Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/41865
Título : Induction of biofilm in extended-spectrum beta-lactamase Staphylococcus aureus with drugs commonly used in pharmacotherapy
Autor : Carmona Orozco, María Lorena
Echeverri López, Luis Fernando
metadata.dc.subject.*: Staphylococcus aureus
Biopelículas
Biofilm
Riesgo a la Salud
Health Risk
Farmacorresistencia Bacteriana
Drug Resistance, Bacterial
Resistencia betalactámica
beta-Lactam Resistance
https://id.nlm.nih.gov/mesh/D013211
https://id.nlm.nih.gov/mesh/D018441
https://id.nlm.nih.gov/mesh/D024881
https://id.nlm.nih.gov/mesh/D018440
Fecha de publicación : 2024
Editorial : Elsevier
Citación : Carmona-Orozco, M. L., & Echeverri, F. (2024). Induction of biofilm in extended-spectrum beta-lactamase Staphylococcus aureus with drugs commonly used in pharmacotherapy. Microbial Pathogenesis, 195(July), 106863. https://doi.org/10.1016/j.micpath.2024.106863
Resumen : ABTRACT: Staphylococcus aureus is a bacterial pathogen that causes bloodstream infections, pneumonia, and skin abscesses and is the primary pathogen responsible for medical devices associated with biofilm infections, accounting for approximately 70 % of cases. Therefore, the World Health Organization (WHO) has designated this microorganism as a top priority due to its role in causing over 20,000 bacteremia-related deaths in the US each year. The issue of pathogen resistance to antibiotics, mainly by a biofilm, further complicates these infections since biofilms render the bacterial colony impervious to antibiotics. However, many natural and synthetic substances also induce bacterial biofilm formation. Therefore, we investigated whether the most common active pharmaceutical ingredients (APIs) could induce biofilm formation in two clinical isolates of extended-spectrum beta-lactamase Staphylococcus aureus, one of them also methicillin-resistant (A2M) and two medical devices. We detected biofilm inducers, inhibitors, and destabilizers. Microbial strain, medical devices, API structure, and concentration influenced the modulatory effects of biofilm. In all devices tested, including microplates, FR18 duodenal probe, and respiratory probe, the clinic isolate methicillin-resistant S. aureus A2M exhibited lower susceptibility to biofilm formation than S. aureus A1. The anti-inflammatory acetaminophen, the hypo- cholesterolemic lovastatin, and the diuretic hydrochlorothiazide all induced biofilm. However, verapamil, an antihypertensive, and cetirizine, an antihistamine, inhibited biofilm on S. aureus A2M, while propranolol, another antihypertensive, inhibited biofilm on S. aureus A1. Additionally, diclofenac, an analgesic, and cetirizine destabilized the biofilm, resulting in more free bacteria and possibly making them more susceptible to external agents such as antibiotics. Nonetheless, further epidemiologic analyses and in vivo assays are needed to confirm these findings and to establish a correlation between drug use, the onset of bacterial infections in patients, and the use of medical devices. This work provides information about the probable clinical implications of drugs in patients using medical devices or undergoing surgical procedures. Inhibitory APIs could also be used as drug repurposing or templates to design new, more potent biofilm inhibitors.
metadata.dc.identifier.eissn: 1096-1208
ISSN : 0882-4010
metadata.dc.identifier.doi: 10.1016/j.micpath.2024.106863
Aparece en las colecciones: Artículos de Revista en Ciencias Exactas y Naturales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
CarmonaMaria_2024_InductionBiofilmExtendedSpectrum.pdfArtículo de investigación9.71 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons