Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/12835
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorLópez Hincapie, José David-
dc.contributor.authorVargas Bonilla, Jesús Francisco-
dc.date.accessioned2020-01-05T03:31:55Z-
dc.date.available2020-01-05T03:31:55Z-
dc.date.issued2017-
dc.identifier.citationSucerquia Vega, A., López Hincapie, J. D., and Vargas Bonilla, J. F. (2017). SisFall: A Fall and Movement Dataset. Sensors, 17(1), 1-14. https://doi.org/10.3390/s17010198spa
dc.identifier.issn1424-8220-
dc.identifier.urihttp://hdl.handle.net/10495/12835-
dc.description.abstractABSTRACT: Research on fall and movement detection with wearable devices has witnessed promising growth. However, there are few publicly available datasets, all recorded with smartphones, which are insufficient for testing new proposals due to their absence of objective population, lack of performed activities, and limited information. Here, we present a dataset of falls and activities of daily living (ADLs) acquired with a self-developed device composed of two types of accelerometer and one gyroscope. It consists of 19 ADLs and 15 fall types performed by 23 young adults, 15 ADL types performed by 14 healthy and independent participants over 62 years old, and data from one participant of 60 years old that performed all ADLs and falls. These activities were selected based on a survey and a literature analysis. We test the dataset with widely used feature extraction and a simple to implement threshold based classification, achieving up to 96% of accuracy in fall detection. An individual activity analysis demonstrates that most errors coincide in a few number of activities where new approaches could be focused. Finally, validation tests with elderly people significantly reduced the fall detection performance of the tested features. This validates findings of other authors and encourages developing new strategies with this new dataset as the benchmark.spa
dc.format.extent13spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherMDPIspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsAtribución 2.5 Colombia (CC BY 2.5 CO)*
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttps://creativecommons.org/licenses/by/2.5/co/*
dc.subjectDetección de caídas-
dc.subjectServicios móviles de salud-
dc.subjectAcelerómetro triaxial-
dc.subjectDispositivos portátiles-
dc.titleSisFall : A Fall and Movement Datasetspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupSistemas Embebidos e Inteligencia Computacional (SISTEMIC)spa
dc.identifier.doi10.3390/s17010198-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.citationtitleSensorsspa
oaire.citationstartpage1spa
oaire.citationendpage14spa
oaire.citationvolume17spa
oaire.citationissue1spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/spa
dc.publisher.placeSuizaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
SucerquiaAngela_2017_Sisfallmovement.pdfArtículo de investigación698.68 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons