Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/42272
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorBalcázar Morales, Norman-
dc.contributor.authorArbeláez Córdoba, Natalia-
dc.contributor.authorGoez Mora, Jhon Edison-
dc.contributor.authorRivadeneira Paz, Pablo Santiago-
dc.date.accessioned2024-09-19T03:30:45Z-
dc.date.available2024-09-19T03:30:45Z-
dc.date.issued2024-
dc.identifier.citationGoez-Mora JE, Arbeláez-Córdoba N, Balcazar-Morales N, Rivadeneira PS. A concept for human use of real-time and remote monitoring of diabetic subjects using intermittent scanned continuous glucose measurement. Biomed Eng Online. 2024 Feb 28;23(1):26. doi: 10.1186/s12938-024-01217-z.spa
dc.identifier.urihttps://hdl.handle.net/10495/42272-
dc.description.abstractABSTRACT: Background Flash glucose monitoring systems like the FreeStyle Libre (FSL) sensor have gained popularity for monitoring glucose levels in people with diabetes mellitus. This sensor can be paired with an off-label converted real-time continuous glucose monitor (c-rtCGM) plus an ad hoc computer/smartphone interface for remote real-time monitoring of diabetic subjects, allowing for trend analysis and alarm generation. Objectives This work evaluates the accuracy and agreement between the FSL sensor and the developed c-rtCGM system. As real-time monitoring is the main feature, the system's connectivity was assessed at 5-min intervals during the trials. Methods One week of glucose data were collected from 16 type 1 diabetic rats using the FSL sensor and the c-rtCGM. Baseline blood samples were taken the first day before inducing type 1 diabetes with streptozotocin. Once confirmed diabetic rats, FSL and c-rtCGM, were implanted, and to improve data matching between the two monitoring devices, the c-rtCGM was calibrated to the FSL glucometer readings. A factorial design 2 × 3^3 and a second-order regression was used to find the base values of the linear model transformation of the raw data obtained from the sensor. Accuracy, agreement, and connectivity were assessed by median absolute relative difference (Median ARD), range averaging times, Parkes consensus error grid analysis (EGA), and Bland–Altman analysis with a non-parametric approach. Results Compared to the FSL sensor, the c-rtCGM had an overall Median ARD of 6.58%, with 93.06% of results in zone A when calibration was not carried out. When calibration frequency changed from every 50 h to 1 h, the overall Median ARD improved from 6.68% to 2.41%, respectively. The connectivity evaluation showed that 95% of data was successfully received every 5 min by the computer interface. Conclusions and clinical importance The results demonstrate the feasibility and reliability of real-time and remote subjects with diabetes monitoring using the developed c-rtCGM system. Performing calibrations relative to the FSL readings increases the accuracy of the data displayed at the interface.spa
dc.format.extent15 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherBMC (BioMed Central)spa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/co/*
dc.titleA concept for human use of real-time and remote monitoring of diabetic subjects using intermittent scanned continuous glucose measurementspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupGenética Molecular (GENMOL)spa
dc.identifier.doi10.1186/s12938-024-01217-z-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn1475-925X-
oaire.citationtitleBiomedical Engineering Onlinespa
oaire.citationstartpage1spa
oaire.citationendpage15spa
oaire.citationvolume23spa
oaire.citationissue1spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/spa
oaire.fundernameUniversidad Nacional de Colombiaspa
dc.publisher.placeLondres, Inglaterraspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.decsBlood Glucose-
dc.subject.decsGlucemia-
dc.subject.decsBlood Glucose Self-Monitoring-
dc.subject.decsAutomonitorización de la Glucosa Sanguínea-
dc.subject.decsDiabetes Mellitus, Experimental-
dc.subject.decsDiabetes Mellitus Experimental-
dc.subject.decsDiabetes Mellitus, Type 1-
dc.subject.decsDiabetes Mellitus Tipo 1-
dc.subject.decsReproducibility of Results-
dc.subject.decsReproducibilidad de los Resultados-
dc.description.researchgroupidCOL0006723spa
oaire.awardnumberUNAL 57528spa
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D001786-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D015190-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D003921-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D003922-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D015203-
dc.relation.ispartofjournalabbrevBiomed. Eng. Online.spa
oaire.funderidentifier.rorRoR:059yx9a68-
Aparece en las colecciones: Artículos de Revista en Ciencias Médicas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
BalcazarNorman_2024_Concept_Human_diabetic.pdfArtículo de investigación1.72 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons