Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/43582
Título : | Ability of non-linear mixed models to predict growth in laying hens |
Autor : | Galeano Vasco, Luis Fernando Cerón Muñoz, Mario Fernando Narváez Solarte, William |
metadata.dc.subject.*: | Aumento de Peso Weight Gain Análisis de Regresión Regression Analysis Pollos Chickens Aves de corral Poultry Modelo matemático Mathematical models http://aims.fao.org/aos/agrovoc/c_1540 http://aims.fao.org/aos/agrovoc/c_24199 http://aims.fao.org/aos/agrovoc/c_16335 https://id.nlm.nih.gov/mesh/D015430 https://id.nlm.nih.gov/mesh/D012044 |
Fecha de publicación : | 2014 |
Editorial : | Sociedade Brasileira de Zootecnia |
Resumen : | ABSTRACT: In this study, the Von Bertalanffy, Richards, Gompertz, Brody, and Logistics non-linear mixed regression models were compared for their ability to estimate the growth curve in commercial laying hens. Data were obtained from 100 Lohmann LSL layers. The animals were identified and then weighed weekly from day 20 after hatch until they were 553 days of age. All the nonlinear models used were transformed into mixed models by the inclusion of random parameters. Accuracy of the models was determined by the Akaike and Bayesian information criteria (AIC and BIC, respectively), and the correlation values. According to AIC, BIC, and correlation values, the best fit for modeling the growth curve of the birds was obtained with Gompertz, followed by Richards, and then by Von Bertalanffy models. The Brody and Logistic models did not fit the data. The Gompertz nonlinear mixed model showed the best goodness of fit for the data set, and is considered the model of choice to describe and predict the growth curve of Lohmann LSL commercial layers at the production system of University of Antioquia. |
metadata.dc.identifier.eissn: | 1806-9290 |
ISSN : | 1516-3598 |
metadata.dc.identifier.doi: | 10.1590/S1516-35982014001100003 |
Aparece en las colecciones: | Artículos de Revista en Ciencias Agrarias |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
GaleanoLuis_2014_AbilityNon-linearModels.pdf | Artículo de investigación | 1.22 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons