Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/19765
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorOrozco Arroyave, Juan Rafael-
dc.contributor.advisorVásquez Correa, Juan Camilo-
dc.contributor.authorMoreno Acevedo, Santiago Andrés-
dc.date.accessioned2021-05-25T00:55:20Z-
dc.date.available2021-05-25T00:55:20Z-
dc.date.issued2021-
dc.identifier.urihttp://hdl.handle.net/10495/19765-
dc.description.abstractRESUMEN: La enfermedad de Parkinson ha sido altamente estudiada por el grupo GITA perteneciente a la Universidad de Antioquia. Para esto se han utilizado diferentes tipos de señales, entre las cuales se encuentran las señales de audio, de escritura, de marcha, entre otras. La severidad de esta enfermedad es medida por medio del índice MDS-UPDRS. En este trabajo utilizamos una sub-escala de dicho ítem enfocada en el estado motor de los miembros inferiores, llamándose UPDRS-Lower-Limbs. En el presente trabajo se realizó un estudio de los trastornos de movimiento generados por la enfermedad de Parkinson enfocándose en la motricidad del movimiento en los miembros inferiores. Para esto se propone utilizar señales de movimiento captadas por medio de sensores de profundidad. A partir de estas señales se extraen como características el Jitter, el Shimmer y la energía del movimiento. Con las características se busca evaluar el estado de severidad en los miembros inferiores de los pacientes. Para esto se consideran 2 enfoques. El primero es basado en clasificación. Se dividen las muestras en 2 grupos (Severidad baja y severidad alta) y se realiza la clasificación binaria con estos grupos. Para este enfoque se usan las técnicas de máquinas de soporte Vectorial y bosques aleatorios. El segundo enfoque está basado en regresión. Se genera un modelo que se adapte a los datos e intente predecir el índice. Para este método se usaron las técnicas regresión por vectores de soporte y regresión por bosques aleatorios. Los resultados indican que en clasificación se puede obtener una exactitud de hasta 73%, y en regresión se puede obtener un coeficiente de correlación de hasta 0.51 con un error medio absoluto de 10.98. En este trabajo se encontró los mejores parámetros para las diferentes técnicas de evaluación y se realizaron comparaciones entre las diferentes técnicas y métodos.spa
dc.format.extent44spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia*
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.titleEvaluación de la severidad motora de pacientes con parkinson por medio de sensores de profundidadspa
dc.typeinfo:eu-repo/semantics/bachelorThesisspa
dc.publisher.groupGrupo de Investigación en Telecomunicaciones Aplicadas (GITA)spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
thesis.degree.nameIngeniero Electrónicospa
thesis.degree.levelPregradospa
thesis.degree.disciplineFacultad de Ingeniería. Carrera de Ingeniería Electrónicaspa
thesis.degree.grantorUniversidad de Antioquiaspa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.publisher.placeMedellín, Colombiaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa
dc.subject.decsActividad Motora-
dc.subject.decsMotor Activity-
dc.subject.decsEnfermedad de Parkinson-
dc.subject.decsParkinson Disease-
dc.subject.decsTalón-
dc.subject.decsHeel-
dc.subject.unescoAlgoritmo-
dc.subject.unescoAlgorithms-
dc.subject.unescoGrabación sonora-
dc.subject.unescoSound recordings-
dc.subject.agrovocSensores-
dc.subject.agrovocSensors-
dc.subject.proposalAprendizaje de Máquinaspa
dc.subject.proposalVisión artificialspa
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_28279-
dc.subject.unescourihttp://vocabularies.unesco.org/thesaurus/concept2024-
dc.subject.unescourihttp://vocabularies.unesco.org/thesaurus/concept9812-
Aparece en las colecciones: Ingeniería Electrónica

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
MorenoSantiago_2021_SeveridadMotoraPacientes.pdfTrabajo de grado de pregrado1.64 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons