Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/39530
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorCarranza Saavedra, Darwin-
dc.contributor.authorSánchez Henao, Claudia Patricia-
dc.contributor.authorZapata Montoya, José Edgar-
dc.contributor.authorTorres Bacete, Jesús-
dc.contributor.authorBlázquez, Blas-
dc.contributor.authorNogales, Juan-
dc.date.accessioned2024-06-01T19:07:13Z-
dc.date.available2024-06-01T19:07:13Z-
dc.date.issued2023-
dc.identifier.citationCarranza-Saavedra D, Torres-Bacete J, Blázquez B, Sánchez Henao CP, Zapata Montoya JE and Nogales J (2023), System metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstock. Front. Bioeng. Biotechnol. 11:1176445. doi: 10.3389/fbioe.2023.1176445spa
dc.identifier.urihttps://hdl.handle.net/10495/39530-
dc.description.abstractABSTRACT: Replacing traditional substrates in industrial bioprocesses to advance the sustainable production of chemicals is an urgent need in the context of the circular economy. However, since the limited degradability of non-conventional carbon sources often returns lower yields, effective exploitation of such substrates requires a multi-layer optimization which includes not only the provision of a suitable feedstock but the use of highly robust and metabolically versatile microbial biocatalysts. We tackled this challenge by means of systems metabolic engineering and validated Escherichia coli W as a promising cell factory for the production of the key building block chemical 2-ketoisovalerate (2-KIV) using whey as carbon source, a widely available and low-cost agro-industrial waste. First, we assessed the growth performance of Escherichia coli W on mono and disaccharides and demonstrated that using whey as carbon source enhances it significantly. Second, we searched the available literature and used metabolic modeling approaches to scrutinize the metabolic space of E. coli and explore its potential for overproduction of 2-KIV identifying as basic strategies the block of pyruvate depletion and the modulation of NAD/NADP ratio. We then used our model predictions to construct a suitable microbial chassis capable of overproducing 2-KIV with minimal genetic perturbations, i.e., deleting the pyruvate dehydrogenase and malate dehydrogenase. Finally, we used modular cloning to construct a synthetic 2-KIV pathway that was not sensitive to negative feedback, which effectively resulted in a rerouting of pyruvate towards 2-KIV. The resulting strain shows titers of up to 3.22 ± 0.07 g/L of 2-KIV and 1.40 ± 0.04 g/L of L-valine in 24 h using whey in batch cultures. Additionally, we obtained yields of up to 0.81 g 2-KIV/g substrate. The optimal microbial chassis we present here has minimal genetic modifications and is free of nutritional autotrophies to deliver high 2-KIV production rates using whey as a non-conventional substrate.spa
dc.format.extent14 páginasspa
dc.format.mimetypeapplication/pdf - application/epubspa
dc.language.isoengspa
dc.publisherFrontiers Mediaspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/co/*
dc.titleSystem metabolic engineering of Escherichia coli W for the production of 2-ketoisovalerate using unconventional feedstockspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupGrupo de Nutrición y Tecnología de Alimentosspa
dc.identifier.doi10.3389/fbioe.2023.1176445-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn2296-4185-
oaire.citationtitleFrontiers in Bioengineering and Biotechnologyspa
oaire.citationstartpage1spa
oaire.citationendpage14spa
oaire.citationvolume1spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/spa
dc.publisher.placeLausana, Suizaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.decsValina-
dc.subject.decsValine-
dc.subject.decsBiotecnología-
dc.subject.decsBiotechnology-
dc.subject.lembTecnología farmacéutica-
dc.subject.lembPharmaceutical technology-
dc.subject.lembMicroorganismos-
dc.subject.lembMicro-organisms-
dc.subject.agrovocBioeconomía-
dc.subject.agrovocBioeconomy-
dc.subject.agrovocSubproductos de la leche-
dc.subject.agrovocMilk by-products-
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_bcba0163-
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_4827-
dc.description.researchgroupidCOL0010771spa
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D014633-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D001709-
dc.relation.ispartofjournalabbrevFront. Bioeng. Biotechnol.spa
Aparece en las colecciones: Artículos de Revista en Farmacéutica y Alimentarias

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
ZapataJosé_2023_System_Metabolic_Engineering_Escherichia.epubArtículo de investigación1.94 MBEPUBVisualizar/Abrir
ZapataJosé_2023_System_Metabolic_Engineering_Escherichia.pdfArtículo de investigación3.07 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons