Por favor, use este identificador para citar o enlazar este ítem: https://hdl.handle.net/10495/44483
Título : Predicción del precio ponderado de la energía en el mercado mayorista en Colombia mediante modelos de deep learning con un horizonte de predicción de 24 horas, utilizando datos históricos de XM recolectados durante 10 años
Autor : Garcia Vásquez, Yeferson Ferley
Ruiz Zea, Felipe
metadata.dc.contributor.advisor: Uribe Guerra, Gabriel Darío
metadata.dc.subject.*: Aprendizaje profundo
Deep Learning
Análisis de series de tiempo
Time-series analysis
Técnicas de predicción
Forecasting techniques
Precios de la energía
Industria energética
Energy industry
Fecha de publicación : 2024
Resumen : RESUMEN : En Colombia, el precio de la energía ha mostrado un aumento irregular debido a diversos factores especulativos y operativos, lo que ha generado un alza significativa en los últimos años. Este comportamiento refleja la complejidad del mercado energético colombiano, influenciado por la interconexión de los sistemas de generación y la competencia en el mercado. Estas dinámicas hacen que, para los diferentes actores de la producción energética, sea complejo predecir la oferta con la que deben competir. Para enfrentar este desafío, se propone desarrollar un modelo predictivo basado en Deep Learning utilizando datos históricos del sistema energético de XM, considerando variables como el volumen útil de los embalses, la demanda energética y los precios históricos. Los objetivos del modelo incluyen anticipar las fluctuaciones en los precios de la energía y evaluar su desempeño con datos reales. La metodología empleará herramientas de ciencia de datos con para la limpieza, exploración y modelado de los datos, así como la implementación de modelos de aprendizaje profundo (DL), como LSTM, RNN y GRU, con el objetivo de predecir el precio de la energía eléctrica en un horizonte de 24 horas. Este enfoque busca mejorar la planificación y gestión del sistema energético colombiano, optimizando la toma de decisiones estratégicas y aumentando la resiliencia del sistema frente a las incertidumbres del mercado energético.
Aparece en las colecciones: Especializaciones de la Facultad de Ingeniería

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RuizFeipe_2024_PrediccionEnergiaDeepLearning.pdfTrabajo de grado de especialización2.77 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.