Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/22104
Título : Weighted hypergeometric functions and fractional derivative
Autor : Restrepo Tangarife, Joel Esteban
Kılıçman, ‪Adem
Agarwal, Praveen
Altun, Omer
metadata.dc.subject.*: Hipergeométrico
Función generadora
Hipergeométrico ponderado
Polinomios de Srivastava
Fecha de publicación : 2017
Editorial : Springer Open
Citación : Restrepo, J., Kılıçman, A., Agarwal, P., et al. (2017) Funciones hipergeométricas ponderadas y derivada fraccionaria. Adv Differ Equ. 105, 1-11. https://doi.org/10.1186/s13662-017-1165-7
Resumen : ABSTRACT: We introduce some weighted hypergeometric functions and the suitable generalization of the aputo fractional derivation. For these hypergeometric functions, some linear and bilinear relations are obtained by means of the mentioned derivation operator. Then some of the considered hypergeometric functions are determined in terms of the generalized Mittag-Leffler function E (γj),(lj) (ρj),λ [z1, ... ,zr] (Mainardi in Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, 2010) and the generalized polynomials Sm n [x] (Srivastava in Indian J. Math. 14:1-6, 1972). The boundary behavior of some other class of weighted hypergeometric functions is described in terms of Frostman’s α-capacity. Finally, an application is given using our fractional operator in the problem of fractional calculus of variations.
metadata.dc.identifier.eissn: 1687-1847
ISSN : 1687-1839
metadata.dc.identifier.doi: 10.1186/s13662-017-1165-7
Aparece en las colecciones: Artículos de Revista en Ciencias Exactas y Naturales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RestrepoJoel_2017_WeightedHypergeometricFunctions.pdfArtículo de investigación1.34 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons