Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/30719
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMontegranario Riascos, Hebert-
dc.contributor.authorLondoño Arboleda, Mauricio Alejandro-
dc.contributor.authorGiraldo Gómez, Joaquín Darío-
dc.contributor.authorRestrepo, R.L.-
dc.contributor.authorMora Ramos, Miguel Eduardo-
dc.contributor.authorDuque Echeverri, Carlos Alberto-
dc.date.accessioned2022-09-20T19:39:13Z-
dc.date.available2022-09-20T19:39:13Z-
dc.date.issued2016-
dc.identifier.citationMontegranario, H., Londoño, M.A., Giraldo-Gómez, J.D., Restrepo, R.L., Mora-Ramos, M.E., & Duque, C.A.. (2016). Solving Schrödinger equation by meshless methods. Revista mexicana de física E, 62(2), 96-107.spa
dc.identifier.issn0035-001X-
dc.identifier.urihttps://hdl.handle.net/10495/30719-
dc.description.abstractABSTRACT: In this paper we apply a numerical meshless scheme for solving one and two dimensional time independent Schrödinger equation by means of collocation method with Radial Basis Functions interpolants. In particular we approximate the solutions using multiquadrics. The method is tested with some of the well-known configurations of Schrödinger equation and compared with analytical solutions, showing a great accuracy and stability. We also provide some insight on how to use meshless algorithms for obtaining the eigenenergies and wavefunctions of one- and two-dimensional Schrodinger problems.spa
dc.format.extent12spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSociedad Mexicana de Física A.C.spa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleSolving Schrödinger equation by meshless methodsspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupGrupo de Tomografía e Inversiónspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn2683-2224-
oaire.citationtitleRevista Mexicana de Físicaspa
oaire.citationstartpage96spa
oaire.citationendpage107spa
oaire.citationvolume62spa
oaire.citationissue2spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.publisher.placeCiudad de México, Méxicospa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.decsPuntos Cuánticos-
dc.subject.decsQuantum Dots-
dc.subject.lembPozos cuánticos-
dc.subject.lembQuantum wells-
dc.subject.proposalMétodos sin mallaspa
dc.subject.proposalBajas dimensionesspa
dc.subject.proposalEcuación de Schrödingerspa
dc.description.researchgroupidCOL0154799spa
dc.relation.ispartofjournalabbrevRev. Mex. Fís.spa
Aparece en las colecciones: Artículos de Revista en Ciencias Exactas y Naturales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
MontegranarioH_2016_SolvingSchrodingerEquation.pdfArtículo de investigación3.68 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons