Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/35518
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorBotia Valderrama, Javier Fernando-
dc.contributor.authorAguiar Valencia, Daniela-
dc.date.accessioned2023-06-15T15:33:56Z-
dc.date.available2023-06-15T15:33:56Z-
dc.date.issued2023-
dc.identifier.urihttps://hdl.handle.net/10495/35518-
dc.description.abstractRESUMEN : El presente trabajo tiene como finalidad poder realizar un análisis de sentimientos en tweets en español. En una primera instancia se ha de tener en cuenta un tratamiento de los datos que involucran una normalización del lenguaje donde se eliminaran palabras vac´ıas (stopwords), emojis, menciones entre otros. Después de estos se evaluaran diferentes métricas de desempe˜no de clasificación en cada uno de los modelos planteados, teniendo en cuenta diferentes formas de vectorización de los conjuntos de datos y tambi´en diferentes distribuciones de los mismos, esto con el fin de comparar primero la eficacia de cada modelo y adem´as si influye o no la porci´on de datos que se utilice para entrenar y testear y adem´as la forma de representar los mismos. Los mejores modelos que se encontraron fueron una regresión logística con una representaci´on de los datos dada por un embebimiento y un clasificador de stacking con una representaci´on de los datos dada por una vectorización Count Vectorizer.spa
dc.description.abstractABSTRACT : The purpose of this paper is to perform an analysis of sentiments in tweets in Spanish. In the first instance, a treatment of the data that involves a normalization of the language must be taken into account where stopword, emojis, mentions, among others, will be eliminated. After these, different classification performance metrics will be evaluated in each of the proposed models, taking into account different forms of vectorization of the data sets and also different distributions of the same, this in order to first compare the effectiveness of each model and also if it influences or not the portion of data that is used to train and test and also the way of representing them. The best models found were a logistic regression with a representation of the data given by an embedding and a stacking classifier with a representation of the data given by a Count Vectorizer.spa
dc.format.extent35spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.titleUso de arquitecturas de inteligencia artificial para la determinación y análisis de sentimientos en tweetsspa
dc.typeinfo:eu-repo/semantics/otherspa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
thesis.degree.nameEspecialista en Analítica y Ciencia de Datosspa
thesis.degree.levelEspecializaciónspa
thesis.degree.disciplineFacultad de Ingeniería. Especialización en Analítica y Ciencia de Datosspa
thesis.degree.grantorUniversidad de Antioquiaspa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.publisher.placeMedellín, Colombiaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_46ecspa
dc.type.redcolhttp://purl.org/redcol/resource_type/COtherspa
dc.type.localTesis/Trabajo de grado - Monografía - Especializaciónspa
dc.subject.decsAnálisis de sentimientos-
dc.subject.decsSentiment Analysis-
dc.subject.decsMinería de datos-
dc.subject.decsData Mining-
dc.subject.lembAnálisis de regresión logística-
dc.subject.proposalTweetsspa
dc.subject.proposalEmbeddingspa
Aparece en las colecciones: Especializaciones de la Facultad de Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
AguiarDaniela_2023_AnalisisSentimientosTweets.pdfTrabajo de grado de especialización2.31 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons