Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/35246
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorGuerra Soler, Aníbal José-
dc.contributor.authorLotero García, Jaime Andrés-
dc.contributor.authorAedo Cobo, José Édinson-
dc.contributor.authorIsaza Ramírez, Sebastián-
dc.date.accessioned2023-06-01T18:27:29Z-
dc.date.available2023-06-01T18:27:29Z-
dc.date.issued2019-
dc.identifier.citationGuerra A, Lotero J, Aedo JÉ, Isaza S. Tackling the Challenges of FASTQ Referential Compression. Bioinform Biol Insights. 2019 Feb 14;13:1177932218821373. doi: 10.1177/1177932218821373. Erratum in: Bioinform Biol Insights. 2019 Sep 17;13:1177932219876803.spa
dc.identifier.issn1177-9322-
dc.identifier.urihttps://hdl.handle.net/10495/35246-
dc.description.abstractABSTRACT:The exponential growth of genomic data has recently motivated the development of compression algorithms to tackle the storage capacity limitations in bioinformatics centers. Referential compressors could theoretically achieve a much higher compression than their nonreferential counterparts; however, the latest tools have not been able to harness such potential yet. To reach such goal, an efficient encoding model to represent the differences between the input and the reference is needed. In this article, we introduce a novel approach for referential compression of FASTQ files. The core of our compression scheme consists of a referential compressor based on the combination of local alignments with binary encoding optimized for long reads. Here we present the algorithms and performance tests developed for our reads compression algorithm, named UdeACompress. Our compressor achieved the best results when compressing long reads and competitive compression ratios for shorter reads when compared to the best programs in the state of the art. As an added value, it also showed reasonable execution times and memory consumption, in comparison with similar tools.spa
dc.format.extent19spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSAGE Publicationsspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/2.5/co/*
dc.titleTackling the Challenges of FASTQ Referential Compressionspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupSistemas Embebidos e Inteligencia Computacional (SISTEMIC)spa
dc.identifier.doi10.1177/1177932218821373-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.citationtitleBioinformatics and Biology Insightsspa
oaire.citationstartpage1spa
oaire.citationendpage19spa
oaire.citationvolume13spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.publisher.placeThousand Oaks, Estados Unidosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.lembBioinformática-
dc.subject.lembBioinformatics-
dc.subject.lembCompresión de datos (computadores)-
dc.subject.lembData compression (computer science)-
dc.subject.lembTeoría de la codificación-
dc.subject.lembCoding theory-
dc.description.researchgroupidCOL0010717spa
dc.relation.ispartofjournalabbrevBioinform. Biol. Insights.spa
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
GuerraAnibal_2019_TacklingChallenges.pdfArtículo de investigación2.15 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons