Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/43221
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorRoldán Correa, Alejandro-
dc.contributor.authorValencia Henao, León Alexander-
dc.contributor.authorGallo, Sandro-
dc.contributor.authorColetti, Cristian F.-
dc.date.accessioned2024-11-06T18:29:06Z-
dc.date.available2024-11-06T18:29:06Z-
dc.date.issued2024-
dc.identifier.citationColetti, C.F., Gallo, S., Roldán-Correa, A. et al. Fluctuations of the Occupation Density for a Parking Process. J Stat Phys 191, 146 (2024). https://doi.org/10.1007/s10955-024-03336-2spa
dc.identifier.issn0022-4715-
dc.identifier.urihttps://hdl.handle.net/10495/43221-
dc.description.abstractABSTRACT: Consider the following simple parking process on n := {−n,..., n}d , d ≥ 1: at each step, a site i is chosen at random in n and if i and all its nearest neighbor sites are empty, i is occupied. Once occupied, a site remains so forever. The process continues until all sites in n are either occupied or have at least one of their nearest neighbors occupied. The final configuration (occupancy) of n is called the jamming limit and is denoted by Xn . Ritchie (J Stat Phys 122:381–398, 2006) constructed a stationary random field on Zd obtained as a (thermodynamic) limit of the Xn ’s as n tends to infinity. As a consequence of his construction, he proved a strong law of large numbers for the proportion of occupied sites in the box n for the random field X. Here we prove the central limit theorem, the law of iterated logarithm, and a gaussian concentration inequality for the same statistics. A particular attention will be given to the case d = 1, in which we also obtain new asymptotic properties for the sequence Xn , n ≥ 1.spa
dc.format.extent17 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSpringerspa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/co/*
dc.titleFluctuations of the Occupation Density for a Parking Processspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupAnálisis Multivariadospa
dc.publisher.groupAnálisis Numérico y Financiero: Matemáticas aplicadas para la industriaspa
dc.identifier.doi10.1007/s10955-024-03336-2-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.identifier.eissn1572-9613-
oaire.citationtitleJournal of Statistical Physicsspa
oaire.citationstartpage145spa
oaire.citationendpage162spa
oaire.citationvolume191spa
oaire.citationissue146spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/spa
oaire.fundernameUniversidad de Antioquiaspa
dc.publisher.placeNueva York, Estados Unidosspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.lembTeorema del límite central-
dc.subject.lembCentral limit theorem-
dc.subject.lembDistribución asintótica (teoría de probabilidades)-
dc.subject.lembAsymptotic distribution (probability theory)-
dc.subject.proposalParking processspa
dc.subject.proposalJamming limitspa
dc.subject.proposalThermodynamic limitspa
dc.subject.proposalRandom sequential adsorptionspa
dc.subject.proposalConcentration inequalitiesspa
dc.description.researchgroupidCOL0000532spa
dc.description.researchgroupidCOL0106371spa
oaire.awardnumberUdeA 2023-58830spa
dc.relation.ispartofjournalabbrevJ. Stat. Phys.spa
oaire.funderidentifier.rorRoR:03bp5hc83-
Aparece en las colecciones: Artículos de Revista en Ciencias Exactas y Naturales

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RoldanAlejandro_2024_FluctuationsOccupationDensity.pdfArtículo de investigación367.61 kBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons