Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/42032
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRojas López, Mauricio-
dc.contributor.authorHenao Tamayo, Marcela Isabel-
dc.contributor.authorObregón Henao, Andrés-
dc.contributor.authorKarger, Burton-
dc.contributor.authorFox, Amy-
dc.contributor.authorDutt, Taru S.-
dc.date.accessioned2024-09-11T19:54:01Z-
dc.date.available2024-09-11T19:54:01Z-
dc.date.issued2020-
dc.identifier.citationFox A, Dutt TS, Karger B, Rojas M, Obregón-Henao A, Anderson GB, Henao-Tamayo M. Cyto-Feature Engineering: A Pipeline for Flow Cytometry Analysis to Uncover Immune Populations and Associations with Disease. Sci Rep. 2020 May 6;10(1):7651. doi: 10.1038/s41598-020-64516-0.spa
dc.identifier.urihttps://hdl.handle.net/10495/42032-
dc.description.abstractABSTRACT:Flow cytometers can now analyze up to 50 parameters per cell and millions of cells per sample; however, conventional methods to analyze data are subjective and time-consuming. To address these issues, we have developed a novel flow cytometry analysis pipeline to identify a plethora of cell populations efficiently. Coupled with feature engineering and immunological context, researchers can immediately extrapolate novel discoveries through easy-to-understand plots. The R-based pipeline uses Fluorescence Minus One (FMO) controls or distinct population differences to develop thresholds for positive/negative marker expression. The continuous data is transformed into binary data, capturing a positive/negative biological dichotomy often of interest in characterizing cells. Next, a filtering step refines the data from all identified cell phenotypes to populations of interest. The data can be partitioned by immune lineages and statistically correlated to other experimental measurements. The pipeline's modularity allows customization of statistical testing, adoption of alternative initial gating steps, and incorporation of other datasets. Validation of this pipeline through manual gating of two datasets (murine splenocytes and human whole blood) confirmed its accuracy in identifying even rare subsets. Lastly, this pipeline can be applied in all disciplines utilizing flow cytometry regardless of cytometer or panel design. The code is available at https://github.com/aef1004/cyto-feature_engineering.spa
dc.format.extent12 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherNature Publishing Groupspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/co/*
dc.titleCyto-Feature Engineering: A Pipeline for Flow Cytometry Analysis to Uncover Immune Populations and Associations with Diseasespa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupGrupo de Inmunología Celular e Inmunogenéticaspa
dc.identifier.doi10.1038/s41598-020-64516-0-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn2045-2323-
oaire.citationtitleScientific Reportsspa
oaire.citationstartpage1spa
oaire.citationendpage12spa
oaire.citationvolume10spa
oaire.citationissue1spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/spa
oaire.fundernameNational Institutes of Healthspa
dc.publisher.placeLondres, Inglaterraspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.decsBiomarcadores-
dc.subject.decsBiomarkers-
dc.subject.decsCélulas Sanguíneas-
dc.subject.decsBlood Cells-
dc.subject.decsCitodiagnóstico-
dc.subject.decsCytodiagnosis-
dc.subject.decsSusceptibilidad a Enfermedades-
dc.subject.decsDisease Susceptibility-
dc.subject.decsCitometría de Flujo-
dc.subject.decsFlow Cytometry-
dc.subject.decsInmunofenotipificación-
dc.subject.decsImmunophenotyping-
dc.subject.decsMycobacterium tuberculosis-
dc.subject.decsTuberculosis-
dc.subject.decsRatones-
dc.subject.decsRatones-
dc.description.researchgroupidCOL0008639spa
oaire.awardnumberNIH R01 AI127475, R21 AI121099spa
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D015415-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D001773-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D003581-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D004198-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D005434-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D016130-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D009169-
dc.subject.meshuriFenotipo-
dc.subject.meshuriPhenotype-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D010641-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D051379-
dc.relation.ispartofjournalabbrevSci. Rep.spa
oaire.funderidentifier.rorRoR:01cwqze88-
Aparece en las colecciones: Artículos de Revista en Ciencias Médicas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RojasMauricio_2020_Cyto_Feature_Engineering.pdfArtículo de investigación4.77 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons