Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/37406
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorPineda Alarcón, Ludy Yanith-
dc.contributor.authorZuluaga Montoya, Maycol Esteban-
dc.contributor.authorRuíz González, Santiago-
dc.contributor.authorFernández Mc Cann, David Stephen-
dc.contributor.authorVélez Macías, Fabio de Jesús-
dc.contributor.authorAguirre Ramírez, Nestor Jaime-
dc.contributor.authorPuerta Quintana, Yarin Tatiana-
dc.contributor.authorCañón Barriga, Julio Eduardo-
dc.date.accessioned2023-11-25T01:23:41Z-
dc.date.available2023-11-25T01:23:41Z-
dc.date.issued2023-
dc.identifier.citationPineda-Alarcón, L., Zuluaga, M., Ruíz, S. et al. Automated software for counting and measuring Hyalella genus using artificial intelligence. Environ Sci Pollut Res (2023). https://doi.org/10.1007/s11356-023-30835-8spa
dc.identifier.issn0944-1344-
dc.identifier.urihttps://hdl.handle.net/10495/37406-
dc.description.abstractABSTRACT: Amphipods belonging to the Hyalella genus are macroinvertebrates that inhabit aquatic environments. They are of particular interest in areas such as limnology and ecotoxicology, where data on the number of Hyalella individuals and their allometric measurements are used to assess the environmental dynamics of aquatic ecosystems. In this study, we introduce HyACS, a software tool that uses a model developed with the YOLOv3's architecture to detect individuals, and digital image processing techniques to extract morphological metrics of the Hyalella genus. The software detects body metrics of length, arc length, maximum width, eccentricity, perimeter, and area of Hyalella individuals, using basic imaging capture equipment. The performance metrics indicate that the model developed can achieve high prediction levels, with an accuracy above 90% for the correct identification of individuals. It can perform up to four times faster than traditional visual counting methods and provide precise morphological measurements of Hyalella individuals, which may improve further studies of the species populations and enhance their use as bioindicators of water quality.spa
dc.format.extent13spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSpringerspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rightsAtribución 2.5 Colombia*
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/co/*
dc.titleAutomated software for counting and measuring Hyalella genus using artificial intelligencespa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupGeoLimnaspa
dc.publisher.groupGEPAR-Grupo de Electrónica de Potencia, Automatización y Robóticaspa
dc.publisher.groupGrupo de Investigación en Gestión y Modelación Ambiental (GAIA)spa
dc.identifier.doi10.1007/s11356-023-30835-8-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn1614-7499-
oaire.citationtitleEnvironmental Science and Pollution Researchspa
oaire.citationstartpage1spa
oaire.citationendpage13spa
oaire.citationvolume30spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/spa
oaire.fundernameColombia. Ministerio de Ciencia, Tecnología e Innovaciónspa
dc.publisher.placeBerlín, Alemaniaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.decsAprendizaje Profundo-
dc.subject.decsDeep Learning-
dc.subject.decsProcesamiento de Imagen Asistido por Computador-
dc.subject.decsImage Processing, Computer-Assisted-
dc.subject.agrovocMacroinvertebrados-
dc.subject.agrovocMacroinvertebrates-
dc.subject.agrovocMorfología animal-
dc.subject.agrovocAnimal morphology-
dc.subject.agrovocAlometría-
dc.subject.agrovocAllometry-
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_10d271a5-
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_421-
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_24962-
dc.description.researchgroupidCOL0135041spa
dc.description.researchgroupidCOL0039045spa
dc.description.researchgroupidCOL0009832spa
oaire.awardnumberconvocatoria 733spa
dc.relation.ispartofjournalabbrevEnviron. Sci. Pollut. Res. Int.spa
oaire.funderidentifier.rorRoR:048jthh02-
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
PinedaLudy_2023_Automated_Software.pdfArtículo de investigación1.7 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons