Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/38443
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorSalazar Jiménez, Augusto Enrique-
dc.contributor.authorBotero Valencia, Juan Sebastián-
dc.contributor.authorMorantes Guzmán, Luis Javier-
dc.date.accessioned2024-03-03T16:35:50Z-
dc.date.available2024-03-03T16:35:50Z-
dc.date.issued2016-
dc.identifier.urihttps://hdl.handle.net/10495/38443-
dc.description.abstractABSTRACT: A thermopile is an electronic device that converts thermal energy into electrical energy by means of arrangements of thermocouples that are connected in series. In addition, optical filters restrict the wavelength that strikes the thermopile. One of the main advantages of using a thermopile is its sensitivity to infrared radiation, which allows implementing non-contact thermometers. However, the thermopile does not provide an absolute temperature value, but a value that is proportional to the temperature gradient between the local temperature in th e measurement range of the thermopile and its internal temperature. Therefore, it is necessary to integrate temperature sensors aiming to correct the output temperature value. In this sense, the output of the thermopile corresponds to a value generatedfrom the relationship between the internal temperature of the thermopile and the output temperature. This work proposes and evaluates a thermopile characterization model, which uses an incubation system and a thermoelectric cooling device to control the room temperature and the temperature that is read out using the thermopile, respectively. This is based on the automation of the data collection procedure and the characterization of the thermistor that is used to measure the temperature of the thermopile. The result is an experimental operating surface, from which a linearization model was derived.spa
dc.format.extent14 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSciendospa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.titleAn inverse linearization model for the characterization of non-contact thermopilesspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupSistemas Embebidos e Inteligencia Computacional (SISTEMIC)spa
dc.identifier.doi10.21307/ijssis-2017-888-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn1178-5608-
oaire.citationtitleInternational Journal on Smart Sensing and Intelligent Systemsspa
oaire.citationstartpage637spa
oaire.citationendpage650spa
oaire.citationvolume9spa
oaire.citationissue2spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.publisher.placeNueva Zelandaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.lembAparatos termoeléctricos-
dc.subject.lembThermoelectric apparatus and appliances-
dc.subject.proposalThermopilespa
dc.subject.proposalNon-contactspa
dc.subject.proposalThermistorspa
dc.subject.proposalPeltier effectspa
dc.description.researchgroupidCOL0010717spa
Aparece en las colecciones: Artículos de Revista en Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
SalazarAugusto_2016_AnInverseLinearizationModel.pdfArtículo de investigación1.31 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons