Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/43811
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.contributor.advisorOrozco Arroyave, Juan Rafael-
dc.contributor.advisorArias Vergara, Tomas-
dc.contributor.authorCalvo Ariza, Nestor Rafael-
dc.date.accessioned2024-11-28T13:32:30Z-
dc.date.available2024-11-28T13:32:30Z-
dc.date.issued2024-
dc.identifier.urihttps://hdl.handle.net/10495/43811-
dc.description.abstractABSTRACT : Voice production is a crucial aspect of human life; problems with the voice can affect the quality of life by influencing how we communicate. Speech production involves various muscles and neural connections so that voice pathologies can arise from multiple sources. Early detection of these disorders is critical to maintaining or improving the patient's condition. However, diagnosing these pathologies is often time-consuming and subject to physicians' assessment. The increased popularity of Artificial Intelligence (AI) has led to the creation of machine learning and deep learning models that perform an automatic analysis based on patterns found in the data. These AI techniques offer the potential to simplify the diagnostic process, providing more consistent and objective assessments. However, they require a previous analysis of the data, the features that will be extracted, and the classifiers. This work analyzes and compares multiple techniques to classify voice pathologies using the Saarbrücken Voice Database, a German database containing multiple voice pathologies and healthy controls performing different tasks. This work aims to apply and compare different machine learning and deep learning techniques to find the best classifier, considering an unbiased analysis for age and gender. Also, this work aims to showcase the capabilities of a novel feature set called phase plots, which represented glottal cycles as elliptical trajectories superimposed in a 2D plane. Additionally, the study explores the impact of incorporating complementary information through early and late fusion methods on the classification process. By integrating these techniques, the study aims to enhance the accuracy and robustness of voice pathology classification. The findings of this work highlight the potential of automated techniques in voice pathology detection.spa
dc.format.extent139 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.type.hasversioninfo:eu-repo/semantics/draftspa
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/2.5/co/*
dc.titleOn the use of electroglottography and speech signals for automatic classification of patients with voice pathologiesspa
dc.typeinfo:eu-repo/semantics/masterThesisspa
dc.publisher.groupGrupo de Investigación en Telecomunicaciones Aplicadas (GITA)spa
oaire.versionhttp://purl.org/coar/version/c_b1a7d7d4d402bccespa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
thesis.degree.nameMagíster en Ingeniería de Telecomunicacionesspa
thesis.degree.levelPregradospa
thesis.degree.disciplineFacultad de Ingeniería. Maestría en Ingeniería de Telecomunicacionesspa
thesis.degree.grantorUniversidad de Antioquiaspa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.publisher.placeMedellín, Colombiaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TMspa
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa
dc.subject.decsTrastornos de la Voz-
dc.subject.decsVoice Disorders-
dc.subject.lembInteligencia artificial-
dc.subject.lembArtificial intelligence-
dc.subject.lembAprendizaje automático (Inteligencia artificial)-
dc.subject.lembMachine learning-
dc.subject.lembAprendizaje Profundo-
dc.subject.lembDeep Learning-
dc.subject.proposalVoice pathologiesspa
dc.subject.proposalPatologias de vozspa
dc.subject.proposalElectroglottographyspa
dc.subject.proposalElectroglotografíaspa
dc.description.researchgroupidCOL0044448spa
dc.subject.meshurihttps://id.nlm.nih.gov/mesh/D014832-
Aparece en las colecciones: Maestrías de la Facultad de Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
CalvoNestor_2024_OnTheUseOfElectroglottographyTesis de maestría2.1 MBAdobe PDFVisualizar/Abrir


Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons