Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/43799
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.authorEcheverry Rendón, Mónica-
dc.contributor.authorBerrio Betancur, Luisa Fernanda-
dc.contributor.authorRobledo Restrepo, Sara María-
dc.contributor.authorCalderón Gutiérrez, Jorge Andrés-
dc.contributor.authorCastaño González, Juan Guillermo-
dc.contributor.authorEcheverría Echeverría, Felix-
dc.date.accessioned2024-11-27T17:11:08Z-
dc.date.available2024-11-27T17:11:08Z-
dc.date.issued2023-
dc.identifier.citationEcheverry-Rendón, M.; Berrio, L.F.; Robledo, S.M.; Calderón, J.A.; Castaño, J.G.; Echeverría, F. Corrosion Resistance and Biological Properties of Pure Magnesium Modified by PEO in Alkaline Phosphate Solutions. Corros. Mater. Degrad. 2023, 4, 196–211. https:// doi.org/10.3390/cmd4020012spa
dc.identifier.issn1326-1932-
dc.identifier.urihttps://hdl.handle.net/10495/43799-
dc.description.abstractABSTRACT: Magnesium (Mg) has been explored during the last few decades in the biomedical industry as a biodegradable implant. However, mechanical properties and corrosion resistance are still big concerns for clinical use. Therefore, this study proposes a suitable surface modification of the Mg by plasma electrolytic oxidation (PEO) to improve its corrosion resistance and biological performance. Mg samples were processed in a galvanostatic mode using an electrolytic solution of a phosphate compound supplemented with either potassium pyrophosphate or sodium-potassium tartrate. The obtained coatings were physiochemically characterized by SEM, XRD, EDS, and micro-Raman spectroscopy. The corrosion resistance of the coatings was studied using a hydrogen evolution setup and electrochemical tests. Finally, the biological performance of the material was evaluated by using an indirect test with osteoblasts. Obtained coatings showed a porous morphology with thicknesses ranging from 2 to 3 µm, which was closely dependent on the PEO solution. The corrosion resistance tests improved the degradation rate compared to the raw material. Additionally, an unreported active–passive corrosion behavior was evidence of a protective layer of corrosion products underneath the anodic coating. Indirect in vitro cytotoxicity assays indicated that the coatings improved the biocompatibility of the material. In conclusion, it was found that the produced coatings from this study not only lead to material protection but also improve the biological performance of the material and ensure cell survival, indicating that this could be a potential material used for bone implants.spa
dc.format.extent16 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherMultidisciplinary Digital Publishing Institutespa
dc.type.hasversioninfo:eu-repo/semantics/publishedVersionspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by/2.5/co/*
dc.titleCorrosion Resistance and Biological Properties of Pure Magnesium Modified by PEO in Alkaline Phosphate Solutionsspa
dc.typeinfo:eu-repo/semantics/articlespa
dc.publisher.groupCentro de Investigación Innovación y Desarrollo de Materiales (CIDEMAT)spa
dc.publisher.groupPrograma de Estudio y Control de Enfermedades Tropicales (PECET)spa
dc.identifier.doi10.3390/cmd4020012-
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.citationtitleCorrosion and materials degradationspa
oaire.citationstartpage196spa
oaire.citationendpage211spa
oaire.citationvolume4spa
oaire.citationissue2spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by/4.0/spa
oaire.fundernameColombia. Ministerio de Ciencia, Tecnología e Innovación - MinCienciasspa
oaire.fundernameUniversidad de Antioquia. Vicerrectoría de investigación. Comité para el Desarrollo de la Investigación - CODIspa
dc.publisher.placeBasel, Switzerlandspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.redcolhttps://purl.org/redcol/resource_type/ARTspa
dc.type.localArtículo de investigaciónspa
dc.subject.decsMagnesio-
dc.subject.decsMagnesium-
dc.subject.decsCorrosión-
dc.subject.lembOxidación electrolítica-
dc.subject.lembElectrolytic oxidation-
dc.subject.proposalPotassium pyrophosphatespa
dc.subject.proposalSodium-potassium tartratespa
dc.subject.proposalPlasma electrolytic oxidationspa
dc.identifier.urlhttps://www.mdpi.com/2624-5558/4/2/12spa
dc.description.researchgroupidCOL0015099spa
dc.description.researchgroupidCOL0007927spa
oaire.awardnumber406-2020spa
oaire.awardnumber2014-657spa
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D008274-
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D003343-
dc.relation.ispartofjournalabbrevCorros. Mater. Degrad.spa
oaire.funderidentifier.rorRoR:03fd5ne08-
oaire.funderidentifier.rorRoR:03bp5hc83-
Aparece en las colecciones: Artículos de Revista en Ciencias Médicas

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RobledoSara_2023_BiodegradableCellsPEO.pdfArtículo de investigación3.93 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons