Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/25909
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGómez Puerta, José Alfredo-
dc.contributor.authorOrtiz Reyes, Blanca Lucía-
dc.contributor.authorUrrego Callejas, Tomás-
dc.contributor.authorVanegas García, Adriana Lucía-
dc.contributor.authorMuñoz Vahos, Carlos Horacio-
dc.contributor.authorRestrepo Escobar, Mauricio-
dc.contributor.authorRojas Zuleta, Wilmer-
dc.contributor.authorArteaga, Sofía-
dc.contributor.authorGonzalez Naranjo, Luis Alonso-
dc.contributor.authorRojas López, Mauricio-
dc.contributor.authorVásquez Duque, Gloria María-
dc.date.accessioned2022-02-09T14:52:38Z-
dc.date.available2022-02-09T14:52:38Z-
dc.date.issued2016-
dc.identifier.issn2326-5191-
dc.identifier.urihttp://hdl.handle.net/10495/25909-
dc.description.abstractABSTRACT: Background/Purpose: Systemic lupus erythematosus (SLE) is clinically heterogeneous disease, with a considerably variability of disease expression among patients. There have been several attempts to classify subsets or cluster of SLE patients according genes, clinical characteristics and autoantibodies. However, information about classification of SLE patients based on urinary biomarkers is scarce. We investigated whether subdivision of SLE is possible using a panel of urine biomarkers by principal component analysis (PCA). Methods: We included in 100 consecutive SLE patients (ACR criteria 1997) from a tertiary University Hospital. We measured urinary levels of 5 different biomarkers: monocyte chemoattractant protein 1 (MCP-1), neutrophil gelatinase-associated lipocalin (NGAL), TWEAK, Ceruloplasmin (CP), and Transferrin (TF) using a commercial ELISA kits (R&D system and Assaypro, USA). In addition, serum anti C1q antibodies were measured by ELISA (Inova, USA). SLE activity was measured with SLEDAI. The PCA was performed by Statgraphics Centurion XVI.I for Windows (Statgraphics Corp., Rockville, USA). The PCA allowed simultaneous analysis of the relationship between 5 different urine biomarkers, as well as different clinical features and anti C1q antibodies. Creatinine clearance was considered as anchor factor of the PCA. Results: 100 SLE patients were recruited (88% female) with median age of 33.6 ± 12.4 years and median disease duration of 11.5 ± 14.8 years. Hematologic disease (89%), arthritis (83%), cutaneous involvement (82%), and renal disease (66%) were among most common manifestations. Three components achieved an eigenvalue greater than 1.0. PCA revealed that the first 3 components accounted separately for a variability of 72%. According with those components we identified 3 subsets: Group A) patients with normal renal function and moderate disease activity, group B) patients with high disease activity and high levels of anti C1q, TF and CP and group C) patients with active lupus nephritis with high levels of 24 hours proteinuria, MCP-1, NGAL and TWEAK (Figure). Patients from Group B were older, had a shorter disease duration and higher SLEDAI scores than the other 2 groups. Conclusion: We identified 3 different subgroups of SLE patients by PCA approach using urine biomarkers and serum Anti C1q antibodies. Whether these subgroups represent a different clinical outcome or a worst prognosis requires further analysis.spa
dc.format.extent2spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherAmerican College of Rheumatologyspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleIdentification of Subsets of Systemic Lupus Erythematosus Patients By Principal Component Analysis and Urine Biomarkersspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupGrupo de Reumatología Universidad de Antioquia -GRUA-spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn2326-5205-
oaire.citationtitleArthritis and Rheumatologyspa
oaire.citationstartpage3774spa
oaire.citationendpage3776spa
oaire.citationvolume68spa
oaire.citationissueSuplemento 10spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.publisher.placeMalden, Estados Unidosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTCORTspa
dc.type.localArtículo de revistaspa
dc.subject.decsBiomarcadores-
dc.subject.decsBiomarkers-
dc.subject.decsLupus Eritematoso Cutáneo-
dc.subject.decsLupus Erythematosus, Cutaneous-
dc.subject.decsOrina-
dc.subject.decsUrine-
dc.description.researchgroupidCOL0010959spa
dc.relation.ispartofjournalabbrevArthritis Rheumatol.spa
Aparece en las colecciones: Artículos de Revista en Ciencias Médicas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
OrtizBlanca_2016_LupusErythematosusUrine.pdfArtículo de revista174.86 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons