Por favor, use este identificador para citar o enlazar este ítem:
https://hdl.handle.net/10495/44223
Título : | Predictive model for estimating nitrogen density in MD2 pineapple crops from multispectral images and sensors integrated in an IoT platform |
Autor : | Chaparro Mesa, Jorge Enrique |
metadata.dc.contributor.advisor: | Aedo Cobo, José Edison |
metadata.dc.subject.*: | Técnicas de predicción Forecasting techniques Procesamiento de imágenes Image processing Internet de las cosas Internet of things (IoT) Multispectral Imaging Unmanned Aerial Vehicle (UAV) Sensors in the crop http://aims.fao.org/aos/agrovoc/c_e4315b22 |
Fecha de publicación : | 2024 |
Resumen : | ABSTRACT : Nitrogen is the most important nutritional element during the vegetative growth phase of the pineapple crop; however, its presence in the soil is insufficient to meet plant demands. In this doctoral research, nine machine learning techniques were validated to estimate total nitrogen (TN) content in MD2 pineapple crops from data from multiple sources. These sources included multispectral images captured by an unmanned aerial vehicle (UAV) and in situ sensors that collected information on ecological and environmental factors, such as pH, temperature, solar radiation, relative humidity, soil moisture, and wind speed and direction. In addition, plant information was collected related to SPAD values, which indicate leaf chlorophyll content, and total nitrogen (TN) values, obtained from leaf tissue samples sent to a certified laboratory for analysis.
To introduce nitrogen variability, a randomized complete block experimental design was implemented, applying five different treatments in five blocks, each with 12 replications, during a 6-month period in a pineapple crop located in the municipality of Tauramena, Casanare, Colombia. To address the inherent variability of the agricultural and environmental data, dimensionality was reduced using Principal Component Analysis (PCA). Regularization techniques were also applied, including cross-validation, feature selection, boost methods, L1 (Lasso) and L2 (Ridge) regularization, as well as hyperparameter optimization. These strategies generated more robust and accurate models, among which regression, multilayer perceptron (MLP regressor) and extreme gradient boosting (XGBoost) algorithms stood out. On the first sampling date, XGBoost achieved an R^2 of 86.98\%, which was the highest during the entire experiment. On subsequent dates, MLP achieved an R^2 of 59.11\% on the second date; XGBoost achieved an R^2 of 68.00\% on the third date, and on the last date, MLP achieved an R^2 of 69.4\%. These results indicate that the integration of data from multiple sources and the use of machine learning models enable nitrogen (N) diagnostics in pineapple crops, especially in real-time applications. These results highlight the promising potential of developing machine learning models that integrate multisensor data fusion for various applications in agriculture. In the implementation of the machine learning models, the total nitrogen content obtained in the laboratory was considered as the response variable. The predictor variables comprised sensor data, SPAD values, and statistical information derived from 16 vegetation indices calculated from the multispectral images. To reduce the dimensionality of the predictor variable dataset, Principal Component Analysis (PCA) was applied. Following this dimensionality reduction, nine regression algorithms were used to estimate leaf nitrogen content during each of the four study periods. This comprehensive approach yielded close estimates of leaf nitrogen content. The results of the study indicated that the MLP (Multilayer Perceptron) and XGB (XGBoost) regression algorithms stood out for their superior performance, evidenced by the best performance metrics. RESUMEN : El nitrógeno es el elemento nutricional más importante durante la fase de crecimiento vegetativo del cultivo de piña; sin embargo, su presencia en el suelo es insuficiente para satisfacer las demandas de las plantas. En esta investigación doctoral, se validaron nueve técnicas de aprendizaje automático para estimar el contenido total de nitrógeno (TN) en cultivos de piña MD2 a partir de datos de múltiples fuentes. Estas fuentes incluyeron imágenes multiespectrales capturadas por un vehículo aéreo no tripulado (UAV) y sensores in situ que recopilaron información sobre factores ecológicos y ambientales, como el pH, la temperatura, la radiación solar, la humedad relativa, la humedad del suelo y la velocidad y dirección del viento. Además, se recopiló información de la planta relacionada con los valores de SPAD, que indican el contenido de clorofila en las hojas, y los valores de nitrógeno total (TN), obtenidos de muestras de tejido foliar enviadas a un laboratorio certificado para su análisis. Para introducir la variabilidad del nitrógeno, se implementó un diseño experimental de bloques completos al azar, aplicando cinco tratamientos diferentes en cinco bloques, cada uno con 12 repeticiones, durante un período de 6 meses en un cultivo de piña ubicado en el municipio de Tauramena, Casanare, Colombia. Para abordar la variabilidad inherente de los datos agrícolas y ambientales, la dimensionalidad se redujo utilizando el Análisis de Componentes Principales (PCA). También se aplicaron técnicas de regularización, incluyendo validación cruzada, selección de características, métodos de boost, regularización L1 (Lasso) y L2 (Ridge), así como optimización de hiperparámetros. Estas estrategias generaron modelos más robustos y precisos, entre los que se destacaron los algoritmos de regresión, perceptrón multicapa (MLP regressor) y aumento de gradiente extremo (XGBoost). En la primera fecha de muestreo, XGBoost alcanzó un R^2 de 86.98\%, que fue el más alto durante todo el experimento. En las fechas posteriores, MLP alcanzó un R^2 de 59.11\% en la segunda fecha; XGBoost logró un R^2 de 68.00\% en la tercera fecha, y en la última fecha, MLP logró un R^2 de 69.4\%. Estos resultados indican que la integración de datos de múltiples fuentes y el uso de modelos de aprendizaje automático permiten el diagnóstico de nitrógeno (N) en cultivos de piña, especialmente en aplicaciones en tiempo real. Estos resultados ponen de manifiesto el prometedor potencial del desarrollo de modelos de aprendizaje automático que integren la fusión de datos multisensor para diversas aplicaciones en la agricultura. En la implementación de los modelos de machine learning se consideró como variable de respuesta el contenido total de nitrógeno obtenido en el laboratorio. Las variables predictoras comprendieron datos de sensores, valores de SPAD e información estadística derivada de 16 índices de vegetación calculados a partir de las imágenes multiespectrales. Para reducir la dimensionalidad del conjunto de datos de variables predictoras, se aplicó el Análisis de Componentes Principales (PCA). Después de esta reducción de dimensionalidad, se utilizaron nueve algoritmos de regresión para estimar el contenido de nitrógeno foliar durante cada uno de los cuatro períodos de estudio. Este enfoque integral produjo estimaciones detalladas del contenido de nitrógeno de las hojas. Los resultados del estudio indicaron que los algoritmos de regresión MLP (Multilayer Perceptron) y XGB (XGBoost) destacaron por su rendimiento superior, evidenciado por las mejores métricas de rendimiento. |
Aparece en las colecciones: | Doctorados de la Facultad de Ingeniería |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
ChaparroJorge_2025_PredectiveModelDensity | Tesis doctoral | 2.83 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons