Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/42028
Título : | A systematic evaluation of Mycobacterium tuberculosis Genome-Scale Metabolic Networks |
Autor : | Baena García, Andrés López Agudelo, Víctor Alonso Barrera Robledo, Luis Fernando Ríos Estepa, Rigoberto Wu, HuiHai Laing, Emma Beste, Dany Mendum, Tom |
metadata.dc.subject.*: | Teorema de Bayes Bayes Theorem Biomasa Biomass Carbono Carbon Colesterol Cholesterol Medios de Cultivo Culture Media Reacciones Falso Positivas False Positive Reactions Mycobacterium tuberculosis Fenotipo Phenotype Valor Predictivo de las Pruebas Predictive Value of Tests Redes y Vías Metabólicas Metabolic Networks and Pathways Glicerol Glycerol Genoma Bacteriano Genome, Bacterial Biología de Sistemas Systems Biology https://id.nlm.nih.gov/mesh/D001499 https://id.nlm.nih.gov/mesh/D018533 https://id.nlm.nih.gov/mesh/D002244 https://id.nlm.nih.gov/mesh/D002784 https://id.nlm.nih.gov/mesh/D003470 https://id.nlm.nih.gov/mesh/D005189 https://id.nlm.nih.gov/mesh/D009169 https://id.nlm.nih.gov/mesh/D010641 https://id.nlm.nih.gov/mesh/D011237 https://id.nlm.nih.gov/mesh/D053858 https://id.nlm.nih.gov/mesh/D005990 https://id.nlm.nih.gov/mesh/D016680 https://id.nlm.nih.gov/mesh/D049490 |
Fecha de publicación : | 2020 |
Editorial : | Public Library of Science |
Citación : | López-Agudelo VA, Mendum TA, Laing E, Wu H, Baena A, Barrera LF, Beste DJV, Rios-Estepa R. A systematic evaluation of Mycobacterium tuberculosis Genome-Scale Metabolic Networks. PLoS Comput Biol. 2020 Jun 15;16(6):e1007533. doi: 10.1371/journal.pcbi.1007533. |
Resumen : | ABSTRACT: Metabolism underpins the pathogenic strategy of the causative agent of TB, Mycobacterium tuberculosis (Mtb), and therefore metabolic pathways have recently re-emerged as attractive drug targets. A powerful approach to study Mtb metabolism as a whole, rather than just individual enzymatic components, is to use a systems biology framework, such as a Genome-Scale Metabolic Network (GSMN) that allows the dynamic interactions of all the components of metabolism to be interrogated together. Several GSMNs networks have been constructed for Mtb and used to study the complex relationship between the Mtb genotype and its phenotype. However, the utility of this approach is hampered by the existence of multiple models, each with varying properties and performances. Here we systematically evaluate eight recently published metabolic models of Mtb-H37Rv to facilitate model choice. The best performing models, sMtb2018 and iEK1011, were refined and improved for use in future studies by the TB research community. |
metadata.dc.identifier.eissn: | 1553-7358 |
ISSN : | 1553-734X |
metadata.dc.identifier.doi: | 10.1371/journal.pcbi.1007533 |
Aparece en las colecciones: | Artículos de Revista en Ciencias Médicas |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
BaenaAndres_2020_Systematic_Evaluation_Mycobacterium.pdf | Artículo de investigación | 3.91 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons