Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/34443
Título : Spet Algorithm: Stop and Proximity Episodes in Trajectories
Autor : Moreno Arboleda, Francisco Javier
Castaño, Anderson
de Cos Juez, Francisco Javier
metadata.dc.subject.*: Movimiento
Movement
Integrales de trayectoria
Integrals, path
Proximidad
Proximity
Fecha de publicación : 2015
Editorial : Natural Sciences Publishing
Resumen : ABSTRACT: In this paper, we propose the SPET (Stop and Proximity Episodes in Trajectories) algorithm to identify stop and proximity episodes in trajectories. A trajectory is the record of the evolution of the position of an object that is moving in space during a given time interval in order to achieve a goal. A stop is an episode of a trajectory during which the object remained continuously inside a point of interest (POI) a minimum time (specified by the business analysts) and a proximity is an episode of a trajectory during which the object remained continuously near a POI a minimum time. These episodes may help to understand the behavior of moving objects in several domains. For example, proximities episodes can help in advertising, where agents can identify appropriate spots in order to try to increase the visibility of certains POIs. In order to prove the feasibility and expediency of our proposal, we conduct a series of experiments with real vehicle trajectories, in neighborhoods (the POIs) of Rio de Janeiro. Our results reveal information that can be useful for traffic analysis about the density of visits and proximities of vehicles to these neighborhoods.
metadata.dc.identifier.eissn: 2325-0399
ISSN : 1935-0090
metadata.dc.identifier.doi: 10.12785/amis/090202
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
MorenoFrancisco_2015_StopProximityEpisodes.pdfArtículo de investigación632.93 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons