networks. The nodes are considered as the players. Payoff
functions are often defined according to achieved connection
bandwidth or similar technical metrics.

To construct algorithms with provable convergence to
equilibrium points, many approaches consider network
models that can be mapped to specially constructed games.
Among this type of games, potential games use a real-valued
function that represents the entire player set to optimize some
performance metric [8, 26]. We mention Altman et al. [27],
who provide an extensive survey on networking games. The
models and papers discussed in this reference mostly deal
with noncooperativeGT, the only exception being a short sec-
tion focused on bargaining games. Finally, Seddiki et al. [25]
presented an approach based on two-stage noncooperative
games for bandwidth allocation, which aims at reducing the
complexity of networkmanagement and avoiding bandwidth
performance problems in a virtualized network environment.
The first stage of the game is the bandwidth negotiation,
where the SP requests bandwidth from multiple Infrastruc-
ture Providers (InPs). Each InP decides whether to accept or
deny the request when the SP would cause link congestion.
The second stage is the bandwidth provisioning game, where
different SPs compete for the bandwidth capacity of a physical
link managed by a single InP.

3. Modeling Power Management Techniques

Dynamic Adaptation techniques in physical network nodes
reduce the energy usage, by exploiting the fact that systems
do not need to run at peak performance all the time.

Rate adaptation is obtained by tuning the clock frequency
and/or voltage of processors (DVFS, Dynamic Voltage and
Frequency Scaling) or by throttling the CPU clock (i.e., the
clock signal is disabled for some number of cycles at regular
intervals). Decreasing the operating frequency and the volt-
age of the node, or throttling its clock, obviously allows the
reduction of power consumption and of heat dissipation, at
the price of slower performance.

Advantage can be taken of these adaptation capabilities to
devise control techniques based on feedback on the incoming
load. One of the first proposals is that examined in a seminal
paper by Nedevschi et al. [28]. Among other possibilities, we
consider here the simple optimization strategy developed in
[9] aimed at minimizing the product of power consumption
and processing delay with respect to the processing load.The
application of this control technique gives rise to quadratic
dependence of the power-delay product on the load, which
will be exploited in our subsequent game theoretic resource
allocation problem. Unlike the cited works, our solution con-
siders as load the requests rate of services that the SP must
process. However, apart from this difference, the general con-
siderations described are valid here, too.

Specifically, the dynamic frequency-dependent part of
the processor power consumption is proportional to the
clock frequency ] and to the square of the supply voltage
𝑉 [29]. However, if DVFS is used, there is proportionality
between the frequency and the voltage raised to some power
𝛾, 0 < 𝛾 ≤ 1 [30]. Moreover, the power scaling effect
induced by alternating active-idle periods in the queueing
system served by the physical network node can be accounted
for by multiplying the dynamic power consumption by an
increasing concave function of the resource utilization of the
form (𝑓/𝜇)

1/𝛼, where 𝛼 ≥ 1 is a parameter and 𝑓 and 𝜇 are
the workload (processing requests per unit time) and the task
processing speed, respectively. By taking 𝛾 = 1 (which implies
a cubic relationship in the operating frequency), the overall
dependence of the power consumption Φ on the processing
speed (which is proportional to the operating frequency) can
be expressed as [9]

Φ (𝜇) = 𝐾𝜇
3
(
𝑓

𝜇
)

1/𝛼

, (1)

where 𝐾 > 0 is a proportionality constant. This expression
will be exploited in the optimization problems to be defined
and studied in the next section.

4. System Model of Coordinated
Network Management Optimization and
Players’ Game

We consider the situation shown in Figure 1. There are 𝑆

VNFs that are represented by the incoming workload rates
𝜆
1
, . . . , 𝜆

𝑆
, competing for 𝑁 physical network nodes. The

workload to the 𝑗th node is given by

𝑓
𝑗
=

𝑆

∑

𝑖=1

𝑓
𝑖

𝑗
, (2)

where 𝑓
𝑖

𝑗
is VNF 𝑖’s contribution. The total workload vector

of player 𝑖 is f 𝑖 = col[𝑓𝑖
1
, . . . , 𝑓

𝑖

𝑁
] and, obviously,

𝑁

∑

𝑗=1

𝑓
𝑖

𝑗
= 𝜆
𝑖
. (3)



4 Journal of Electrical and Computer Engineering

S

1 1

22

N

VNFs Physical Node

...
...

Resource

Allocator

f1 =

S

∑
i=1

f
i
1

𝜆1

𝜆2

𝜆S

fN =

S

∑
i=1

f
i
N

Figure 1: System model for VNFs resource allocation.

The computational resources have processing rates 𝜇
𝑗
,

𝑗 = 1, . . . , 𝑁, and we associate a cost function with each one;
namely,

𝑐
𝑗
(𝜇
𝑗
) =

𝐾
𝑗
(𝑓
𝑗
)
1/𝛼𝑗

(𝜇
𝑗
)
3−(1/𝛼𝑗)

𝜇
𝑗
− 𝑓
𝑗

. (4)

Cost functions of the form shown in (4) have been intro-
duced in [9] and represent the product of power and process-
ing delay, under 𝑀/𝑀/1 assumption on each node’s queue.
They actually correspond to the average energy consumption
that can be attributed to functions’ handling (considering that
the node will be active whenever there are queued functions).
Despite the possible inaccuracy in the representation of the
queueing behavior, the denominator of (4) reflects the penalty
paid for approaching the resource capacity, which is a major
aspect in a model to be used for control purposes.

We now consider two specific control problems, whose
resulting resource allocations are interconnected. Specifically,
we assume the presence ofControl Policies (CPs) acting in the
network node, whose aim is to dynamically adjust the pro-
cessing rate, in order to minimize cost functions of the form
of (4). On the other hand, the players representing the VNFs,
knowing the policy adopted by the CPs and the resulting
form of their optimal costs, implement their own strategies
to distribute their requests among the different resources.

The simple control structure that we envisage actually
represents a situation that may be of interest in a number of
different operational settings. We only mention two different
cases of current high relevance: (i) a multitenant environ-
ment, where a number of ISPs are offered services by a
datacenter operator (or by a telecom operator in the access
network) on a number of virtual machines, and (ii) a collec-
tion of virtual environments created by a SP on behalf of its
customers, where services are activated to represent cus-
tomers’ functionalities on their own private virtual LANs. It
is worth noting that in both cases the nodes’ customers may
be unwilling to disclose their loads to one another, which
justifies the decentralized game optimization.

4.1. Nodes’ Control Policies. We consider two possible vari-
ants.

4.1.1. CP1 (Unconstrained). The direct minimization of (4)
with respect to 𝜇

𝑗
yields immediately:

𝜇
∗

𝑗
(𝑓
𝑗
) =

3𝛼
𝑗
− 1

2𝛼
𝑗
− 1

𝑓
𝑗
= 𝜗
𝑗
𝑓
𝑗
,

𝑐
∗

𝑗
(𝑓
𝑗
) = 𝐾

𝑗

(𝜗
𝑗
)
3−(1/𝛼𝑗)

𝜗
𝑗
− 1

(𝑓
𝑗
)
2

= ℎ
𝑗
⋅ (𝑓
𝑗
)
2

.

(5)

We must note that we are considering a continuous solu-
tion to the node capacity adjustment. In practice, the physical
resources allow a discrete set of working frequencies, with
corresponding processing capacities. This would also ensure
that the processing speed does not decrease below a lower
threshold, avoiding excessive delay in the case of low load.
The unconstrained problem is an idealized variant that would
make sense only when the load on the node is not too small.

4.1.2. CP2 (Individual Constraints). Each node has a maxi-
mum and a minimum processing capacity, which are taken
explicitly into account (𝜇min

𝑗
≤ 𝜇
𝑗
≤ 𝜇

max
𝑗

, 𝑗 = 1, . . . , 𝑁).

Then,

𝜇
∗

𝑗
(𝑓
𝑗
) =

{{{{{

{{{{{

{

𝜗
𝑗
𝑓
𝑗
, 𝑓
𝑗
=

𝜇
min
𝑗

𝜗
𝑗

≤ 𝑓
𝑗
≤

𝜇
max
𝑗

𝜗
𝑗

= 𝑓
𝑗
,

𝜇
min
𝑗

, 0 < 𝑓
𝑗
< 𝑓
𝑗
,

𝜇
max
𝑗

, 𝜇
max
𝑗

> 𝑓
𝑗
> 𝑓
𝑗
.

(6)

Therefore,

𝑐
∗

𝑗
(𝑓
𝑗
)

=

{{{{{{{{{{

{{{{{{{{{{

{

ℎ
𝑗
⋅ (𝑓
𝑗
)
2

, 𝑓
𝑗
≤ 𝑓
𝑗
≤ 𝑓
𝑗
,

𝐾
𝑗

(𝑓
𝑗
)
1/𝛼𝑗

(𝜇
max
𝑗

)
3−(1/𝛼𝑗)

𝜇
max
𝑗

− 𝑓
𝑗

, 𝜇
max
𝑗

> 𝑓
𝑗
> 𝑓
𝑗
,

𝐾
𝑗

(𝑓
𝑗
)
1/𝛼𝑗

(𝜇
min
𝑗

)
3−(1/𝛼𝑗)

𝜇
min
𝑗

− 𝑓
𝑗

, 0 < 𝑓
𝑗
< 𝑓
𝑗
.

(7)

In this case, we assume explicitly that∑𝑆
𝑖=1

𝜆
𝑖
< ∑
𝑁

𝑗=1
𝜇
max
𝑗

.

4.2. Noncooperative Players’ Optimization. Given the optimal
CPs, which can be found in functional form, we can then state
the following.

4.2.1. Players’ Problem. Each VNF 𝑖 wants to minimize, with
respect to its workload vector f 𝑖 = col[𝑓𝑖

1
, . . . , 𝑓

𝑖

𝑁
], a weighted



Journal of Electrical and Computer Engineering 5

(over its workload distribution) sum of the resources’ costs,
given the flow distribution of the others:

𝑓
𝑖
∗

= argmin
𝑓
𝑖
1 ,...,𝑓
𝑖
𝑁:∑
𝑁
𝑗=1 𝑓
𝑖
𝑗=𝜆𝑖

𝐽
𝑖

= argmin
𝑓
𝑖
1 ,...,𝑓
𝑖
𝑁
:∑
𝑁
𝑗=1 𝑓
𝑖
𝑗
=𝜆𝑖

1

𝜆
𝑖

𝑁

∑

𝑗=1

𝑓
𝑖

𝑗
𝑐
∗

𝑗
(𝑓
𝑖

𝑗
) 𝑖 = 1, . . . , 𝑆.

(8)

In this formulation, the players’ problem is a noncooper-
ative game, of which we can seek a NE [31].

We examine the case of the application of CP1 first. Then,
the cost of VNF 𝑖 is given by

𝐽
𝑖
=

1

𝜆
𝑖

𝑁

∑

𝑗=1

𝑓
𝑖

𝑗
ℎ
𝑗
⋅ (𝑓
𝑗
)
2

=
1

𝜆
𝑖

𝑁

∑

𝑗=1

𝑓
𝑖

𝑗
ℎ
𝑗
⋅ (𝑓
𝑖

𝑗
+ 𝑓
−𝑖

𝑗
)
2

, (9)

where 𝑓−𝑖
𝑗

= ∑
𝑘 ̸=𝑖

𝑓
𝑘

𝑗
is the total flow from the other VNFs to

node 𝑗.
The cost in (9) is convex in 𝑓

𝑖

𝑗
and belongs to a category

of cost functions previously investigated in the networking
literature, without specific reference to energy efficiency [32,
33]. In particular, it is in the family of functions considered in
[33], for which the NE Point (NEP) existence and uniqueness
conditions of Rosen [34] have been shown to hold.Therefore,
our players’ problem admits a unique NEP. The latter can be
found by considering the Karush-Kuhn-Tucker stationarity
conditions with Lagrange multiplier 𝜉

𝑖
:

𝜉
𝑖
=

𝜕𝐽
𝑖

𝜕𝑓
𝑖

𝑘

, 𝑓
𝑖

𝑘
> 0,

𝜉
𝑖
≤

𝜕𝐽
𝑖

𝜕𝑓
𝑖

𝑘

, 𝑓
𝑖

𝑘
= 0,

𝑘 = 1, . . . , 𝑁,

(10)

from which, for 𝑓𝑖
𝑘
> 0,

𝜆
𝑖
𝜉
𝑖
= ℎ
𝑘
(𝑓
𝑖

𝑘
+ 𝑓
−𝑖

𝑘
)
2

+ 2ℎ
𝑘
𝑓
𝑖

𝑘
(𝑓
𝑖

𝑘
+ 𝑓
−𝑖

𝑘
) ,

𝑓
𝑖

𝑘
= −

2

3
𝑓
−𝑖

𝑘
±

1

3ℎ
𝑘

√(ℎ
𝑘
𝑓
−𝑖

𝑘
)
2

+ 3ℎ
𝑘
𝜆
𝑖
𝜉
𝑖
.

(11)

Excluding the negative solution, the nonzero components are
those with the smallest and equal partial derivatives that, in a
subsetM ⊆ {1, . . . , 𝑁}, yield ∑

𝑗∈M 𝑓
𝑖

𝑗
= 𝜆
𝑖
; that is,

∑

𝑗∈M

[−
2

3
𝑓
−𝑖

𝑗
+ √4 (ℎ

𝑗
𝑓
−𝑖

𝑗
)
2

+ 3ℎ
𝑗
𝜆
𝑖
𝜉
𝑖
] = 𝜆

𝑖 (12)

from which 𝜉
𝑖
can be determined.

As regards form (7) of the optimal node cost, we can note
that if we are restricted to 𝑓

𝑗
≤ 𝑓
𝑗

≤ 𝑓
𝑗
, 𝑗 = 1, . . . , 𝑁

(a coupled convex constraint set), the conditions of Rosen still
hold. If we allow the larger constraint set 0 < 𝑓

𝑗
< 𝜇

max
𝑗

,

𝑗 = 1, . . . , 𝑁, the nodes’ optimal cost functions are no
longer of polynomial type. However, the composite function
is still continuously differentiable (see the Appendix).Then, it
would (i) satisfy the conditions for a convex game (the overall
function composed of the three parts is convex), which
guarantee the existence of a NEP [34, Th. 1], and (ii) possess
equivalent properties to functions of Type A as defined in
[32], which lead to uniqueness of the NEP.

5. Numerical Results

In order to evaluate our criterion, we present numerical
results deriving from the application of the simplest Control
Policy (CP1), which implies the solution of a completely quad-
ratic problem (corresponding to costs as in (9) for the NEP).
We compare the resulting allocations, power consumption,
and average delays with those stemming from the application
(on non-energy-aware nodes) of the algorithm for the mini-
mization of the pure delay function that was developed in [35,
Proposition 1]. This algorithm is considered a valid reference
point in order to provide good validation of our criterion.The
corresponding cost of VNF 𝑖 is

𝐽
𝑖

𝑇
=

𝑁

∑

𝑗=1

𝑓
𝑖

𝑗
𝑇
𝑗
(𝑓
𝑗
) , 𝑖 = 1, . . . , 𝑆, (13)

where

𝑇
𝑗
(𝑓
𝑗
) =

{{

{{

{

1

𝜇
max
𝑗

− 𝑓
𝑗

, 𝑓
𝑗
< 𝜇

max
𝑗

,

∞, 𝑓
𝑗
≥ 𝜇

max
𝑗

.

(14)

The total demand is assumed to be less than the total
operating capacity, as we have done with our CP2 in (7).

To make the comparison fair, we have to make sure that
the maximum operating capacities 𝜇max

𝑗
, 𝑗 = 1, . . . , 𝑁 (that

are constant in (14)), are compatiblewith the quadratic behav-
ior stemming from the application of CP1. To this aim, let
(LCP1)

𝑓
𝑗
denote the total inputworkload tonode 𝑗 correspond-

ing to the NEP obtained by our problem; we then choose

𝜇
max
𝑗

= 𝜗
𝑗

(LCP1)
𝑓
𝑗
, 𝑗 = 1, . . . , 𝑁. (15)

We indicate with (𝑇)𝑓
𝑗
,
(𝑇)

𝑓
𝑖

𝑗
, 𝑗 = 1, . . . , 𝑁, 𝑖 = 1, . . . , 𝑆,

the total node input workloads and those corresponding to
VNF 𝑖, respectively, produced by the NEP deriving from the



6 Journal of Electrical and Computer Engineering

minimization of costs in (13). The average delays for the flow
of player 𝑖 under the two strategy profiles are obtained as

𝐷
𝑖

𝑇
=

1

𝜆
𝑖

𝑁

∑

𝑗=1

(𝑇)
𝑓
𝑖

𝑗

𝜇
max
𝑗

− (𝑇)𝑓
𝑗

=
1

𝜆
𝑖

𝑁

∑

𝑗=1

(𝑇)
𝑓
𝑖

𝑗

𝜗
𝑗
(LCP1)𝑓

𝑗
− (𝑇)𝑓

𝑗

,

𝐷
𝑖

LCP1 =
1

𝜆
𝑖

𝑁

∑

𝑗=1

(LCP1)
𝑓
𝑖

𝑗

𝜗
𝑗
(LCP1)𝑓 − (LCP1)𝑓

𝑗

=
1

𝜆
𝑖

𝑁

∑

𝑗=1

(LCP1)
𝑓
𝑖

𝑗

(𝜗
𝑗
− 1) (LCP1)𝑓

𝑗

,

(16)

and the power consumption values are given by

(𝑇)
𝑃
𝑗
= 𝐾
𝑗
(𝜇

max
𝑗

)
3

= 𝐾
𝑗
(𝜗
𝑗

(LCP1)
𝑓
𝑗
)
3

,

(LCP1)
𝑃
𝑗
= 𝐾
𝑗
(𝜗
𝑗

(LCP1)
𝑓
𝑗
)
3

(

𝑓
𝑗

𝜗
𝑗
(LCP1)𝑓

𝑗

)

1/𝛼𝑗

= 𝐾
𝑗
(𝜗
𝑗

(LCP1)
𝑓
𝑗
)
3

𝜗
𝑗

−1/𝛼𝑗 .

(17)

Our data for the comparison are organized as follows.We
consider normalized input rates, so that 𝜆

𝑖
≤ 1, 𝑖 = 1, . . . , 𝑆.

We generate randomly 𝑆 values corresponding to the VNFs’
input rates from independent uniform distributions; then,

(1) we find the NEP of our quadratic game, by choosing
the parameters 𝐾

𝑗
, 𝛼
𝑗
, 𝑗 = 1, . . . , 𝑁, also from

independent uniform distributions (with 1 ≤ 𝐾
𝑗
≤

10, 2 ≤ 𝛼
𝑗
≤ 3, resp.);

(2) by using the workload profiles obtained, we compute
the values 𝜇max

𝑗
, 𝑗 = 1, . . . , 𝑁, from (15) and find the

NEP corresponding to costs in (13) and (14), by using
the same input rates;

(3) we compute the corresponding average delays and
power consumption values for the two cases, by using
(16) and (17), respectively.

Steps (1)–(3) are repeated with a new configuration of
random values of the input rates for a certain number of
times; then, for both games, we average the values of the
delays and power consumption per VNF, and of the total
delay and power consumption averaged over the VNFs, over
all trials.We compare the results obtained in this way for four
different settings of VNFs and nodes; namely, 𝑆 = 𝑁 = 3; 𝑆 =

3, 𝑁 = 5; 𝑆 = 5, 𝑁 = 3; 𝑆 = 5, 𝑁 = 5. The rationale of
repeating the experiments with random configurations is to
explore a number of different possible settings and collect the
results in a synthetic form.

For each VNFs-nodes setting, 30 random input config-
urations are generated to produce the final average values.
In Figures 2–10, the labels EE and NEE refer to the energy-
efficient case (quadratic cost) and to the non-energy-efficient

Node 1 Node 2 Node 3 Average

NEE
EE
Saving (%)

0

1

2

3

4

5

6

7

8

9

10

Po
w

er
 co

ns
um

pt
io

n 
(W

)

0

10

20

30

40

50

60

70

80

90

100

Sa
vi

ng
 (%

)

Figure 2: Power consumption with 𝑆 = 𝑁 = 3.

User 1 User 2 User 3 Average
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
D

el
ay

 (m
s)

NEE
EE
Saving (%)

−0

−10

−20

−30

−40

−50

−60

−70

−80

−90

−100

Sa
vi

ng
 (%

)

Figure 3: User (VNF) delays with 𝑆 = 𝑁 = 3.

one (see (13) and (14)), respectively. Instead, the label “Saving
(%)” refers to the saving (in percentage) of the EE case com-
pared to the NEE one. When it is negative, the EE case pre-
sents higher values than theNEE one. Finally, the label “User”
refers to the VNF.

The results are reported in Figures 2–10. The model
implementation and the relative results have been developed
with MATLAB® [36].

In general, the energy-efficient optimization tends to save
energy at the expense of a relatively small increase in delay.
Indeed, as shown in the figures, the saving is positive for the
energy consumption and negative for delay. The energy sav-
ing is always higher than 18% in every case, while the delay
increase is always lower than 4%.

However, it can be noted (by comparing, e.g., Figures 5
and 7) that configurationswith lower load are penalized in the
delay.This effect is caused by the behavior of the simple linear
adaptation strategy, whichmaintains constant utilization, and



Journal of Electrical and Computer Engineering 7

1

2

3

Node 1 Node 2 Node 3 Node 4 Node 5 Average
0

0.5

1.5

2.5

3.5
Po

w
er

 co
ns

um
pt

io
n 

(W
)

NEE
EE
Saving (%)

0

10

20

30

40

50

60

70

80

90

100

Sa
vi

ng
 (%

)
Figure 4: Power consumption with 𝑆 = 3, 𝑁 = 5.

User 1 User 2 User 3 Average
0

1

2

3

4

5

6

7

8

D
el

ay
 (m

s)

NEE
EE
Saving (%)

−0

−10

−20

−30

−40

−50

−60

−70

−80

−90

−100

Sa
vi

ng
 (%

)

Figure 5: User (VNF) delays with 𝑆 = 3, 𝑁 = 5.

Node 1 Node 2 Node 3 Average
0

5

10

15

20

25

30

35

Po
w

er
 co

ns
um

pt
io

n 
(W

)

NEE
EE
Saving (%)

0
10
20
30
40
50
60
70
80
90
100

Sa
vi

ng
 (%

)

Figure 6: Power consumption with 𝑆 = 5, 𝑁 = 3.

User 1 User 2 User 3 User 4 User 5 Average
0

0.5

1

1.5

2

2.5

3

D
el

ay
 (m

s)

NEE
EE
Saving (%)

−0

−10

−20

−30

−40

−50

−60

−70

−80

−90

−100

Sa
vi

ng
 (%

)

Figure 7: User (VNF) delays with 𝑆 = 5, 𝑁 = 3.

Node 1 Node 2 Node 3 Node 4 Node 5 Average
0

2

4

6

8

10

12

14

Po
w

er
 co

ns
um

pt
io

n 
(W

)

NEE
EE
Saving (%)

0

10

20

30

40

50

60

70

80

90

100

Sa
vi

ng
 (%

)

Figure 8: Power consumption with 𝑆 = 5, 𝑁 = 5.

User 1 User 2 User 3 User 4 User 5 Average
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

D
el

ay
 (m

s)

NEE
EE
Saving (%)

−0

−10

−20

−30

−40

−50

−60

−70

−80

−90

−100
Sa

vi
ng

 (%
)

Figure 9: User (VNF) delays with 𝑆 = 5, 𝑁 = 5.



8 Journal of Electrical and Computer Engineering

0

10

20

30

40

50

60

70
Po

w
er

 (W
)
×

de
lay

(m
s)

N = 3
S = 3

N = 5
S = 3

N = 3
S = 5

N = 5
S = 5

NEE
EE
Saving (%)

0

10

20

30

40

50

60

70

80

90

100

Sa
vi

ng
 (%

)

Figure 10: Power consumption and delay product of the various
cases.

highlights the relevance of setting not only maximum, but
also minimum values for the processing capacity (or for the
node input workloads).

Another consideration arising from the results concerns
the variation of the energy consumption, by changing the
number of players and/or the nodes. For example, Figure 6
(case 𝑆 = 5, 𝑁 = 3) shows total power consumption
significantly higher than the one shown in Figure 8 (case
𝑆 = 5, 𝑁 = 5). The reasons for this difference are due to
the lower workload managed by the nodes of the case 𝑆 =

5, 𝑁 = 5 (greater number of nodes with an equal number of
users) making it possible to exploit the AR mechanisms with
significant energy saving.

Finally, Figure 10 shows the product of the power con-
sumption and the delay for each studied case. As described in
the previous sections, our criterion aims at minimizing this
product. As can be easily seen, the saving resulting from the
application of our policy is always above 10%.

6. Conclusions

We have examined the possible effect of introducing simple
energy optimization strategies in physical network nodes

performing services for a set of VNFs that request their com-
putational power within an NFV environment. The VNFs’
strategy profiles for resource sharing have been obtained from
the solution of a noncooperative game, where the players
are aware of the adaptive behavior of the resources, and
aim at minimizing costs that reflect this behavior. We have
compared the energy consumption and processing delay with
those stemming from a game played with non-energy-aware
nodes and VNFs. The results show that the effect on delay
is almost negligible, whereas significant power saving can be
obtained. In particular, the energy saving is always higher
than 18% in every case, with a delay increase always lower
than 4%.

From another point of view, it would also be of interest
to investigate socially optimal solutions stemming from a
Nash Bargaining Problem (NBP), along the lines of [37], by
defining suitable utility functions for the players. Another
interesting evolution of this work could be the application of
additional constraints to the proposed solution such as, for
example, the maximum delay that a flow can support.

Appendix

We check the maintenance of continuous differentiability at
the point 𝑓

𝑗
= 𝜇

max
𝑗

/𝜗
𝑗
. By noting that the derivative of the

cost function of player 𝑖 with respect to 𝑓
𝑖

𝑗
has the form

𝜕𝐽
𝑖

𝜕𝑓
𝑖

𝑗

= 𝑐
∗

𝑗
(𝑓
𝑗
) + 𝑓
𝑖

𝑗
𝑐
∗
󸀠

𝑗
(𝑓
𝑗
) , (A.1)

it is immediate to note that we need to compare

𝜕

𝜕𝑓
𝑖

𝑗

𝐾
𝑗

(𝑓
𝑖

𝑗
+ 𝑓
−𝑖

𝑗
)
1/𝛼𝑗

(𝜇
max
𝑗

)
3−1/𝛼𝑗

𝜇
max
𝑗

− 𝑓
𝑖

𝑗
− 𝑓
−𝑖

𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓𝑖
𝑗
=𝜇

max
𝑗
/𝜗𝑗−𝑓

−𝑖
𝑗

,

𝜕

𝜕𝑓
𝑖

𝑗

ℎ
𝑗
⋅ (𝑓
𝑗
)
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓𝑖
𝑗
=𝜇

max
𝑗
/𝜗𝑗−𝑓

−𝑖
𝑗

.

(A.2)

We have

𝐾
𝑗

(1/𝛼
𝑗
) (𝑓
𝑗
)
1/𝛼𝑗−1

(𝜇
max
𝑗

)
3−1/𝛼𝑗

(𝜇
max
𝑗

− 𝑓
𝑗
) + (𝑓

𝑗
)
1/𝛼𝑗

(𝜇
max
𝑗

)
3−1/𝛼𝑗

(𝜇
max
𝑗

− 𝑓
𝑗
)
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑓𝑗=𝜇
max
𝑗
/𝜗𝑗

=

𝐾
𝑗
(𝜇

max
𝑗

)
3−1/𝛼𝑗

(𝜇
max
𝑗

/𝜗
𝑗
)
1/𝛼𝑗

[(1/𝛼
𝑗
) (𝜇

max
𝑗

/𝜗
𝑗
)
−1

(𝜇
max
𝑗

− 𝜇
max
𝑗

/𝜗
𝑗
) + 1]

(𝜇
max
𝑗

− 𝜇
max
𝑗

/𝜗
𝑗
)
2



Journal of Electrical and Computer Engineering 9

=

𝐾
𝑗
(𝜇

max
𝑗

)
3

(𝜗
𝑗
)
−1/𝛼𝑗

[(1/𝛼
𝑗
) 𝜗
𝑗
(1 − 1/𝜗

𝑗
) + 1]

(𝜇
max
𝑗

)
2

(1 − 1/𝜗
𝑗
)
2

=

𝐾
𝑗
𝜇
max
𝑗

(𝜗
𝑗
)
−1/𝛼𝑗

(𝜗
𝑗
/𝛼
𝑗
− 1/𝛼

𝑗
+ 1)

((𝜗
𝑗
− 1) /𝜗

𝑗
)
2

,

2ℎ
𝑗
𝑓
𝑗

󵄨󵄨󵄨󵄨󵄨𝑓𝑗=𝜇
max
𝑗
/𝜗𝑗

= 2𝐾
𝑗

(𝜗
𝑗
)
3−1/𝛼𝑗

𝜗
𝑗
− 1

⋅

𝜇
max
𝑗

𝜗
𝑗

.

(A.3)

Then, let us check when

𝐾
𝑗
𝜇
max
𝑗

(𝜗
𝑗
)
−1/𝛼𝑗

(𝜗
𝑗
/𝛼
𝑗
− 1/𝛼

𝑗
+ 1)

((𝜗
𝑗
− 1) /𝜗

𝑗
)
2

= 2𝐾
𝑗

(𝜗
𝑗
)
3−1/𝛼𝑗

𝜗
𝑗
− 1

⋅

𝜇
max
𝑗

𝜗
𝑗

;

(𝜗
𝑗
/𝛼
𝑗
− 1/𝛼

𝑗
+ 1) ⋅ (𝜗

𝑗
)
2

𝜗
𝑗
− 1

= 2 (𝜗
𝑗
)
2

;

𝜗
𝑗

𝛼
𝑗

−
1

𝛼
𝑗

+ 1 = 2𝜗
𝑗
− 2;

(
1

𝛼
𝑗

− 2)

3𝛼
𝑗
− 1

2𝛼
𝑗
− 1

−
1

𝛼
𝑗

+ 3 = 0;

(

1 − 2𝛼
𝑗

𝛼
𝑗

)

3𝛼
𝑗
− 1

2𝛼
𝑗
− 1

−
1

𝛼
𝑗

+ 3 = 0;

1 − 3𝛼
𝑗

𝛼
𝑗

−
1

𝛼
𝑗

+ 3 = 0;

1 − 3𝛼
𝑗
− 1 + 3𝛼

𝑗
= 0.

(A.4)

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was partially supported by the H2020 European
ProjectsARCADIA (http://www.arcadia-framework.eu/) and
INPUT (http://www.input-project.eu/), funded by the Euro-
pean Commission.

References

[1] C. Bianco, F. Cucchietti, and G. Griffa, “Energy consumption
trends in the next generation access network—a telco perspec-
tive,” in Proceedings of the 29th International Telecommunication
Energy Conference (INTELEC ’07), pp. 737–742, Rome, Italy,
September-October 2007.

[2] GeSI SMARTer 2020: The Role of ICT in Driving a Sustainable
Future, December 2012, http://gesi.org/portfolio/report/72.

[3] A. Manzalini, “Future edge ICT networks,” IEEE COMSOC
MMTC E-Letter, vol. 7, no. 7, pp. 1–4, 2012.

[4] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka,
and T. Turletti, “A survey of software-defined networking: past,
present, and future of programmable networks,” IEEE Commu-
nications Surveys & Tutorials, vol. 16, no. 3, pp. 1617–1634, 2014.

[5] “Network functions virtualisation—introductory white paper,”
inProceedings of the SDNandOpenFlowWorld Congress, Darm-
stadt, Germany, October 2012.

[6] R. Bolla, R. Bruschi, F. Davoli, and C. Lombardo, “Fine-grained
energy-efficient consolidation in SDN networks and devices,”
IEEE Transactions on Network and Service Management, vol. 12,
no. 2, pp. 132–145, 2015.

[7] R. Bolla, R. Bruschi, F. Davoli, and F. Cucchietti, “Energy
efficiency in the future internet: a survey of existing approaches
and trends in energy-aware fixednetwork infrastructures,” IEEE
Communications Surveys & Tutorials, vol. 13, no. 2, pp. 223–244,
2011.

[8] I. Menache and A. Ozdaglar, Network Games: Theory, Models,
and Dynamics, Morgan & Claypool Publishers, San Rafael,
Calif, USA, 2011.

[9] R. Bolla, R. Bruschi, F. Davoli, and P. Lago, “Optimizing
the power-delay product in energy-aware packet forwarding
engines,” in Proceedings of the 24th Tyrrhenian International
Workshop on Digital Communications—Green ICT (TIWDC
’13), pp. 1–5, IEEE, Genoa, Italy, September 2013.

[10] A. Khan, A. Zugenmaier, D. Jurca, and W. Kellerer, “Network
virtualization: a hypervisor for the internet?” IEEE Communi-
cations Magazine, vol. 50, no. 1, pp. 136–143, 2012.

[11] Q. Duan, Y. Yan, and A. V. Vasilakos, “A survey on service-
oriented network virtualization toward convergence of net-
working and cloud computing,” IEEE Transactions on Network
and Service Management, vol. 9, no. 4, pp. 373–392, 2012.

[12] G. M. Roy, S. K. Saurabh, N. M. Upadhyay, and P. K. Gupta,
“Creation of virtual node, virtual link and managing them in
network virtualization,” in Proceedings of the World Congress on
Information and Communication Technologies (WICT ’11), pp.
738–742, IEEE, Mumbai, India, December 2011.

[13] A. Manzalini, R. Saracco, C. Buyukkoc et al., “Software-defined
networks or future networks and services—main technical
challenges and business implications,” inProceedings of the IEEE
Workshop SDN4FNS, Trento, Italy, November 2013.

[14] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking vir-
tual network embedding: substrate support for path splitting
and migration,” ACM SIGCOMM Computer Communication
Review, vol. 38, no. 2, pp. 17–19, 2008.

[15] A. Jarray and A. Karmouch, “Decomposition approaches for
virtual network embedding with one-shot node and link map-
ping,” IEEE/ACM Transactions on Networking, vol. 23, no. 3, pp.
1012–1025, 2015.



10 Journal of Electrical and Computer Engineering

[16] N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba,
“Virtual network embedding with coordinated node and link
mapping,” in Proceedings of the 28th Conference on Computer
Communications (IEEE INFOCOM ’09), pp. 783–791, Rio de
Janeiro, Brazil, April 2009.

[17] X. Cheng, S. Su, Z. Zhang et al., “Virtual network embedding
through topology-aware node ranking,”ACMSIGCOMMCom-
puter Communication Review, vol. 41, no. 2, pp. 38–47, 2011.

[18] J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer,
and H. De Meer, “Energy efficient virtual network embedding,”
IEEE Communications Letters, vol. 16, no. 5, pp. 756–759, 2012.

[19] A. Leivadeas, C. Papagianni, and S. Papavassiliou, “Efficient
resource mapping framework over networked clouds via iter-
ated local search-based request partitioning,” IEEETransactions
on Parallel andDistributed Systems, vol. 24, no. 6, pp. 1077–1086,
2013.

[20] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X.
Hesselbach, “Virtual network embedding: a survey,” IEEE Com-
munications Surveys & Tutorials, vol. 15, no. 4, pp. 1888–1906,
2013.

[21] M. Schöller, M. Stiemerling, A. Ripke, and R. Bless, “Resilient
deployment of virtual network functions,” in Proceedings of the
5th International Congress onUltraModern Telecommunications
and Control Systems and Workshops (ICUMT ’13), pp. 208–214,
Almaty, Kazakhstan, September 2013.

[22] A. Jarray and A. Karmouch, “VCG auction-based approach
for efficient Virtual Network embedding,” in Proceedings of
the IFIP/IEEE International Symposium on Integrated Network
Management (IM ’13), pp. 609–615, Ghent, Belbium, May 2013.

[23] A. Gember-Jacobson, R. Viswanathan, C. Prakash et al.,
“OpenNF: enabling innovation in network function control,”
in Proceedings of the ACM Conference on Special Interest Group
on Data Communication (SIGCOMM ’14), pp. 163–174, ACM,
Chicago, Ill, USA, August 2014.

[24] J. Antoniou and A. Pitsillides, Game Theory in Communication
Networks: Cooperative Resolution of Interactive Networking Sce-
narios, CRC Press, Boca Raton, Fla, USA, 2013.

[25] M. S. Seddiki, M. Frikha, and Y.-Q. Song, “A non-cooperative
game-theoretic framework for resource allocation in network
virtualization,” Telecommunication Systems, vol. 61, no. 2, pp.
209–219, 2016.

[26] L. Pavel,GameTheory for Control of Optical Networks, Springer,
New York, NY, USA, 2012.

[27] E. Altman, T. Boulogne, R. El-Azouzi, T. Jiménez, and L. Wyn-
ter, “A survey on networking games in telecommunications,”
Computers & Operations Research, vol. 33, no. 2, pp. 286–311,
2006.

[28] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and D.
Wetherall, “Reducing network energy consumption via sleeping
and rate-adaptation,” in Proceedings of the 5th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI
’08), pp. 323–336, San Francisco, Calif, USA, April 2008.

[29] S. Henzler, Power Management of Digital Circuits in Deep
Sub-Micron CMOS Technologies, vol. 25 of Springer Series in
Advanced Microelectronics, Springer, Dordrecht, The Nether-
lands, 2007.

[30] K. Li, “Scheduling parallel tasks on multiprocessor computers
with efficient power management,” in Proceedings of the IEEE
International Symposium on Parallel & Distributed Processing,
Workshops and PhD Forum (IPDPSW ’10), pp. 1–8, IEEE,
Atlanta, Ga, USA, April 2010.

[31] T. Başar, Lecture Notes on Non-Cooperative Game Theory,
Hamilton Institute, Kildare, Ireland, 2010, http://www.hamilton
.ie/ollie/Downloads/Game.pdf.

[32] A. Orda, R. Rom, and N. Shimkin, “Competitive routing in
multiuser communication networks,” IEEE/ACM Transactions
on Networking, vol. 1, no. 5, pp. 510–521, 1993.

[33] E. Altman, T. Başar, T. Jiménez, and N. Shimkin, “Competitive
routing in networks with polynomial costs,” IEEE Transactions
on Automatic Control, vol. 47, no. 1, pp. 92–96, 2002.

[34] J. B. Rosen, “Existence and uniqueness of equilibrium points for
concave N-person games,” Econometrica, vol. 33, no. 3, pp. 520–
534, 1965.

[35] Y. A. Korilis, A. A. Lazar, and A. Orda, “Architecting noncoop-
erative networks,” IEEE Journal on Selected Areas in Communi-
cations, vol. 13, no. 7, pp. 1241–1251, 1995.

[36] MATLAB®,The Language of Technical Computing, http://www
.mathworks.com/products/matlab.

[37] H. Yäıche, R. R. Mazumdar, and C. Rosenberg, “A game
theoretic framework for bandwidth allocation and pricing in
broadband networks,” IEEE/ACM Transactions on Networking,
vol. 8, no. 5, pp. 667–678, 2000.



Research Article
A Processor-Sharing Scheduling Strategy for NFV Nodes

Giuseppe Faraci, Alfio Lombardo, and Giovanni Schembra

Dipartimento di Ingegneria Elettrica, Elettronica e Informatica (DIEEI), University of Catania, 95123 Catania, Italy

Correspondence should be addressed to Giovanni Schembra; schembra@dieei.unict.it

Received 2 November 2015; Accepted 12 January 2016

Academic Editor: Xavier Hesselbach

Copyright © 2016 Giuseppe Faraci et al.This is an open access article distributed under theCreative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The introduction of the two paradigms SDN and NFV to “softwarize” the current Internet is making management and resource
allocation two key challenges in the evolution towards the Future Internet. In this context, this paper proposes Network-Aware
Round Robin (NARR), a processor-sharing strategy, to reduce delays in traversing SDN/NFV nodes. The application of NARR
alleviates the job of the Orchestrator by automatically working at the intranode level, dynamically assigning the processor slices to
the virtual network functions (VNFs) according to the state of the queues associated with the output links of the network interface
cards (NICs). An extensive simulation set is presented to show the improvements achieved with respect to two more processor-
sharing strategies chosen as reference.

1. Introduction

In the last few years the diffusion of new complex and efficient
distributed services in the Internet is becoming increasingly
difficult because of the ossification of the Internet protocols,
the proprietary nature of existing hardware appliances, the
costs, and the lack of skilled professionals formaintaining and
upgrading them.

In order to alleviate these problems, two new network
paradigms, SoftwareDefinedNetworks (SDN) [1–5] andNet-
work Functions Virtualization (NFV) [6, 7], have been
recently proposed with the specific target of improving the
flexibility of network service provisioning and reducing the
time to market of new services.

SDN is an emerging architecture that aims at making the
network dynamic, manageable, and cost-effective, by decou-
pling the system that makes decisions about where traffic
is sent (the control plane) from the underlying system that
forwards traffic to the selected destination (the data plane). In
this way the network control becomes directly programmable
and the underlying infrastructure is abstracted for applica-
tions and network services.

NFV is a core structural change in the way telecommuni-
cation infrastructure is deployed. The NFV initiative started
in late 2012 by some of the biggest telecommunications ser-
vice providers, which formed an Industry Specification

Group (ISG) within the European Telecommunications Stan-
dards Institute (ETSI). The interest has grown, involving
today more than 28 network operators and over 150 technol-
ogy providers from across the telecommunications industry
[7]. The NFV paradigm leverages on virtualization technolo-
gies and commercial off-the-shelf programmable hardware,
such as general-purpose servers, storage, and switches, with
the final target of decoupling the software implementation of
network functions from the underlying hardware.

The coexistence and the interaction of both NFV and
SDN paradigms is giving to the network operators the pos-
sibility of achieving greater agility and acceleration in new
service deployments, with a consequent considerable reduc-
tion of both Capital Expenditure (CAPEX) and Operational
Expenditure (OPEX) [8].

One of the main challenging problems in deploying an
SDN/NFV network is an efficient design of resource alloca-
tion and management, functions that are in charge of the
network Orchestrator. Although this task is well covered in
data center and cloud scenarios [9, 10], it is currently a chal-
lenging problem in a geographic networkwhere transmission
delays cannot be neglected, and transmission capacities of
the interconnection links are not comparable with the case
of above scenarios. This is the reason why the problem of
orchestrating an SDN/NFV network is still open and attracts
a lot of research interest from both academia and industry.

Hindawi Publishing Corporation
Journal of Electrical and Computer Engineering
Volume 2016, Article ID 3583962, 10 pages
http://dx.doi.org/10.1155/2016/3583962

http://dx.doi.org/10.1155/2016/3583962


2 Journal of Electrical and Computer Engineering

More specifically, the whole problem of orchestrating an
SDN/NFV network is very complex because it involves a
design work at both internode and intranode levels [11, 12].
At the internode level, and in all the cases where the time
between each execution is significantly greater than the time
to collect, compute, and disseminate results, the application
of a centralized approach is practicable [13, 14]. In these cases,
in fact, taking into consideration both traffic characterization
and required level of quality of service (QoS), the Orches-
trator is able to decide in a centralized manner how many
instances of the same function have to be run simultaneously,
the network nodes that have to execute them, and the routing
strategies that allow traffic flows to cross the nodes where the
requested network functions are running.

Instead, centralizing a strategy dealing with operations
that require dynamic reconfiguration of network resources
is actually unfeasible to be executed by the Orchestrator for
problems of resilience and scalability. Therefore, adaptive
management operations with short timescales require a dis-
tributed approach. The authors of [15] propose a framework
to support adaptive resource management operations, which
involve short timescale reconfiguration of network resources,
showing how requirements in terms of load-balancing and
energy management [16–18] can be satisfied. Another work
in the same direction is [19] that proposes a solution for the
consolidation of VMs on local computing resources, exclu-
sively based on local information. The work in [20] aims at
alleviating the inter-VM network latency defining a hyper-
visor scheduler algorithm that is able to take into consider-
ation the allocation of the resources within a consolidated
environment, scheduling VMs to reduce their waiting latency
in the run queue. Another approach is applied in [21], which
introduces a policy to manage the internal on/off switching
of virtual network functions (VNFs) in NFV-compliant
Customer Premises Equipment (CPE) devices.

The focus of this paper is on another fundamental prob-
lem that is inherent to resource allocation within an SDN/
NFV node, that is, the decision of the percentage of CPU
to be assigned to each VNF. If at a first glance this could
show a classical problem of processor sharing that has been
widely explored in the past literature [15, 22, 23], actually it
is much more complex because performance can be strongly
improved by leveraging on the correlation with the output
queues associated with the network interface cards (NICs).

With all this in mind, the main contribution of this paper
is the definition of a processor-sharing policy, in the following
referred to asNetwork-Aware Round Robin (NARR), which is
specific for SDN/NFVnodes. Starting from the consideration
that packets that have received the service of a network
function from a virtual machine (VM) running on a given
node are enqueued to wait for transmission through a given
NIC, the proposed strategy dynamically changes the slices
of the CPU assigned to each VNF according to the state of
the output NIC queues. More specifically, the NARR strategy
gives a larger CPU slice to serve packets that will leave the
node through the NIC that is currently less loaded, in such a
way as to minimize wastes of the NIC output link capacities,
also minimizing the overall delay experienced by packets
traversing nodes that implement NARR.

As a side contribution, the paper calculates an on-off
model for the traffic leaving the SDN/NFV node on each NIC
output link.Thismodel can be used as a building block for the
design and performance evaluation of an entire network.

The paper is structured as follows. Section 2 describes the
node architecture. Section 3 introduces the NARR strategy.
Section 4 presents a case study and shows some numerical
results. Finally, Section 5 draws some conclusions and dis-
cusses some future work.

2. System Description

The target of this section is the description of the system we
consider in the rest of the paper. It is an SDN/NFV node as
the one considered in [11, 12], where we will apply the NARR
strategy. Its architecture, shown in Figure 1(a), is compliant
with the ETSI Specifications [24]. It is composed of three dif-
ferent domains, namely, theCompute domain, theHypervisor
domain, and the Infrastructure Network domain. The Com-
pute domain provides the computational and storage hard-
ware resources that allow the node to host the VNFs. Thanks
to the computing and storage virtualization provided by the
Hypervisor domain, a VM can be created, migrated from
one node to another one, and halted, in order to optimize the
deployment according to specific performance parameters.
Communications among theVMs, and between theVMs and
the external environment, are provided by the Infrastructure
Network domain.

The SDN/NFVnode is remotely controlled by theOrches-
trator, whose architecture is shown in Figure 1(b). It is con-
stituted by three main blocks. The Orchestration Engine exe-
cutes all the algorithms and the strategies to manage and
orchestrate the whole network. After each decision, the
Orchestration Engine requests that the NFV Coordinator in-
stantiates, migrates, or halts VMs and consequently requests
that the SDN Controller modifies the flow tables of the SDN
switches in the network in such a way that traffic flows can
traverse VMs hosting the requested VNFs.

With this in mind, a functional architecture of the NFV
node is represented in Figure 2. Its main components are the
Processor, whichmanages the Compute domain and hosts the
Hypervisor domain, and the Network Card Interfaces (NICs)
with their queues, which constitute the “Network Hardware”
block in Figure 1.

Let𝑀 be the number of virtual network functions (VNFs)
that are running in the node, and let 𝐿 be the number of
output NICs. In order to simplify notation, in the following
we will assume that all the NICs have the same characteristics
in terms of buffer capacity and output rate. So, let 𝐾(NIC) be
the size of the queue associated with each NIC, that is, the
maximum number of packets that each queue can contain,
and let 𝜇(NIC) be the transmission rate of the output link asso-
ciated with each NIC, expressed in bit/s.

The Flow Distributor block has the task of routing each
entering flow towards the function required by the flow.
It is a software SDN switch that can be implemented, for
example, with OpenvSwitch [25]. It routes the flows to the
VMs running the requested VNFs according to the control
messages received by the SDN Controller residing in the



Journal of Electrical and Computer Engineering 3

Hypervisor
domain

Virtual
computing

Virtual
storage Virtual network

Computing 
hardware

Storage 
hardware Network hardware

NFV node 

Virtualization layer

Infrastructure
Network 
domain

Compute
domain

NIC NIC NIC

VNF VNF VNF· · ·

(a) NFV node

Orchestration
engine

NFV 
coordinator

SDN controller

NFVI 
nodes

(b) Orchestrator

Figure 1: Network function virtualization infrastructure.
Pr

oc
es

so
r

Fl
ow

 d
ist

rib
ut

or
 

Processor Arbiter 

F1

FM

𝜇(F)
[1]

𝜇(F)
[M]

N1

NL

...
...

𝜇(N)

𝜇(N)

Figure 2: NFV node functional architecture.

Orchestrator. The most common protocol that can be used
for the communications between the SDNController and the
Orchestrator is OpenFlow [26].

Let 𝜇(𝑃) be the total processing rate of the processor,
expressed in packets/s.This rate is shared among all the active
functions according to a processor rate scheduling strategy.
Let 𝜇(𝐹) be the array whose generic element, 𝜇(𝐹)

[𝑚]
, with 𝑚 ∈

{1, . . . ,𝑀}, is the portion of the processor rate assigned to the
VM implementing the function 𝐹𝑚. Of course we have

𝑀

∑

𝑚=1

𝜇
(𝐹)

[𝑚]
= 𝜇
(𝑃)
. (1)

Once a packet has been served by the required function,
it is sent to one of the NICs to exit from the node. If the
NIC is transmitting another packet, the arriving packets are
enqueued in the NIC queue. We will indicate the queue asso-
ciated with the generic NIC 𝑙 as 𝑄(NIC)

𝑙
.

In order to implement the NARR strategy proposed in
this paper, we realize the block relative to each functionwith a
set of 𝐿 parallel queues, in the following referred to as inside-
function queues, as shown in Figure 3 for the generic function
𝐹𝑚. The generic 𝑙th inside-function queue of the function 𝐹𝑚,
indicated as𝑄𝑚,𝑙 in Figure 3, is used to enqueue packets that,
after receiving the service of the function 𝐹𝑚, will leave the
node through the NIC 𝑙. Let 𝐾(𝐹)Ins be the size of each inside-
function queue. Each inside-function queue of the generic
function 𝐹𝑚 receives a portion of the processor rate assigned
to that function. Let 𝜇(𝐹Ins)

[𝑚,𝑙]
be the portion of the processor rate

assigned to the queue 𝑄𝑚,𝑗 of the function 𝐹𝑚. Of course, we
have

𝐿

∑

𝑙=1

𝜇
(𝐹Ins)

[𝑚,𝑙]
= 𝜇
(𝐹)

[𝑚]
. (2)



4 Journal of Electrical and Computer Engineering

...

...

Qm,1

Qm,l

Qm,L

Fm

𝜇
(FInt)
[m,1]

𝜇
(FInt)

(FInt)

[m,l]

𝜇
[m,L]

Figure 3: Block diagram of the generic function 𝐹𝑚.

The portion of processor rate associated with each inside-
function queue is dynamically changed by the Processor Arbi-
ter according to the NARR strategy described in Section 3.

3. NARR Processor-Sharing Strategy

The NARR (Network-Aware Round Robin) processor-shar-
ing strategy observes the state of both the inside-function
queues and the NIC queues, with the goal of reducing as far
as possible the inactivity periods of the NIC output links. As
already introduced in the Introduction, its definition starts
from the fact that packets that have received the service
of a VNF are enqueued to wait for transmission through a
given NIC. So, in order to avoid output link capacity waste,
NARR dynamically changes the slices of the CPU assigned to
each VNF, and in particular to each inside-function queue,
according to the state of the output NIC queues, assigning
larger CPU slices to serve packets that will leave the node
through less-loaded NICs.

More specifically, the Processor Arbiter decides the pro-
cessor rate portions according to two different steps.

Step 1 (assignment of the processor rate portion to the aggre-
gation of queues whose output is a specific NIC). This step
meets the target of the proposed strategy that is to reduce,
as much as possible, underutilization of the NIC output links
and, as a consequence, delays in the relative queues. To this
purpose, let us consider a virtual queue that contains all the
packets that are stored in all the inside-function queues 𝑄𝑚,𝑙,
for each𝑚 ∈ [1,𝑀], that is, all the packets that will leave the
node through the NIC 𝑙. Let us indicate this virtual queue as
𝑄
(→NIC𝑙)
Aggr , and its service rate as 𝜇(→NIC𝑙)

Aggr . Of course, we have

𝜇
(→NIC𝑙)
Aggr =

𝑀

∑

𝑚=1

𝜇
(𝐹Ins)

[𝑚,𝑙]
. (3)

With this in mind, the idea is to give a higher processor
slice to the inside-function queues whose flows are directed
to the NICs that are emptying.

Taking into account the goal of privileging the flows that
will leave the node through underloaded NICs, the Processor
Arbiter calculates 𝜇(→NIC𝑙)

Aggr as follows:

𝜇
(→NIC𝑙)
Aggr =

𝑞ref − 𝑆
(NIC)
𝑙

∑
𝐿

𝑗=1 {𝑞ref − 𝑆
(NIC)
𝑗

}

𝜇
(𝑃)
, (4)

where 𝑆(NIC)
𝑙

represents the state of the queue associated with
the NIC 𝑙, while 𝑞ref is defined as follows:

𝑞ref = min{𝛼 ⋅max
𝑗
(𝑆
(NIC)
𝑗 ) , 𝐾

(NIC)
} . (5)

The term 𝑞ref is a reference target value calculated from
the state of the NIC queue that has the highest length,
amplified with a coefficient 𝛼, and truncated to themaximum
queue size 𝐾(NIC). It is determined in such a way that, if we
consider 𝛼 = 1, the NIC queue that has the highest length
does not receive packets from the inside-function queues
because the service rate of them is set to zero; the other queues
receive packets with a rate that is proportional to the distance
between their length and the length of the most overloaded
NIC queue.However, through an extensive set of simulations,
we deduced that setting 𝛼 = 1 causes bad performance
because there is always a group of inside-function queues
that are not served. Instead, all the 𝛼 values in the interval
]1, 2] give almost equivalent performance. For this reason,
in the numerical analysis presented in Section 4, we have set
𝛼 = 1.2.

Step 2 (assignment of the processor rate portion to each
inside-function queue). Let us consider the generic 𝑙th
inside-function queue of the function 𝐹𝑚, that is, the queue
𝑄𝑚,𝑙. Its service rate is calculated as being proportional to the
current state of this queue in comparison with the other 𝑙th
queues of the other functions. To this purpose, let us indicate
the state of the virtual queue𝑄(→NIC𝑙)

Aggr as 𝑆(→NIC𝑙)
Aggr . Of course,

it can be calculated as the sum of the states of all the inside-
function queues 𝑄𝑚,𝑙, for each𝑚 ∈ [1,𝑀]: that is,

𝑆
(→NIC𝑙)
Aggr =

𝑀

∑

𝑘=1

𝑆
(𝐹Ins)

𝑘,𝑙
. (6)

So, the service rate of the inside-function queue 𝑄𝑚,𝑙 is
determined as a fraction of the service rate assigned at the
first step to the virtual queue 𝑄(→NIC𝑙)

Aggr , 𝜇(→NIC𝑙)
Aggr , as follows:

𝜇
(𝐹Ins)

[𝑚,𝑙]
=

𝑆
(𝐹Ins)

𝑚,𝑙

𝑆
(→NIC𝑙)
Aggr

𝜇
(→NIC𝑙)
Aggr . (7)

Of course, if at any time an inside-function queue remains
empty, the processor rate portion assigned to it will be shared
among the other queues proportionally to the processor
portions previously assigned. Likewise, if at some instant an
empty queue receives a new packet, the previous processor
rate portion is reassigned to that queue.



Journal of Electrical and Computer Engineering 5

4. Case Study

In this sectionwe present a numerical analysis of the behavior
of an SDN/NFV node that applies the proposed NARR
processor-sharing strategy, with the target of evaluating the
achieved performance. To this purpose, we will consider
two other processor-sharing strategies as reference, in the
following referred to as round robin (RR) and queue-length
weighted round robin (QLWRR). In both the reference cases,
the node has the same 𝐿 NIC queues, but it has only 𝑀

processor queues, one for each function. Each of the 𝑀

queues has a size of 𝐾(𝐹) = 𝐿 ⋅ 𝐾
(𝐹)

Ins , where 𝐾
(𝐹)

Ins represents
the size of each internal function queue, already defined so
far for the proposed strategy.

TheRR strategy applies the classical round robin schedul-
ing policy to serve the 𝑀 function queues; that is, it serves
each function queue with a rate 𝜇(𝐹)RR = 𝜇

(𝑃)
/𝑀.

The QLWRR strategy, on the other hand, serves each
function queue with a rate that is proportional to the queue
length; that is,

𝜇
(𝐹𝑚)

QLWRR =
𝑆
(𝐹𝑚)

∑
𝑀

𝑘=1 𝑆
(𝐹𝑘)

𝜇
(𝑃)
, (8)

where 𝑆(𝐹𝑚) is the state of the queue associated with the func-
tion 𝐹𝑚.

4.1. Parameter Settings. In this numerical analysis, we con-
sider a node with 𝑀 = 4 VNFs, and 𝐿 = 3 output NICs.
We loaded the node with a balanced traffic constituted by
𝑁𝐹 = 12 flows, each characterized by a different 2-uple
{𝑟𝑒𝑞𝑢𝑒𝑠𝑡𝑒𝑑 𝑁𝐹𝑉, 𝑜𝑢𝑡𝑝𝑢𝑡 𝑁𝐼𝐶}. Each flow has been gener-
ated with an on-off model characterized by exponentially
distributed on and off periods. When a flow is in off state,
no packets arrive to the node from it; instead, when it is in
on state, packets arrive with an average rate 𝜆ON. Each packet
is assumed with an exponential distributed size with a mean
of 1 kbyte. In all the simulations we have considered the same
on-off cycle duration, 𝛿 = 𝑇OFF + 𝑇ON = 5msec, while we
have varied the burstiness. Burstiness of on-off sources is
defined as

𝑏 =
𝜆ON
𝜆Mean

, (9)

where 𝜆Mean is the mean emission rate. Now, indicating the
probability of the ON state as 𝜋ON, and taking into account
that 𝜆Mean = 𝜆ON ⋅ 𝜋ON and 𝜋ON = 𝑇ON/(𝑇OFF + 𝑇ON), we
have

𝑏 =
𝑇OFF + 𝑇ON

𝑇ON
. (10)

In our analysis, the burstiness has been varied in the range
[2, 22]. Consequently, we have derived the mean durations of
the off and on periods, as follows:

𝑇ON =
𝛿

𝑏
,

𝑇OFF = 𝛿 − 𝑇ON.

(11)

Finally, in order to maintain the same mean packet rate
for different values of𝑇OFF and𝑇ON, we have assumed that 75
packets are transmitted, on average: that is, 𝜆ON = 75/𝑇ON.
The resulting mean emission rate is 𝜆Mean = 122.9Mbit/s.

As far as the NICs are concerned, we have considered an
output rate of 𝜇(NIC)

= 980Mbit/s, so having a utilization
coefficient on each NIC of 𝜌(NIC)

= 0.5, and a queue size
𝐾
(NIC)

= 3000 packets. Instead, regarding the processor, we
considered a size of each inside-function queue of 𝐾(𝐹)Ins =

3000 packets. Finally, we have analyzed two different proces-
sor cases. In the first case we considered a processor that is
able to process𝜇(𝑃) = 306 kpackets/s, while in the second case
we assumed a processor rate of 𝜇(𝑃) = 204 kpackets/s. There-
fore, defining the processor utilization coefficient as follows:

𝜌
(𝑃)

=
𝑁𝐹 ⋅ 𝜆Mean

𝜇(𝑃)
(12)

with𝑁𝐹 ⋅ 𝜆Mean being the total mean arrival rate to the node,
the two considered cases are characterized by a processor uti-
lization coefficient of 𝜌(𝑃)Low = 0.6 and 𝜌

(𝑃)

High = 0.9, respectively.

4.2. Numerical Results. In this section we present some
results achieved by discrete-event simulations. The simu-
lation tool used in the paper is publicly available in [27].
We first present a temporal analysis of the main variables
characterizing the SDN/NFV node, and then we show a
performance comparison ofNARRwith the two strategies RR
and QLWRR, taken as a reference.

For the temporal analysis we focus on a short time
interval of 720 𝜇sec, in order to be able to clearly highlight
the evolution of the considered processes. We have loaded
the node with an on-off traffic like the one described in
Section 4.1, with a burstiness 𝑏 = 7.

Figures 4, 5, and 6 show the time evolution of the length
of the queues associated with the NICs, the processor slice
assigned to each virtual queue loading each NIC, and the
length of the same virtual queues. We can subdivide the
considered time interval into three different periods.

In the first period, ranging from the instants 0.1063 and
0.1067, from Figure 4 we can notice that the NIC queue𝑄(NIC)

1

has a greater length than the queue 𝑄(NIC)
3 , while 𝑄(NIC)

2 is
empty. For this reason in this period, as shown in Figure 5,
the processor is shared between𝑄(→NIC1)

Aggr and𝑄(→NIC3)
Aggr , and

the slice assigned to serve 𝑄(→NIC3)
Aggr is higher, in such a way

that the two queue lengths 𝑄(NIC)
1 and 𝑄(NIC)

3 reach the same
value, situation that happens at the end of the first period,
around the instant 0.1067. During this period, the behavior
of both the virtual queues𝑄(→NIC1)

Aggr and𝑄(→NIC3)
Aggr in Figure 6

remains flat, showing the fact that the received processor rates
are able to balance the arrival rates.

At the beginning of the second period that ranges
between the instants 0.1067 and 0.10693, the processor rate
assigned to the virtual queue 𝑄(→NIC3)

Aggr has become not suffi-
cient to serve the amount of arriving traffic, and so the virtual
queue 𝑄(→NIC3)

Aggr increases its length, as shown in Figure 6.



6 Journal of Electrical and Computer Engineering
Q

ue
ue

 le
ng

th
 (p

ac
ke

ts)

0.1064 0.1065 0.1066 0.1067 0.1068 0.1069 0.1070.1063
Time (s)

0

10

20

30

40

50

60

70

S(NIC)
1

S(NIC)
2

S(NIC)
3

S(NIC)
3

Figure 4: Lenght evolution of the NIC queues.

Pr
oc

es
so

r r
at

e (
kp

ac
ke

ts/
s)

0.1064 0.1065 0.1066 0.1067 0.1068 0.1069 0.1070.1063
Time (s)

0

20

40

60

80

100

120

140

160

180

200

220

𝜇
(→NIC1)
Aggr

𝜇
(→NIC2)
Aggr

𝜇
(→NIC3)
Aggr

𝜇
(→NIC3)
Aggr

Figure 5: Packet rate assigned to the virtual queues.

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts)

0

50

100

150

0.1064 0.1065 0.1066 0.1067 0.1068 0.1069 0.1070.1063
Time (s)

S
(→NIC1)
Aggr

S
(→NIC2)
Aggr

S
(→NIC3)
Aggr

Figure 6: Lenght evolution of the virtual queues.

During this second period, the processor slices assigned to
the two queues𝑄(→NIC1)

Aggr and𝑄(→NIC3)
Aggr are adjusted in such a

way that 𝑄(NIC)
1 and 𝑄(NIC)

3 remain with comparable lengths.
The last period starts at the instant 0.10693, characterized

by the fact that the aggregated queue 𝑄(→NIC2)
Aggr leaves the

empty state, and therefore participates in the processor-shar-
ing process. Since the NIC queue 𝑄(NIC)

2 is low-loaded, as
shown in Figure 4, the largest slice is assigned to𝑄(→NIC2)

Aggr in
such a way that𝑄(NIC)

2 can reach the same length of the other
two NIC queues as soon as possible.

Now, in order to show how the second step of the pro-
posed strategy works, we present the behavior of the inside-
function queues whose output is sent to theNIC queue𝑄(NIC)

3

during the same short time interval considered so far. More
specifically, Figures 7 and 8 show the length of the considered
inside-function queues, and the processor slices assigned to
them, respectively. The behavior of the queue 𝑄2,3 is not
shown because it is empty in the considered period. Aswe can
observe from the above figures, we can subdivide the interval
into four periods:

(i) The first period, ranging in the interval [0.1063,
0.10657] is characterized by an empty state of the
queue 𝑄3,3. Thus, in this period, the processor slice
assigned to the aggregated queue 𝑄(→NIC3)

Aggr is shared
by 𝑄1,3 and 𝑄4,3, only.

(ii) During the second period, ranging in the interval
[0.10657, 0.1067], 𝑄1,3 is scarcely loaded (in particu-
lar it is empty in the second part of this period), and
so the processor slice assigned to 𝑄3,3 is increased.

(iii) In the third period, ranging between 0.1067 and
0.10693, all the queues increase and equally share the
processor.

(iv) Finally, in the last period, starting at the instant
0.10693, as already observed in Figure 5, the processor
slice assigned to the aggregated queue 𝑄(→NIC3)

Aggr is
suddenly decreased, and consequently the slices as-
signed to the queues𝑄1,3,𝑄3,3, and𝑄4,3 are decreased
as well.

The steady-state analysis is presented in Figures 9, 10,
and 11, which show the mean delay in the inside-function
queues, in the NIC queues, and the durations of the off-
and on-states on the output links. The values reported in
all the figures have been derived as the mean values of the
results of many simulation experiments, using Student’s 𝑡-
distribution and with a 95% confidence interval.The number
of experiments carried out to evaluate each numerical result
has been automatically decided by the simulation tool with
the requirement of achieving a confidence interval less than
0.001 of the estimated mean value. To this purpose, the
confidence interval is calculated at the end of each run,
and simulation is stopped only when the confidence interval
matches the maximum error requirement. The duration of
each run has been chosen in such a way that the sample
standard deviation is so low that less than 30 runs are enough
to match the requirement.



Journal of Electrical and Computer Engineering 7

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts)

0

5

10

15

20

25

30

35

40

45

50

0.1064 0.1065 0.1066 0.1067 0.1068 0.1069 0.1070.1063
Time (s)

(a) Queue𝑄1,3

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts)

0.1064 0.1065 0.1066 0.1067 0.1068 0.1069 0.1070.1063
Time (s)

0

5

10

15

20

25

30

35

40

45

50

(b) Queue𝑄3,3

Q
ue

ue
 le

ng
th

 (p
ac

ke
ts)

0

5

10

15

20

25

30

35

40

45

50

0.1064 0.1065 0.1066 0.1067 0.1068 0.1069 0.1070.1063
Time (s)

(c) Queue𝑄4,3

Figure 7: Length evolution of the inside-function queues 𝑄𝑚,3, for each𝑚 ∈ [1,𝑀].

The figures compare the results achieved with the pro-
posed strategy with the ones obtained with the two strategies
RR and QLWRR. As said so far, results have been obtained
against the burstiness, and for two different values of the
utilization coefficient: that is, 𝜌(𝑃)Low = 0.6 and 𝜌

(𝑃)

High = 0.9.
As expected, the mean lengths of the processor queues

and the NIC queues increase with both the burstiness and the
utilization coefficient.

Instead, we can note that themean length of the processor
queues is not affected by the applied policy. In fact, packets
requiring the same function are enqueued in a unique queue
and served with a rate 𝜇(𝑃)/4, when RR or QLWRR strategies
are applied, while, when the NARR strategy is used, they are
split into 12 different queues and served with a rate 𝜇(𝑃)/12. If
in a classical queueing theory [28] the second case is worse
than the first one because of the presence of service rate
wastes during the more probable periods of empty queues,
this is not the case here because the processor capacity of an
empty queue is dynamically reassigned to the other queues.

The advantage of the NARR strategy is evident in Fig-
ure 10, where the mean delay in the NIC queues is repre-
sented. In fact, we can observe that, with only giving more
processor rate to the most loaded processor queues (with the
QLWRR strategy), performance improvements are negligible,
while applying the NARR strategy we are able to obtain a
delay reduction of about 12% in the case of amore performant
processor (𝜌(𝑃)Low = 0.6), reaching the 50% when the processor
works with a 𝜌(𝑃)High = 0.9. The performance gain achieved
with the NARR strategy increases with burstiness and the
processor load, conditions that are both likely. In fact, the first
condition is due to the high burstiness of the Internet traffic;
the second one is true as well because the processor should
be not overdimensioned for economic purposes; otherwise,
if overdimensioned, it can be controlled with a processor rate
management policy like the one presented in [29] in order to
save energy.

Finally, Figure 11 shows the mean durations of the on-
and off-periods on the node output links. Only one curve is



8 Journal of Electrical and Computer Engineering

Pr
oc

es
so

r r
at

e (
kp

ac
ke

ts/
s)

0

20

40

60

80

100

120

140

0.1064 0.1065 0.1066 0.1067 0.1068 0.1069 0.1070.1063
Time (s)

(a) Processor rate 𝜇(𝐹Int)
[1,3]

Pr
oc

es
so

r r
at

e (
kp

ac
ke

ts/
s)

0

20

40

60

80

100

120

140

0.1064 0.1065 0.1066 0.1067 0.1068 0.1069 0.1070.1063
Time (s)

(b) Processor rate 𝜇(𝐹Int)
[3,3]

Pr
oc

es
so

r r
at

e (
kp

ac
ke

ts/
s)

0.1064 0.1065 0.1066 0.1067 0.1068 0.1069 0.1070.1063
Time (s)

0

20

40

60

80

100

120

140

(c) Processor rate 𝜇(𝐹Int)
[4,3]

Figure 8: Processor rate assigned to the inside-function queues 𝑄𝑚,3, for each𝑚 ∈ [1,𝑀].

shown for each case because we have considered a utilization
coefficient 𝜌(NIC)

= 0.5 on each NIC queue, and therefore in
the considered case we have 𝑇ON = 𝑇OFF. As expected, the
mean on-off durations are higher when the processor rate is
higher (i.e., lower utilization coefficient). This is because, in
this case, the output processor rate is lower, and therefore
batches of packets in the NIC queues are served quickly.
These results can be used to model the output traffic of each
SDN/NFVnode as an Interrupted Poisson Process (IPP) [30].
This model can be iteratively used to represent the input
traffic of other nodes, with the final target of realizing the
model of a whole SDN/NFV network.

5. Conclusions and Future Work

This paper addresses the problem of intranode resource allo-
cation, by introducing NARR, a processor-sharing strategy

that leverages on the consideration that, in any SDN/NFV
node, packets that have received the service of a VNF
are enqueued to wait for transmission through one of the
output NICs. Therefore, the idea at the base of NARR is
to dynamically change the slices of the CPU assigned to
each VNF according to the state of the output NIC queues,
giving more CPU to serve packets that will leave the node
through the less-loaded NICs. In this way, wastes of the NIC
output link capacities are minimized, and consequently the
overall delay experienced by packets traversing the nodes that
implement NARR is reduced.

SDN/NFV nodes that implement NARR can coexist in
the same network with nodes that use other strategies, so
facilitating a gradual introduction in the Future Internet.

As a side contribution, the simulator tool, which is public
available on the web, gives the on-off model of the output
links associated with each NIC as one of the results. This
model can be used as a building block to realize a model for



Journal of Electrical and Computer Engineering 9
M

ea
n 

de
lay

 in
 th

e p
ro

ce
ss

or
 q

ue
ue

s (
m

s)

NARR
QLWRR
RR

3 4 5 6 7 8 9 10 112
Burstiness

0

0.5

1

1.5

2

2.5

3

𝜌(P)High = 0.9

𝜌(P)Low = 0.6

Figure 9: Mean delay in the function internal queues.

NARR
QLWRR
RR

M
ea

n 
de

lay
 in

 th
e N

IC
 q

ue
ue

s (
m

s)

3 4 5 6 7 8 9 10 112
Burstiness

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

𝜌(P)High = 0.9

𝜌(P)Low = 0.6

Figure 10: Mean delay in the NIC queues.

the design and performance evaluation of a whole SDN/NFV
network.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work has been partially supported by the INPUT (In-
Network Programmability for Next-Generation Personal

NARR
QLWRR
RR

0

20

40

60

80

100

120

140

160

180

Ti
m

e (
𝜇

s)

3 4 5 6 7 8 9 10 112
Burstiness

𝜌(P)High = 0.9

𝜌(P)Low = 0.6

Figure 11: Mean off- and on-states duration of the traffic on the out-
put links.

cloUd Service Support) project funded by the European
Commission under the Horizon 2020 Programme (Call
H2020-ICT-2014-1, Grant no. 644672).

References

[1] White paper on “Software-Defined Networking: The New
Norm for Networks”, https://www.opennetworking.org/.

[2] M. Yu, L. Jose, and R. Miao, “Software defined traffic measure-
ment with OpenSketch,” in Proceedings of the Symposium on
Network Systems Design and Implementation (NSDI ’13), vol. 13,
pp. 29–42, Lombard, Ill, USA, April 2013.

[3] H. Kim and N. Feamster, “Improving network management
with software defined networking,” IEEECommunicationsMag-
azine, vol. 51, no. 2, pp. 114–119, 2013.

[4] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali, “On scalability
of software-defined networking,” IEEE Communications Maga-
zine, vol. 51, no. 2, pp. 136–141, 2013.

[5] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka,
and T. Turletti, “A survey of software-defined networking: past,
present, and future of programmable networks,” IEEE Commu-
nications Surveys and Tutorials, vol. 16, no. 3, pp. 1617–1634,
2014.

[6] White paper on “Network FunctionsVirtualisation”, http://por-
tal.etsi.org/NFV/NFV White Paper.pdf.

[7] Network Functions Virtualisation (NFV): Network Operator
Perspectives on Industry Progress, ETSI, October 2013, http://
portal.etsi.org/NFV/NFV White Paper2.pdf.

[8] A. Manzalini, R. Saracco, E. Zerbini et al., “Software-Defined
Networks for Future Networks and Services,” White Paper
based on the IEEE Workshop SDN4FNS, http://sites.ieee.org/
sdn4fns/whitepaper/.

[9] R. Z. Frantz, R. Corchuelo, and J. L. Arjona, “An efficient
orchestration engine for the cloud,” in Proceedings of the IEEE
3rd International Conference on Cloud Computing Technology



10 Journal of Electrical and Computer Engineering

and Science (CloudCom ’11), vol. 2, pp. 711–716, Athens, Greece,
December 2011.

[10] K. Bousselmi, Z. Brahmi, and M. M. Gammoudi, “Cloud ser-
vices orchestration: a comparative study of existing approaches,”
in Proceedings of the 28th IEEE International Conference on
Advanced Information Networking and Applications Workshops
(WAINA ’14), pp. 410–416, Victoria, Canada, May 2014.

[11] A. Lombardo, A. Manzalini, V. Riccobene, and G. Schembra,
“An analytical tool for performance evaluation of software
defined networking services,” in Proceedings of the IEEE Net-
work Operations and Management Symposium (NMOS ’14), pp.
1–7, Krakow, Poland, May 2014.

[12] A. Lombardo, A. Manzalini, G. Schembra, G. Faraci, C. Ram-
etta, and V. Riccobene, “An open framework to enable NetFATE
(network functions at the edge),” in Proceedings of the IEEE
Workshop onManagement Issues in SDN, SDI andNFV (Mission
’15), pp. 1–6, London, UK, April 2015.

[13] A. Manzalini, R. Minerva, F. Callegati, W. Cerroni, and A.
Campi, “Clouds of virtual machines in edge networks,” IEEE
Communications Magazine, vol. 51, no. 7, pp. 63–70, 2013.

[14] H. Moens and F. De Turck, “VNF-P: a model for efficient place-
ment of virtualized network functions,” in Proceedings of the
10th International Conference on Network and Service Manage-
ment (CNSM ’14), pp. 418–423, Rio de Janeiro, Brazil, November
2014.

[15] K. Katsalis, G. S. Paschos, Y. Viniotis, and L. Tassiulas, “CPU
provisioning algorithms for service differentiation in cloud-
based environments,” IEEETransactions onNetwork and Service
Management, vol. 12, no. 1, pp. 61–74, 2015.

[16] D. Tuncer, M. Charalambides, G. Pavlou, and N. Wang,
“Towards decentralized and adaptive network resource man-
agement,” in Proceedings of the 7th International Conference on
Network and Service Management (CNSM ’11), pp. 1–6, Paris,
France, October 2011.

[17] D. Tuncer, M. Charalambides, G. Pavlou, and N. Wang,
“DACoRM: a coordinated, decentralized and adaptive network
resource management scheme,” in Proceedings of the IEEE
Network Operations and Management Symposium (NOMS ’12),
pp. 417–425, IEEE, Maui, Hawaii, USA, April 2012.

[18] M. Charalambides, D. Tuncer, L. Mamatas, and G. Pavlou,
“Energy-aware adaptive network resource management,” in
Proceedings of the IFIP/IEEE International Symposium on Inte-
grated Network Management (IM ’13), pp. 369–377, Ghent,
Belgium, May 2013.

[19] C.Mastroianni, M.Meo, and G. Papuzzo, “Probabilistic consol-
idation of virtual machines in self-organizing cloud data cen-
ters,” IEEE Transactions on Cloud Computing, vol. 1, no. 2, pp.
215–228, 2013.

[20] B. Guan, J. Wu, Y. Wang, and S. U. Khan, “CIVSched: a com-
munication-aware inter-VM scheduling technique for de-
creased network latency between co-located VMs,” IEEE Trans-
actions on Cloud Computing, vol. 2, no. 3, pp. 320–332, 2014.

[21] G. Faraci and G. Schembra, “An analytical model to design and
manage a green SDN/NFV CPE node,” IEEE Transactions on
Network and Service Management, vol. 12, no. 3, pp. 435–450,
2015.

[22] L. Kleinrock, “Time-shared systems: a theoretical treatment,”
Journal of the ACM, vol. 14, no. 2, pp. 242–261, 1967.

[23] S. F. Yashkov and A. S. Yashkova, “Processor sharing: a survey
of the mathematical theory,” Automation and Remote Control,
vol. 68, no. 9, pp. 1662–1731, 2007.

[24] ETSI GS NFV—INF 001, v1.1.1, “Network Functions Virtualiza-
tion (NFV): Infrastructure Overview”, 2015, https://www.etsi
.org/deliver/etsi gs/NFV-INF/001 099/001/01.01.01 60/gs NFV-
INF001v010101p.pdf.

[25] T. N. Subedi, K. K. Nguyen, and M. Cheriet, “OpenFlow-based
in-network Layer-2 adaptive multipath aggregation in data
centers,” Computer Communications, vol. 61, pp. 58–69, 2015.

[26] N. McKeown, T. Anderson, H. Balakrishnan et al., “OpenFlow:
enabling innovation in campus networks,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 2, pp. 69–74,
2008.

[27] NARR simulator, v.0.1, http://www.diit.unict.it/arti/Tools/NARR
Simulator v01.zip.

[28] L. Kleinrock, Queueing Systems. Volume 1: Theory, Wiley-Inter-
science, 1st edition, 1975.

[29] R. Bruschi, P. Lago, A. Lombardo, and G. Schembra, “Modeling
power management in networked devices,” Computer Commu-
nications, vol. 50, pp. 95–109, 2014.

[30] W. Fischer and K. S. Meier-Hellstern, “The Markov-Modulated
Poisson process (MMPP) cookbook,” Performance Evaluation,
vol. 18, no. 2, pp. 149–171, 1993.




