Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/41797
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBedoya Acevedo, Carol-
dc.contributor.authorIsaza Narváez, Claudia Victoria-
dc.contributor.authorDaza Rojas, Juan Manuel-
dc.contributor.authorLópez Hincapié, José David-
dc.date.accessioned2024-09-05T04:40:33Z-
dc.date.available2024-09-05T04:40:33Z-
dc.date.issued2014-
dc.identifier.issn1574-9541-
dc.identifier.urihttps://hdl.handle.net/10495/41797-
dc.description.abstractABSTRACT: Monitoring of biological populations is well known for being a complex task that involves high operational costs, unknown reproductive intervals of the studied species, and difficult visualization of isolated individuals (due to their mimetic and cryptic capabilities). Therefore, the development of new methodologies able to measure quantities of individuals in specific biological populations without direct contact is desired. Species and individual recognition, based on acoustic analysis of their calls (Bioacoustics), is possible for many animals and has proven to be a useful tool in the study and monitoring of animal species. In this paper, an unsupervised methodology for anuran automatic identification is proposed; it is based on the use of a fuzzy classifier and Mel Frequency Cepstral Coefficients. This methodology is able to detect species not presented in the training stage, although they belong to different populations. Additionally, correlations among species of the same genus can be determined through the similarities of their calls. For testing the proposed method, two different datasets with species from the northeastern Colombia (Chocó and Antioquia departments with 103 and 813 mating calls respectively) were used. In validation tests performed, accuracies between 99.38% and 100% were achieved in all species by applying the proposed methodology to both datasets. Thirteen different species of anurans in both datasets were correctly identified.spa
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherElsevierspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/co/*
dc.subject.lcshBioacústica-
dc.subject.lcshBioacoustics-
dc.titleAutomatic recognition of anuran species based on syllable identificationspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupGrupo Herpetológico de Antioquiaspa
dc.identifier.doi10.1016/j.ecoinf.2014.08.009-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn1878-0512-
oaire.citationtitleEcological Informaticsspa
oaire.citationstartpage200spa
oaire.citationendpage209spa
oaire.citationvolume24spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
oaire.fundernameUniversidad de Antioquia. Vicerrectoría de investigación. Comité para el Desarrollo de la Investigación - CODIspa
dc.publisher.placeÁmsterdam, Países Bajosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.agrovocAnfibio-
dc.subject.agrovocAmphibians-
dc.subject.agrovocPoblación biológica-
dc.subject.agrovocBiological stocks-
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_359-
dc.subject.agrovocurihttp://aims.fao.org/aos/agrovoc/c_601eeee0-
dc.subject.lcshurihttp://id.loc.gov/authorities/subjects/sh85014119-
oaire.awardtitleDetección Automática de Cantos de Ranas a partir de sus Llamados de Advertenciaspa
dc.description.researchgroupidCOL0007373spa
oaire.awardnumberCODI PRG13-2-02spa
oaire.awardnumberEstrategia de sostenibilidad 2014-2015spa
dc.relation.ispartofjournalabbrevEcol. Inform.spa
oaire.funderidentifier.rorRoR:03bp5hc83-
Aparece en las colecciones: Artículos de Revista en Ciencias Exactas y Naturales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
BedoyaCarol_2014_AutomaticRecognitionAnuranSpecies.pdfArtículo de investigación1.77 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons