Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/37297
Título : | Using MODESTR to download, import and clean species distribution records |
Autor : | Pelayo Villamil, Patricia García Roselló, Emilio Guisande, Cástor Heine, Juergen Manjarrés Hernández, Ana González Vilas, Luis Vaamonde, Antonio González Dacosta, Jacinto Granado Lorencio, Carlos |
metadata.dc.subject.*: | Almacenamiento de información Information storage Calidad de los datos Data quality Data cleaning Geographic records http://aims.fao.org/aos/agrovoc/c_2fe8a00c |
Fecha de publicación : | 2014 |
Editorial : | Wiley British Ecological Society |
Citación : | Guerrero, M. J., Bedoya, C. L., López, J. D., Daza, J. M., & Isaza, C. (2023). Acoustic animal identification using unsupervised learning. Methods in Ecology and Evolution, 14(6), 1500–1514. https://doi.org/10.1111/2041-210X.14103 |
Resumen : | ABSTRACT: 1. Data quality is one of the highest priorities for species distribution data warehouses, as well as one of the main concerns of data users. There is the need, however, for computational procedures with the facility to automatically or semi-automatically identify and correct errors and to seamlessly integrate expert knowledge and automated processes. 2. New version MODESTR 2.0 (http://www.ipez.es/ModestR) makes it easy to download occurrence records from the Global Biodiversity Information Facility (GBIF), to import shape files with species range maps such as those available at the website of the International Union for Conservation of Nature (IUCN), to import KML files, to import CSV files with records of the users, to import ESRI ASCII grid probability files generated by distribution modelling software and show the resulting records on a map. 3. MODESTR supports five different methods for cleaning the data: (i) data filtering when downloading records from GBIF, (ii) habitat data filtering, (iii) taxonomic disambiguation filtering, (iv) automatic spatial dispersion and environmental layer filters and (v) custom data filtering. |
metadata.dc.identifier.eissn: | 2041-210X |
metadata.dc.identifier.doi: | 10.1111/2041-210X.12209 |
Aparece en las colecciones: | Artículos de Revista en Ciencias Exactas y Naturales |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
PelayoPatricia_2014_UsingModestr.pdf | Artículo de investigación | 1.02 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons