Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/22088
Título : | Nutrients (N and P) recovery from thickening and dewatering sludge centrates of a wastewater treatment plant |
Autor : | González Morales, Carolina |
metadata.dc.contributor.advisor: | Molina Pérez, Francisco José Fernández García, Belén Camargo Valero, Miller Alonso Peláez Jaramillo, Carlos Alberto |
metadata.dc.subject.*: | Water treatment Tratamiento del agua Resources development Aprovechamiento de recursos Pollution control Lucha contra la contaminación Sanitation Saneamiento Natural sciences Sciences naturelles Centrate Nutrients recovery Recuperación de nutrientes Struvite crystallization Sustainable development Wastewater treatment plant http://vocabularies.unesco.org/thesaurus/concept8425 http://vocabularies.unesco.org/thesaurus/concept200 http://vocabularies.unesco.org/thesaurus/concept4100 http://vocabularies.unesco.org/thesaurus/concept3180 http://vocabularies.unesco.org/thesaurus/concept233 |
Fecha de publicación : | 2021 |
Resumen : | ABSTRACT: Wastewater treatment plants (WWTPs) have been conceived as a method to remove polluting compounds from water, especially organic matter. However, a recent change of paradigm conceives wastewater as a valuable resource to recover energy and nutrients, mainly nitrogen (N) and phosphorus (P), which is a finite natural substance from phosphate rock that is predicted to be in short supply within the next 100 to 150 years. Both N and P are critical nutrients for crop growth and agronomic productivity. Still, their uncontrolled discharge into water bodies causes environmental deterioration due to eutrophication, so their recovery from wastewater will reduce the level of eutrophication and the risk of a food security emergency in the future. Although there are different physical, chemical and biological techniques for the removal and recovery of nutrients from wastewater, struvite crystallisation is one of the most investigated worldwide, because it allows the joint recovery of N and P as effective fertilisers with low accumulation of heavy metals. However, research in this field has been scarce in Latin America, possibly due to the low number of existing WWTP. Therefore, it is necessary to conduct further research in nutrient recovery strategies as an opportunity to increase the level of sanitation in the region. In this regard, this doctoral research evaluated the possibility of recovering nutrients in the form of struvite from the sludge dewatering and thickening supernatants (centrates) of a WWTP located in the south of the Aburrá valley, close to Medellin (Colombia) that treats domestic and industrial wastewater. The thesis is divided into seven chapters, which are described below: Chapter 1 provides an overview of the context in which the thesis was developed. The chapter discusses the importance of recovering nutrients within a circular economy, the associated legislation, presents the main techniques used for the removal and recovery of nutrients from wastewater and explains the main characteristics of the mineral struvite. The research question, hypotheses and objectives are also posed. Chapters 2 to 6, presented in the form of articles, address the following aspects: Chapter 2 presents the mass balance of N and P developed in the San Fernando WWTP. The mass balance was conducted over seven composite samplings (lasting 7 hours with a frequency of 1.5 h) to address different climatic conditions. The objective of this chapter was to evaluate the behaviour of the nutrients in the different 15 identified flows of the WWTP to establish their possible recovery. In addition, the characteristics of the centrate from the San Fernando WWTP were compared with those of other two WWTPs that use chemical precipitation for the removal of P. Chapter 3. evaluates the effect of stirring speed on the quantity, size and quality of the struvite precipitates obtained. For this, 6 agitation speeds were evaluated using the sludge dewatering centrate of the La Llagosta WWTP (Catalonia-Spain). Chapter 4 examines the effect of pH and temperature on struvite formation; for these experiments, the optimal velocity gradient obtained in chapter 3 and the centrate of the Esholt WWTP (Bradford-England) was used. Chapter 5 assesses the effect of 3 variables (initial concentration of phosphorus, aeration and seed material) on reactor efficiency and the quantity and quality of the precipitated product, based on experiments developed in two types of designed reactors: the 5L full-mix reactor (CSTR) and the 6.5L fluidised bed reactor (FBR). For this evaluation, the actual sludge dewatering centrate of the San Fernando WWTP (Colombia) was used with a 3x22 factorial design.
Chapter 6 evaluates the quality of the struvite obtained in chapter 5 as a fertiliser, considering the Colombian and European regulations. The evaluation considered two struvite samples (one for each reactor), and a one-factor design, using the biomass produced and the amounts of N and P in this biomass as the response variables. The fertilisers evaluated in the selected crop (Pasto Brachiaria Brizantha Marandú) were the struvite obtained from the two reactors, biosolids from the same San Fernando WWTP and two fertilisers used commercially (Urea and Triple 15). A leaching test was also included in this chapter. Chapter 7 presents the general conclusions and recommendations of this research. Finally, the ANNEXES section introduces the general materials and methods used in the research, starting with the analytical methods at the laboratory level, the main calculations used in the different chapters of this thesis, following with the design of the reactors, the preliminary design tests, the equations used for the design of continuous stirred tank reactor (CSTR) and a fluidised bed reactor (FBR) and the residence times distribution tests (RTD) for the hydraulic evaluation of the reactors designed. Finally, annex 4 presents additional information of chapter 5. RESUMEN: Las plantas de tratamiento de aguas residuales (PTARs) han sido concebidas como un método para eliminar los compuestos contaminantes del agua, especialmente la materia orgánica. Sin embargo, un cambio reciente de paradigma concibe las aguas residuales como un recurso valioso para recuperar energía y nutrientes, principalmente nitrógeno (N) y fósforo (P). Aunque el nitrógeno (N) está ampliamente disponible en la atmósfera, el P es considerado una sustancia natural finita de la roca fosfórica que se prevé escaseará en los próximos 100 a 150 años. Tanto el N como el P son nutrientes fundamentales para el crecimiento de los cultivos y la productividad agronómica. Aun así, su vertido incontrolado en cuerpos de agua provoca un deterioro ambiental debido a la eutrofización, por lo que su recuperación de las aguas residuales reducirá el nivel de eutrofización y el riesgo de una futura emergencia de seguridad alimentaria. Aunque existen diferentes técnicas físicas, químicas y biológicas para la remoción y recuperación de nutrientes de las aguas residuales, la cristalización de estruvita es una de las más ampliamente investigadas a nivel mundial, ya que permite la recuperación conjunta de N y P, presenta baja acumulación de metales pesados y ha demostrado ser efectiva como fertilizante. Sin embargo, la investigación en este campo ha sido escasa en América Latina, posiblemente debido al bajo número de PTARs existentes. Por lo tanto, es necesario realizar más investigaciones en estrategias de recuperación de nutrientes como una oportunidad para aumentar el nivel de saneamiento en la región. En este sentido, esta investigación doctoral evaluó la posibilidad de recuperar nutrientes en forma de estruvita de los sobrenadantes de deshidratación y espesamiento de lodos (centrados) de una PTAR ubicada en el sur del valle de Aburrá, cerca de Medellín (Colombia) que trata aguas residuales domésticas e industriales. La tesis se divide en siete capítulos, que se describen a continuación: El Capítulo 1 aporta una descripción general del contexto en el que se desarrolló la tesis. El capítulo analiza la importancia de la recuperación de nutrientes dentro de una economía circular, la legislación asociada, presenta las principales técnicas utilizadas para la eliminación y recuperación de nutrientes de las aguas residuales y explica las principales características del mineral estruvita. También se plantea la pregunta de investigación, hipótesis y objetivos. Los capítulos 2 a 6, presentados en forma de artículos, abordan los siguientes aspectos: El Capítulo 2 presenta el balance de masa de N y P desarrollado en la PTAR San Fernando. El balance de masa se realizó en siete muestreos compuestos (que duraron 7 horas con una frecuencia de 1,5 h) para abordar diferentes condiciones climáticas. El objetivo de este capítulo fue evaluar el comportamiento de los nutrientes en los diferentes 15 caudales identificados de la PTAR para establecer su posible recuperación. Adicionalmente se compararon las características de los centrados de la PTAR San Fernando con los centrados de otras dos PTAR que usan precipitación química para la remoción de P. El Capítulo 3. evalúa el efecto de la velocidad de agitación sobre la cantidad, tamaño y calidad de los precipitados de estruvita obtenidos. Para ello, se evaluaron 6 velocidades de agitación utilizando el centrado de deshidratación de lodos de la EDAR de La Llagosta (Cataluña-España). El Capítulo 4 examina el efecto del pH y la temperatura sobre la formación de estruvita; para estos experimentos se utilizó el gradiente de velocidad óptimo obtenido en el capítulo 3 y el centrado de la PTAR de Esholt (Bradford-Inglaterra). El Capítulo 5 evalúa el efecto de 3 variables (concentración inicial de fósforo, aireación y material de siembra) sobre la eficiencia del proceso y la cantidad y calidad del producto precipitado, basándose en experimentos desarrollados en dos tipos de reactores diseñados: el reactor de mezcla completa de 5L (CSTR) y el reactor de lecho fluidizado de 6,5 L (FBR). Para esta evaluación se utilizó el centrado de deshidratación de lodos real de la EDAR San Fernando (Colombia) con un diseño factorial 3x22. El Capítulo 6 evalúa la calidad como fertilizante de la estruvita obtenida en el capítulo 5, teniendo en cuenta la normativa colombiana y europea. La evaluación consideró dos muestras de estruvita (una para cada reactor), se realizó un diseño unifactorial, utilizando la biomasa producida y las cantidades de N y P en esta biomasa como variables de respuesta. Los fertilizantes evaluados en el cultivo seleccionado (Pasto Brachiaria Brizantha Marandú) fueron la estruvita obtenida de los dos reactores, biosólidos de la misma PTAR San Fernando y dos fertilizantes utilizados comercialmente (Urea y Triple 15). También se incluyó en este capítulo una prueba de lixiviación. El capítulo 7 presenta las conclusiones y recomendaciones generales de esta investigación. Finalmente, en el apartado ANEXOS se presentan los materiales y métodos generales utilizados en la investigación, comenzando por los métodos analíticos a nivel de laboratorio, los principales cálculos utilizados en los diferentes capítulos de esta tesis, siguiendo con el diseño de los reactores, las pruebas preliminares de diseño, las ecuaciones utilizadas para el diseño de un reactor de tanque agitado continuo (CSTR) y un reactor de lecho fluidizado (FBR) y los ensayos de distribución de tiempos de residencia (RTD) para la evaluación hidráulica de los reactores diseñados. Finalmente, el anexo 4 presenta información complementaria del capítulo 5. |
Aparece en las colecciones: | Doctorados de la Facultad de Ingeniería |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
GonzalezCarolina_2021_NutrientsRecoveryThickening.pdf | Tesis doctoral | 8.92 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons