Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/31154
Título : | Climatological and Epidemiological Conditions Are Important Factors Related to the Abundance of blaKPC and Other Antibiotic Resistance Genes (ARGs) in Wastewater Treatment Plants and Their Effluents, in an Endemic Country |
Autor : | Rodríguez Tamayo, Erika Andrea Pino Rodríguez, Nancy Johanna Jiménez Quiceno, Judy Natalia |
metadata.dc.subject.*: | Antibacterianos Anti-Bacterial Agents Plantas de Tratamiento de Aguas Residuales Wastewater Treatment Plants Reacción en Cadena de la Polimerasa Polymerase Chain Reaction Farmacorresistencia Microbiana Drug Resistance, Microbial Genes Bacterianos Genes, Bacterial Aguas Residuales Waste Water Water Purification Water Purification |
Fecha de publicación : | 2021 |
Editorial : | Frontiers Media |
Citación : | Rodríguez EA, Pino NJ, Jiménez JN. Climatological and Epidemiological Conditions Are Important Factors Related to the Abundance of blaKPC and Other Antibiotic Resistance Genes (ARGs) in Wastewater Treatment Plants and Their Effluents, in an Endemic Country. Front Cell Infect Microbiol. 2021 Aug 13;11:686472. doi: 10.3389/fcimb.2021.686472. |
Resumen : | ABSTRACT : Several physicochemical and season factors have been related to the abundance of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs), considered hotspots of bacterial resistance. However, few studies on the subject have been carried out in tropical countries endemic for resistance mechanisms such as blaKPC. In this study, the occurrence of ARGs, particularly blaKPC, was determined throughout a WWTP, and the factors related to their abundance were explored. In 2017, wastewater samples were taken from a WWTP in Colombia every 15 days for 6 months, and a total of 44 samples were analyzed by quantitative real-time PCR. sul1, sul2, blaKPC, and ermB were found to be the most prevalent ARGs. A low average reduction of the absolute abundance ARGs in effluent with respect to influent was observed, as well as a greater absolute abundance of ARGs in the WWTP effluent in the rainy season. Factors such as temperature, pH, oxygen, total organic carbon (TOC), chemical oxygen demand (COD), and precipitation were significantly correlated with the absolute abundance of several of the ARGs evaluated. A generalized linear mixed-effects model analysis showed that dissolved oxygen and precipitation in the sampling day were important factors related to the absolute concentration of blaKPC over time. In conclusion, the abundance of ARGs in the WWTP could be influenced by endemic conditions and physicochemical and climatological parameters. Therefore, it is necessary to continuously monitor clinical relevant genes in WWTPs from different global regions, even more so in low-income countries where sewage treatment is limited. |
ISSN : | 2235-2988 |
metadata.dc.identifier.doi: | 10.3389/fcimb.2021.686472 |
Aparece en las colecciones: | Artículos de Revista en Microbiología |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
RodriguezErika_2021_ClimatologicalEpidemiologicalConditions.pdf | Artículo de investigación | 1.27 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons