Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/39951
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorMejía Velásquez, Marcia-
dc.contributor.authorTavera Gallego, Fabby Maritza-
dc.contributor.authorMurillo González, Alejandro-
dc.contributor.authorGonzález González, David-
dc.contributor.authorJaramillo Duque, Laura-
dc.contributor.authorGaleano Ruiz, Carlos Andrés-
dc.contributor.authorHernández Arango, Alejandro-
dc.contributor.authorRestrepo Rivera, David-
dc.contributor.authorPaniagua Castrillón, Juan Guillermo-
dc.contributor.authorAriza Jiménez, Leandro-
dc.contributor.authorGarcés Echeverri, José Julián-
dc.contributor.authorDiaz León, Christian Andrés-
dc.contributor.authorSerna Higuita, Diana Lucia-
dc.contributor.authorBarrios Bustamante, Wayner-
dc.contributor.authorArrázola Lara, Wiston-
dc.contributor.authorMejía Mejía, Miguel Angel-
dc.contributor.authorMarín Ramírez, Daniela-
dc.contributor.authorArango Mejía, Sebastián-
dc.contributor.authorSalinas Miranda, Emmanuel-
dc.contributor.authorQuintero Montoya, Olga Lucía-
dc.date.accessioned2024-06-12T16:31:33Z-
dc.date.available2024-06-12T16:31:33Z-
dc.date.issued2022-
dc.identifier.urihttps://hdl.handle.net/10495/39951-
dc.description.abstractABSTRACT: Purpose: Determination and development of an effective set of models leveraging Artificial Intelligence techniques to generate a system able to support clinical practitioners working with COVID-19 patients. It involves a pipeline including classification, lung and lesion segmentation, as well as lesion quantification of axial lung CT studies. Approach: A deep neural network architecture based on DenseNet is introduced for the classification of weakly-labeled, variable-sized (and possibly sparse) axial lung CT scans. The models are trained and tested on aggregated, publicly available data sets with over 10 categories. To further assess the models, a data set was collected from multiple medical institutions in Colombia, which includes healthy, COVID-19 and patients with other diseases. It is composed of 1,322 CT studies from a diverse set of CT machines and institutions that make over 550,000 slices. Each CT study was labeled based on a clinical test, and no per-slice annotation took place. This enabled a classification into Normal vs. Abnormal patients, and for those that were considered abnormal, an extra classification step into Abnormal (other diseases) vs. COVID-19. Additionally, the pipeline features a methodology to segment and quantify lesions of COVID-19 patients on the complete CT study, enabling easier localization and progress tracking. Moreover, multiple ablation studies were performed to appropriately assess the elements composing the classification pipeline. Results: The best performing lung CT study classification models achieved 0.83 accuracy, 0.79 sensitivity, 0.87 specificity, 0.82 F1 score and 0.85 precision for the Normal vs. Abnormal task. For the Abnormal vs COVID-19 task, the model obtained 0.86 accuracy, 0.81 sensitivity, 0.91 specificity, 0.84 F1 score and 0.88 precision. The ablation studies showed that using the complete CT study in the pipeline resulted in greater classification performance, restating that relevant COVID-19 patterns cannot be ignored towards the top and bottom of the lung volume. Discussion: The lung CT classification architecture introduced has shown that it can handle weakly-labeled, variable-sized and possibly sparse axial lung studies, reducing the need for expert annotations at a per-slice level. Conclusions: This work presents a working methodology that can guide the development of decision support systems for clinical reasoning in future interventionist or prospective studies.spa
dc.format.extent12 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rightsAtribución-NoComercial-CompartirIgual 2.5 Colombia (CC BY-NC-SA 2.5 CO)*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.titleMedical decision support system using weakly-labeled lung CT scansspa
dc.title.alternativeSistema de apoyo a la toma de decisiones médicas utilizando tomografías de pulmón débilmente etiquetadasspa
dc.typeinfo:eu-repo/semantics/otherspa
dc.identifier.doi10.3389/fmedt.2022.980735-
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
thesis.degree.nameEspecialista en Radiologíaspa
thesis.degree.levelEspecializaciónspa
thesis.degree.disciplineFacultad de Medicina. Especialización en Radiologíaspa
thesis.degree.grantorUniversidad de Antioquiaspa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.publisher.placeMedellín, Colombiaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_46ecspa
dc.type.redcolhttp://purl.org/redcol/resource_type/COtherspa
dc.type.localTesis/Trabajo de grado - Monografía - Especializaciónspa
dc.subject.decsLung-
dc.subject.decsPulmón-
dc.subject.decsLung diseases-
dc.subject.decsEnfermedades pulmonares-
dc.subject.decsCOVID-19-
dc.subject.decsTomography-
dc.subject.decsTomografía-
dc.subject.decsMachine learning-
dc.subject.decsAprendizaje automático-
dc.subject.decsSupervised machine learning-
dc.subject.decsAprendizaje automático supervisado-
dc.subject.decsDecision making-
dc.subject.decsToma de decisiones-
dc.subject.proposalWeak-labelsspa
dc.subject.proposalImage segmentationspa
dc.identifier.urlhttps://www.frontiersin.org/articles/10.3389/fmedt.2022.980735/fullspa
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D008168-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D008171-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D000086382-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D014054-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D000069550-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D000069553-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D003657-
Aparece en las colecciones: Especializaciones de la Facultad de Medicina

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
MejiaMarcia_2022_MedicalDecisionSupport.pdf
  Until 2025-06-12
Trabajo de grado de especialización550.59 kBAdobe PDFVisualizar/Abrir  Request a copy


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons