Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/23143
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorNunes, Abraham-
dc.contributor.authorDíaz Zuluaga, Ana María-
dc.contributor.authorLópez Jaramillo, Carlos Alberto-
dc.contributor.authorPineda Zapata, Julián Alberto-
dc.date.accessioned2021-10-11T22:24:47Z-
dc.date.available2021-10-11T22:24:47Z-
dc.date.issued2020-
dc.identifier.citationNunes, A., Schnack, H.G., Ching, C.R.K. et al. Using structural MRI to identify bipolar disorders – 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Group. Mol Psychiatry 25, 2130–2143 (2020). https://doi.org/10.1038/s41380-018-0228-9spa
dc.identifier.issn1359-4184-
dc.identifier.urihttp://hdl.handle.net/10495/23143-
dc.description.abstractABSTRACT: Bipolar disorders (BDs) are among the leading causes of morbidity and disability. Objective biological markers, such as those based on brain imaging, could aid in clinical management of BD. Machine learning (ML) brings neuroimaging analyses to individual subject level and may potentially allow for their diagnostic use. However, fair and optimal application of ML requires large, multi-site datasets. We applied ML (support vector machines) to MRI data (regional cortical thickness, surface area, subcortical volumes) from 853 BD and 2167 control participants from 13 cohorts in the ENIGMA consortium. We attempted to differentiate BD from control participants, investigated different data handling strategies and studied the neuroimaging/clinical features most important for classification. Individual site accuracies ranged from 45.23% to 81.07%. Aggregate subject-level analyses yielded the highest accuracy (65.23%, 95% CI = 63.47–67.00, ROC-AUC = 71.49%, 95% CI = 69.39–73.59), followed by leave-one-site-out cross-validation (accuracy = 58.67%, 95% CI = 56.70–60.63). Meta analysis of individual site accuracies did not provide above chance results. There was substantial agreement between the regions that contributed to identification of BD participants in the best performing site and in the aggregate dataset (Cohen’s Kappa = 0.83, 95% CI = 0.829–0.831). Treatment with anticonvulsants and age were associated with greater odds of correct classification. Although short of the 80% clinically relevant accuracy threshold, the results are promising and provide a fair and realistic estimate of classification performance, which can be achieved in a large, ecologically valid, multi-site sample of BD participants based on regional neurostructural measures. Furthermore, the significant classification in different samples was based on plausible and similar neuroanatomical features. Future multi-site studies should move towards sharing of raw/ voxelwise neuroimaging data.spa
dc.format.extent14spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSpringer Naturespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.titleUsing structural MRI to identify bipolar disorders – 13 site machine learning study in 3020 individuals from the ENIGMA Bipolar Disorders Working Groupspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupGrupo de Investigación en Psiquiatría GIPSIspa
dc.identifier.doi10.1038/s41380-018-0228-9-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn1476-5578-
oaire.citationtitleMolecular Psychiatryspa
oaire.citationstartpage2130spa
oaire.citationendpage2143spa
oaire.citationvolume25spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.publisher.placeLondres, Inglaterraspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.decsEspectroscopía de Resonancia Magnética-
dc.subject.decsMagnetic Resonance Spectroscopy-
dc.subject.decsTrastorno Bipolar-
dc.subject.decsBipolar Disorder-
dc.description.researchgroupidCOL0029147spa
dc.relation.ispartofjournalabbrevMol. Psychiatry.spa
Aparece en las colecciones: Artículos de Revista en Ciencias Médicas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
Abrahamnunes_2020_MRIBipolarDisorders.pdfArtículo de investigación2.97 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons