Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/10418
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Muñoz Galeano, Nicolás | - |
dc.contributor.author | Sarmiento Maldonado, Henry Omar | - |
dc.date.accessioned | 2019-01-15T16:45:07Z | - |
dc.date.available | 2019-01-15T16:45:07Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | J. P. Rivera-Barrera, N. Muñoz Galeano and H.O. Sarmiento-Maldonado, " SoC estimation for lithium-ion batteries : review and future challenges," electronics, vol. 6, no. 4, pp.102, 2017. | spa |
dc.identifier.issn | 2079-9292 | - |
dc.identifier.uri | http://hdl.handle.net/10495/10418 | - |
dc.description.abstract | ABSTRACT: Energy storage emerged as a top concern for the modern cities, and the choice of the lithium-ion chemistry battery technology as an effective solution for storage applications proved to be a highly efficient option. State of charge (SoC) represents the available battery capacity and is one of the most important states that need to be monitored to optimize the performance and extend the lifetime of batteries. This review summarizes the methods for SoC estimation for lithium-ion batteries (LiBs). The SoC estimation methods are presented focusing on the description of the techniques and the elaboration of their weaknesses for the use in on-line battery management systems (BMS) applications. SoC estimation is a challenging task hindered by considerable changes in battery characteristics over its lifetime due to aging and to the distinct nonlinear behavior. This has led scholars to propose different methods that clearly raised the challenge of establishing a relationship between the accuracy and robustness of the methods, and their low complexity to be implemented. This paper publishes an exhaustive review of the works presented during the last five years, where the tendency of the estimation techniques has been oriented toward a mixture of probabilistic techniques and some artificial intelligence. | spa |
dc.format.extent | 32 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | eng | spa |
dc.publisher | MDPI | spa |
dc.type.hasversion | info:eu-repo/semantics/publishedVersion | spa |
dc.rights | Atribución 2.5 Colombia (CC BY 2.5 CO) | * |
dc.rights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | https://creativecommons.org/licenses/by/2.5/co/ | * |
dc.subject | Estimación SoC | - |
dc.subject | Baterías de litio | - |
dc.subject | Baterías eléctricas | - |
dc.subject | Modelado | - |
dc.subject | Sistema de gestión de batería BMS | - |
dc.subject | Electric batteries | - |
dc.subject | Energy storage | - |
dc.subject | Lithium batteries | - |
dc.title | SoC estimation for lithium-ion batteries : review and future challenges | spa |
dc.type | info:eu-repo/semantics/article | spa |
dc.publisher.group | Grupo de Manejo Eficiente de la Energía (GIMEL) | spa |
dc.identifier.doi | 10.3390/electronics6040102 | - |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.citationtitle | Electronics (Basel) | spa |
oaire.citationstartpage | 1 | spa |
oaire.citationendpage | 33 | spa |
oaire.citationvolume | 6 | spa |
oaire.citationissue | 4 | spa |
dc.rights.creativecommons | https://creativecommons.org/licenses/by/4.0/ | spa |
dc.publisher.place | Suiza | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_dcae04bc | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/ARTREV | spa |
dc.type.local | Artículo de revisión | spa |
Aparece en las colecciones: | Artículos de Revista en Ingeniería |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
MunozNicolas_2017_EstimationLithium-ionBatteries.pdf | Artículo de revisión | 3.17 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons